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Abstract

In this paper we prove that the surface of the regular truncated tetrahedron can be
triangulated into 10 non-obtuse geodesic triangles, and also into 12 acute geodesic triangles.
Furthermore, we show that both triangulations have minimal size.
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1 Introduction

We call the boundary of a compact convex set in R
3 with non-empty interior a convex surface.

A shortest path between two points of such a surface will be called a segment. A triangle with
three segments as sides is called a geodesic triangle. By a triangulation of a convex surface
S we mean a set of geodesic triangles such that every point of S is in some triangle, and the
intersection of any two triangles is either empty, or consists of a vertex, or of an edge of both
triangles. This makes sense for any compact surface admitting segments, such as connected
polyhedral surfaces or Alexandrov surfaces, including Riemannian and convex surfaces. For all
these surfaces, two geodesics starting at the same point determine a well defined angle. An
acute (non-obtuse) triangulation is a triangulation such that the angles of all geodesic triangles
are smaller (respectively, not greater) than π

2 . The number of triangles in a triangulation is
called its size.

In 1960, Gardner reported in his “Mathematical Games” section of the Scientific American

(see [5], [6], [7]) a problem of Stover asking whether an obtuse triangle can be cut into smaller
acute triangles. Also in 1960, the same problem has also been independently proposed by
Goldberg in [8] and solved by Manheimer [17].

In the same year, Burago and Zalgaller [1] proved the existence of acute triangulations
of arbitrary two-dimensional polyhedral surfaces, accidentally also solving the above problem.
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Burago and Zalgaller’s deep work concentrated on the existence, not on the size of the trian-
gulations. Later, more attention was paid to the size.

In 1980, Cassidy and Lord [2] considered acute triangulations of the square. More recently,
acute triangulations of quadrilaterals [14], [3], trapezoids [25], pentagons [24] and arbitrary
convex polygons [15, 23, 30] have also been considered, all of them containing size estimates,
in several cases proven to be optimal.

Several compact convex or flat surfaces have also been investigated: the surfaces of all
Platonic solids in [9], [11], [12], and [13], double triangles in [29], double quadrilaterals in [26],
double planar convex bodies in [28], flat Möbius strips in [27], and flat tori in [10].

In 2009, the existence of acute triangulations of polyhedral surfaces was considered again
by Saraf [21], who gave a shorter proof of their existence, still without estimates on the size. In
2011, Maehara [16] provided for the first time bounds (depending on some natural geometric
parameters) for the size of acute triangulations of an arbitrary polyhedral surface. See also
Zamfirescu’s survey [31].

Figure 1: The surface S of the regular truncated tetrahedron

Motivated by the now complete study of the acute (and non-obtuse) triangulations of all
Platonic surfaces, including optimal bounds for their size, we want to discuss here the case of
the surfaces of Archimedean solids, and start with perhaps the most important of them, the
surface of the regular truncated tetrahedron, shown in Figure 1. This Archimedean solid has
four regular hexagons and four equilateral triangles as faces.

The cut locus of a point on a complete, simply connected and real analytic Riemannian 2-
manifold, was introduced and first investigated in 1905 by Poincaré [20]. Later, Myers [18, 19],
Whitehead [22] and many more continued its study. The notion can be easily extended to any
Alexandrov surfaces, including all polytopal surfaces. (Remember that a polytope is the convex
hull of a finite set, and a polytopal surface is the boundary of a polytope.)

Let S be a polytopal surface. For each point p ∈ S and each direction τ at p, there exist
many segments starting at p in direction τ , including each other. If px is the maximal one, the
point x is called the cut point of p in direction τ . The cut locus C(p) of p is the set of cut points
of p in all directions.

For example, let p be a vertex of a cube. Then, on the surface of the cube, C(p) is the union
of six line-segments starting from the vertex antipodal to p, among which three line-segments
are edges of the cube, and the other three are diagonals of the incident faces.



Acute Triangulations 273

The cut locus will be one of our main tools. Some well-known properties of the cut-locus
on a polytopal surface S follow.

The set S \ C(p) is homeomorphic to the open disc, and each of its points is joined with p
by a single segment. The cut-locus is topologically a tree. If x ∈ C(p) is not an endpoint of
the tree C(p), then at least two segments join x to p. If the number of segments is 2, then they
form equal angles with C(p). In our case of a polytopal surface, C(p) is always a finite union
of line-segments. If a point x is joined by two segments with p, then x ∈ C(p).

Now, let S be the boundary and S the 1-skeleton of the regular truncated tetrahedron with
side length 1. The set of vertices of S will be denoted by V (S). The graph-theoretic distance
dS (v, w) between vertices v, w ∈ V (S) of the graph S is called the S -distance.

Let uv denote the segment between two points u and v on the surface S, if the segment
is unique. If there is more than one segment from u to v, we still use the notation uv, after
specifying which one of the segments we have in mind. Its length will be denoted by |uv|.

The size of a triangulation T of S will similarly be denoted by |T |, no confusion being
possible.

Now, let T be an acute triangulation of S, and T0 a non-obtuse one. We shall prove here
that |T0| ≥ 10 and |T | ≥ 12.

2 Non-obtuse triangulations

Let u, v be two vertices of S. If a segment passes through the interiors of two hexagonal faces
of S, then we call it an h-segment. Let n(u, v) denote the maximal number of vertices of S
lying in the union of the interiors of any two non-obtuse triangles with common edge uv. If
uv is an edge of a non-obtuse triangulation, let △uv denote the triangle with one side uv and
lying on the left side of uv (when looking from u to v). Clearly, △vu is the other triangle of
the triangulation sharing the side uv.

Lemma 1. Let u, v be two vertices of S. If uv is not an h-segment, then n(u, v) ≤ 1.

Proof: The total angle around each vertex of S is 5π
3 . By the Gauß-Bonnet formula, no non-

obtuse triangle on S can contain two vertices of S in its interior. Thus, we only need to show
that one of the triangles △uv, △vu contains no vertex of S in its interior. Denote by w the
third vertex of the non-obtuse triangle △uv. Let Gu

uv
, Gv

uv
be the maximal segments starting

from u, respectively v, in a direction orthogonal to uv, to the left (same side as △uv).
Our strategy will be the following. For various u, v ∈ V (S), we consider Gu

uv
and Gv

uv
.

Let Gu

uv
= uu⋆ and Gv

uv
= vv⋆. Then u⋆ ∈ C(u) and v⋆ ∈ C(v). We shall look for a point

z ∈ C(u) ∩ C(v) and for the arcs ũ⋆z ⊂ C(u) and ṽ⋆z ⊂ C(v). It is inside the region uvv⋆zu⋆u
that we can possibly find positions for the third vertex of △uv.

Case 1. dS (u, v) = 1
In this case, uv is the common edge of two hexagons or the common edge of a hexagon and

a triangle. Interchange u and v if necessary, such that △uv lies on the same side of uv as a
hexagon.

Clearly, Gu

uv
= uu1 and Gv

uv
= vv1, see Figure 2. From every point of u1p \ {u1} there are

two segments to u, one through a triangle (pu1v1) and a hexagon, and a second through two
hexagons. Hence, u1p ⊂ C(u), analogously v1p ⊂ C(v), and z = p. Thus, the third vertex of
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Figure 2: dS (u, v) = 1

△uv must be contained in the pentagonal region uvv1pu1u. Obviously, there is no vertex of S
there.

Case 2. dS (u, v) = 2

Figure 3: dS (u, v) = 2

Then uv is a small diagonal of a hexagon. In Figure 3, it is easy to see that Gu

uv
= up

and Gv

uv
= vq. In the triangular face of S with a vertex at p, let a be the midpoint of the

side opposite to p. We have pa ⊂ C(u), because each point of pa \ {p} is joined with u by
two segments. Let w1 be the vertex of S such that dS (w1, u) = dS (w1, q) = 2. Similarly,
qw1 ⊂ C(v). Take b ∈ qw1 such that a ∈ pb. Then pb ⊂ C(u). Now we get z = b. Thus, if both
∠uvw and ∠vuw are not greater than π

2 , the vertex w must be located inside the pentagonal
region uvqbpu.

Suppose there is one vertex of S in the interior of △uv. Then this must be the vertex o
adjacent to both p and q. Let w2 be the vertex of S such that dS (w2, w1) = dS (w2, q) = 2.
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Let c be the intersection point of qw1 and ow2. Then oc ⊂ C(u) and ow1 ⊂ C(v). Thus, in
order to ensure that △uv contains o in its interior, the vertex w must be in the quadrilateral
region oabco.

However, oabco is contained in the interior of the circle D whose diameter is the dash line-
segment u′v considered in an unfolding of S on the plane of w1oqw2. Indeed, u′ is the vertex
u, unfolded. Let {ω} = uo ∩ vp. We have |u′v| = 3 and |ωv| = 3/2. But |ωo| =

√
3/2 and

|ob| = 1/
√
3. So, |ωb| = |ωo|+ |ob| = 5

√
3/6 < 3/2, that is, the point b is in the interior of the

circle D. Clearly, the points o, a and c are all in the interior of the circle D, and therefore oabco
is contained in the interior of the circle D. Thus ∠uwv > π

2 , which is a contradiction.

Case 3. dS (u, v) = 3

Figure 4: dS (u, v) = 3

Since uv is not an h-segment, there are only two subcases to discuss.

Subcase 1. uv is a (long) diagonal of a hexagon, shown in Figure 4(a).
Let p be the intersection point of Gu

uv
and Gv

uv
. In order to ensure that both ∠uvw and

∠vuw are not greater than π

2 , the vertex w must be in the triangular region uvpu.
Suppose there is one vertex of S in the interior of △uv. By the symmetry, without loss

of generality, we may assume that the vertex a adjacent to u is in the interior of △uv, which
implies that the vertex a′ adjacent to v is outside of △uv. Let w1, w2 be vertices of S such
that w1 is adjacent to a′ and v, w2 is adjacent to a and u. It is easy to see that aw1 ⊂ C(u),
a′w2 ⊂ C(v) and aw2 ⊂ C(v). Let {b} = aw1 ∩ a′w2, {c} = up ∩ a′w2 and {d} = up ∩ aw2.
Thus, the vertex w must be in the quadrilateral region abcda. However, abcda is contained
in the interior of the circle D′ whose diameter is the dash line-segment u′v considered in an
unfolding of S on the plane of uva′a, see Figure 6(a).

Thus, ∠uwv > π

2 , a contradiction.

Subcase 2. uv passes through the interiors of a triangle and a hexagon, see Figure 4(b).
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Let v1, v2 denote vertices of S such that dS (u, v1) = dS (v, v2) = dS (v1, v2) = 1. Clearly,
v1v∪v2v ⊂ C(u), v1u∪v2u ⊂ C(v). It is not difficult to check that if the triangle △uv contains
v2 in its interior, then it must contain v1. Hence, we suppose that △uv only contains v1 in its
interior. Then w must lie in the region uv1vv2u which, unfolded, is a parallelogram with angles
π/6, 5π/6, π/6, 5π/6. So ∠uwv ≥ 5π

6 > π

2 , a contradiction again.

From the proof of Lemma 1, we extract the following.

Lemma 2. If uv is the common edge of two hexagons or a long diagonal of a hexagon, then

n(u, v) = 0. If uv is the common edge of a triangle and a hexagon, or a short diagonal of a

hexagon, then n(u, v) = 1.

We call a triangle basic, if all its vertices are vertices of S. Let uv be the common edge of
a triangle and a hexagon. Let w ∈ V (S) be such that dS (u,w) = dS (v, w) = 2. Then the
triangle uvw has two angles of π

2 at u, v and one angle of π

3 at w, and contains exactly one
vertex of S in its interior, see Figure 5(a). This kind of basic triangle will be called a simple

triangle.

Lemma 3. A basic triangle containing exactly one vertex of S in its interior is non-obtuse if

and only if it is simple. Therefore, no acute basic triangle contains vertices of S in its interior.

Figure 5: The non-obtuse basic triangle

Proof: We consider a non-obtuse triangulation of S, and pay special attention to its basic
triangles. The non-obtuse right triangle in Figure 5(a) contains a vertex of S in its interior. By
Lemma 2, we only have to consider the cases when uv meets the interiors of a hexagonal face
and a triangular face, or of two hexagonal faces.
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If uv passes through the interiors of a triangle and a hexagon, and uvw is a basic triangle,
then ∠wuv ≤ π

2 and ∠wvu ≤ π

2 imply w ∈ {w1, w2, w3}, see Figure 5(b). However, ∠uw1v =
∠uw2v = 2π

3 and ∠uw3v = π

2 + θ (where 0 < θ < π

6 ) if the segment uw3 is chosen such that the
triangle uvw3 contains w1 in its interior, or ∠uw3v = π

2 − θ if the choice of uw3 is such that
the triangle uvw3 contains no vertex of S in its interior. Hence, there is no non-obtuse basic
triangle having uv as an edge and containing a vertex of S in its interior.

If uv is an h-segment, then ∠wuv ≤ π

2 and ∠wvu ≤ π

2 imply for the third vertex w ∈ {w1,
w2}, see Figure 5(c). However, ∠uw1v = 5π

6 > π

2 , ∠uw2v = 2π
3 > π

2 . Thus, there is no non-
obtuse basic triangle with an h-segment as a side, the interior of which meets V (S).

We also formulate the following useful consequence.

Lemma 4. If △uv and △vu are basic adjacent triangles, we have n(u, v) ≤ 1.

Our first main result follows.

Theorem 1. The surface of the regular truncated tetrahedron admits a non-obtuse triangulation

with 10 triangles, and there is no non-obtuse triangulation with fewer triangles.

Proof: Figure 6 describes the unfolded surface S. Let a be a vertex of S, and let b, c, d, e
be vertices of S such that dS (a, b) = dS (a, c) = dS (a, d) = dS (a, e) = 2. Clearly, |ab| =
|ac| = |ad| = |ae|=

√
3. Denote by f and g the centres of the two hexagons which are not

adjacent to a. We obtain a geodesic triangulation T of S with the following 10 triangles:
abc, acd, ade, aeg, agb, fbc, fcd, fde, feg, fgb.

Figure 6: A non-obtuse triangulation of S

The three triangles abc, ade and fcd are equilateral triangles. Each of the remaining seven
triangles have two angles of π

2 and one angle of π

3 . Thus, T is a non-obtuse triangulation.
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Now we prove that ten is the smallest possible number of non-obtuse triangles.
Let T0 be a non-obtuse triangulation of S. First, observe that |T0| is even, because 3|T0| is

the total number of edges, counted twice (fact true for any triangulation of a compact surface
without boundary).

If |T0| = 4, then T0 is isomorphic to K4; if |T0| = 6, then T0 is isomorphic to the 1-skeleton
of a double pyramid over a triangle. In both cases, there are vertices with degree 3. However,
at each vertex of S the total angle is 5π

3 . So, the degree of such a vertex in any non-obtuse
triangulation of S using that vertex is at least 4. The degree of other vertices is also at least 4.
So, a contradiction is obtained.

If |T0| = 8, then T0 is isomorphic to the 1-skeleton of a regular octahedron. Remember that
a non-obtuse triangle of T0 contains at most one vertex in its interior. S has twelve vertices,
hence at least four vertices of T0 coincide with vertices of S.

If all six vertices of T0 coincide with vertices of S, then the eight basic triangles must contain
the remaining 6 vertices of S in their interiors. However, by Lemma 4, there are only at most
four vertices of S in their interiors, a contradiction.

If there are exactly five vertices of T0 in V (S), then they form four basic triangles with
one common vertex. They contain at most two vertices of S in their interiors, by Lemma 4.
Therefore, the remaining at least 5 vertices of S must be contained in the interiors of the other
four triangles of T0. Hence, there is a triangle with at least two vertices of S in its interior, a
contradiction.

If exactly four vertices of T0 coincide with vertices of S, and the four vertices determine two
adjacent triangles of T0, then, by Lemma 4, the two triangles only contain at most one vertex
of S in their interiors. Hence, the remaining six triangles must contain at least 7 vertices of
S in their interiors, which is impossible by the same argument as before. Therefore, the four
vertices determine a 4-cycle C4 in T0 which decomposes S into two regions S1 and S2, each of
which contains a further vertex of T0.

Thus, the further two vertices of T0 are not in V (S), and the remaining 8 vertices of S lie
in the interiors of the eight triangles of T0. Therefore, each triangle must contain one vertex of
S in its interior. Then, by Lemma 1, all edges uv of C4 are h-segments. However, on one hand,
the total angle at each vertex of S is 5π

3 , so the two angles formed by any two consecutive edges
of C4, say uv and vw, are between 2π

3 and π. On the other hand, it is immediately checked
that ∠uvw < 2π/3, and a contradiction is obtained.

3 Acute triangulations

Here we prove our second main result.

Theorem 2. The surface of the regular truncated tetrahedron admits an acute triangulation

with 12 triangles, and there is no acute triangulation with fewer triangles.

Proof: Let a, b, c, d be the centres of the four hexagons, let ef be the common edge of the two
hexagons with centres b and d, and gh the common edge of the two hexagons with centres a
and c, as shown in Figure 7. Clearly, we get a non-obtuse geodesic triangulation T0 of S with
the following 12 triangles: abe, ade, abg, adh, agh, bcf, bcg, bef, cdf, cdh, cgh, def .
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Notice that there are two right angles at each vertex of T0; to be precise, all the sixteen
angles ∠bag, ∠dah, ∠abe, ∠cbf , ∠bcg, ∠dch, ∠ade, ∠cdf , ∠aeb, ∠aed, ∠cfb, ∠cfd, ∠bga, ∠bgc,
∠dha and ∠dhc are equal to π

2 .

Figure 7: An acute triangulation of S

Now, we will slightly change the position of four vertices of T0 to get an acute triangulation
of S.

Step 1: Slide a slightly to a′ in direction −→ae. Then the six right angles ∠bag, ∠dah, ∠bga,
∠dha, ∠abe and ∠ade become less than π

2 .

Step 2: Slide b slightly to b′ in direction
−→
bg. Thus, the four right angles ∠cbf , ∠cfb, ∠aeb

and ∠bcg become less than π

2 .

Step 3: Slide c slightly to c′ in direction
−→
cf . Clearly, the four right angles ∠dch, ∠bgc, ∠dhc

and ∠cdf become less than π

2 .

Step 4: Slide d slightly to d′ in direction
−→
dh. Thus, the two right angles ∠aed and ∠cfd

become less than π

2 .
At every step, all angles which were previously acute should remain acute. Thus, we obtain

an acute geodesic triangulation of S with the 12 triangles a′b′e, a′d′e, a′b′g, a′d′h, a′gh, b′c′f,
b′c′g, b′ef, c′d′f, c′d′h, c′gh, d′ef.

Now we prove that there exists no triangulation with 10 acute triangles. Let T be an acute
triangulation of S and assume |T | = 10. Then T is isomorphic to the 1-skeleton of a double
pyramid over a pentagon. Besides two vertices of degree 5, T has five vertices of degree 4
forming a 5-cycle C5; these five vertices must be vertices of S. The cycle C5 decomposes S into
two regions, which will be denoted by Su and Sv. Let u ∈ Su and v ∈ Sv be the two remaining
vertices of T .
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Claim. No edge of C5 is an h-segment.
Indeed, denote by ui (i = 1, 2, 3, 4, 5) the vertices of C5. Suppose one of the edges of C5,

say u1u2, is an h-segment.
Let u1 = v1, u2 = v2, see Figure 8. Since T is acute, the angles formed by any two

consecutive edges of C5 are greater than 2π
3 and less than π, hence u3 ∈ {v3, v4}.

Figure 8:

If u3 = v3, then, similarly, u4 ∈ {v5, v1}. If u3 = v3 and u4 = v5, then u5 = v6 or u5 = v7.
But both v5v6 and v5v7 intersect v1v2, and a contradiction is obtained. (If u3 = v3 and u4 = v1,
then we get a 3-cycle v1v2v3v1.)

If u3 = v4, then u4 ∈ {v5, v1}. If u3 = v4 and u4 = v5, then u5 = v6 or u5 = v2. However,
v5v6 and v5v2 intersect v1v2, contradiction.

The claim is true.
If u, v ∈ V (S), then the remaining 5 vertices of S must be inside the interiors of the ten

acute basic triangles of T . By Lemma 2, this is impossible.
Otherwise, the ten triangles of T must contain at least 6 vertices of S in their interiors. By

our Claim, no edge of C5 is an h-segment. Then, by Lemma 1, the ten triangles of T together
contain at most five vertices of S in their interiors, and we get again a contradiction. Hence,
there is no acute triangulation of S with 10 triangles.
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