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A set M in R? is rt-convex if every pair of its points is included in a 3-point subset {z,y, z}
of M satisfying Zzyz = 7 /2.

We find here for various families of sets the minimal number of points necessary to add to the
sets in order to render them rt-convex.
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Introduction

Given a family F of sets in a certain space X, a set M C X is called F-convex if
for any pair of distinct points z,y € M there is a set ' € F such that x,y € F
and F' C M. The second author proposed at the 1974 meeting on Convexity in
Oberwolfach the investigation of F-convexity.
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Obviously, usual convexity, affine linearity, arc-wise connectedness, polygonal
connectedness, are all examples of F-convexity (for suitably chosen families F).

Blind, Valette and the second author [1], and also Bordczky Jr. [2], investi-
gated the rectangular convexity, the case when F contains all non-degenerate
rectangles.

More recently, Magazanik and Perles dealt with staircase connectedness, a spe-
cial kind of polygonal connectedness [3].

In [5] the second author studied the case when F is the family of all right
triangles in a Hilbert space of dimension at least 2.

In [4] we introduced the right triple convexity, for short rt-convexity, where F
is the family of all triples {x,y, 2} such that Zzyz = 7/2.

Let K be a compact set in IR?, where d > 2. We call K* an rt-convex completion
of K, for short a completion of K, if K* is rt-convex, K* D K and card(K*\ K)
is minimal. This minimal number ~(K) is then called the rt-completion number
of K. Of course, v(K) = 0 iff K is rt-convex.

In this paper we investigate the rt-convex completion of convex bodies, of star-
shaped sets and of 2-connected, polygonally connected sets in IR?, and of 3-
connected sets and of finite sets in IR?.

Definitions, notation and prerequisites

As usual, for M c RR? M, int M and bd M denote its topological closure,
interior and boundary, and diam M = sup, ¢, ||z — y||. A 2-point set {z,y} C
M with ||z —y|| = diam M is called a diametral pair of M, while the line-segment
xy is a diameter of M.

Two points in M are said to enjoy the rt-property in M if they belong to some
set {z,y, 2z} C M such that Lxyz = 7/2.

As already mentioned, a set M C R? is called right triple conver, for short rt-
convez, if any pair of its points enjoys the rt-property. Clearly, this rt-convexity
generalizes the concept of right convexity introduced in [5]. Open sets are obvi-
ously rt-convex.

A set M C R? is called almost rt-convez if each pair of points of M, with at
most one exception, enjoys the rt-property.

A set in IRY is called polygonally connected if any pair of its points can be joined
by a polygonal line included in the set.

A continuum, i.e. a compact connected set, C' is said to be n-connected if for
any subset F' C C' with cardF' < n — 1, the set C'\ F' is connected.

For any compact set K C IR? let Sk be the smallest hypersphere containing
K in its convex hull, and denote by F), the set of all points in K farthest from
z € R%
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For distinct z,y € IR?, let 2y be the line-segment from z to y, and ly the line
including zy. Also, let H,, be the hyperplane through z orthogonal to I,,, and
put Wy, = (Hyy U Hyy U Sy) \ {2, ).

A convez body is a compact convex set in IR? with non-empty interior. A con-
vex body K is called strictly convez if its boundary bd K contains no (non-
degenerate) line-segments. It is smooth if its boundary bd K is of class C*.

TY»

If K is a convex body, let p, be the closest point of K from z € IRY, and put
pM:{px:xEM},forMC]Rd.

Also, let h denote the Pompeiu-Hausdorff distance between compact sets, and
d the minimal distance

K) = min [z - K,K') = mind(z, K’
d(z, K) =min|lz —yll,  d(X, K') =mind(z, K'),

where K, K’ ¢ IR? are compact and = € IR%.
Lemma 1. A convex body K is rt-convex if and only if card(K N Sk) > 3.

Lemma 2. Fach 2-connected, polygonally connected continuum is almost rt-
convex. If it is not rt-convex, then the exceptional pair without the rt-property
is diametral.

Lemma 3. Every 3-connected continuum in IR? is almost rt-convez.

These lemmas are Theorem 3 in [4], applied to convex bodies, and Theorems 1
and 5 in [4], respectively.

Convex bodies

Not all compact sets are rt-convex. Finite sets may have a rather large rt-
completion number. Convex bodies are almost rt-convex, but not necessarily
rt-convex either. How large can their rt-completion number be? Theorem 7 will
give the answer.

Theorem 4. For any convezr body K which is strictly convez, v(K) # 1.

Proof. If K is rt-convex, v(K) = 0. So, suppose K is not rt-convex. Let x ¢ K.
It is easily seen that K U {x} is not rt-convex for any choice of x. Indeed, for
the point x and the point p,, there exists no third point z € K such that xp,z
be a right triangle. Here we used the fact that the boundary of K contains no
line-segments. [

Lemma 5. Let K C RY be a convex body, v ¢ K, y € K. Ify ¢ {p,} UF,,
then x,y have the rt-property in K U {x}.

Proof. If y € H,,,, then Zxp,y = 7/2. Otherwise, H,, , separates x from y,
whence Zzp,y > 7/2 and p, € int conv S,,. For all points z € conv Sy,

[ = 2] <l =yl <z —wl,
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Figure 1.

for any point w of F,. Hence, S,, separates p, from w and contains therefore
some point of K different from y. Thus, x,y have indeed the rt-property in
K U{x}. O

Theorem 6. For any convex body K which is strictly convex, but not rt-convex,
V(K) =2.

Proof. By Lemma 1, card(K NSk) = 2. Let a,a* be the two points of K N Sk.
Choose z € (conv Sk)\K and y € F,. Since y € (int conv Si)U{a,a*}, ||[z—y| <
la — a*||. Therefore, conv.S,, cannot contain both a,a*, say a* ¢ conv .S,,. We
have Zzya* < m/2, because ||z — a*|| < ||z — y||. Hence, ya* N S, # {y}. Since
ya* C K, x,y have the rt-property in K U {z}. See Fig. 1.

Claim. There are two points v € Sk \ K, z € (conv Sk)\ K, such that x € H,_,
and z € Hy_,.

Indeed, let y € Sk \aa* and C' = H,, ,NSk. If, for some point z € C, H,,, meets
ypy in a point z, then for these points x, z the Claim is verified. So, assume now
that H,, . Nyp, =0 for all x € C.

Let s € I, \ K. Consider the set V(s) = {t € K : tsN K C bd K}. Clearly,
s’ € sp, implies V (s') C V(s).

For each x € C, let i(x) denote the intersection point H,,, N1y, . Since 7 is
continuous, there is a point zg € C for which i(x() is closest to y.

Choose now again x € C arbitrarily. Consider the triangle A = conv{p,,i(z), p, }
and its plane II, see Fig. 2. Let v = ANbd K. Clearly, one of the two supporting
lines of IINbd K through y touches bd K at a point v’ € . Of course, v € V(y).
But

V(y) - V(Z(SC(])) C PeonvC-

This implies that some outer normal of K at v" meets conv C' in w, say. Then,
the points y and w playing the roles of x and z respectively, the Claim is verified.
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Figure 2.

To finish the proof, we show now that K U {z, z} is rt-convex, the points = and
z being delivered by the Claim.

The only pair of points of K without the rt-property in K is, by Lemma 2, a, a*.
In K U{x, z}, a,a* have the rt-property, because Zazxa* = w/2. For y € F,, we
proved already that x,y have the rt-property in K U{z}. For y € {p,, z}, the
pair z,y has the rt-property in K U {z, z}, since the triangle conv{z, p,, z} is
right. For all other points y € K, the pair x, y enjoys the rt-property in K U{z},
by Lemma 5.

For y € F,, we proved already that z,y have the rt-property in K U {z}. The
pair z,y has the rt-property in K U {x, z}, since Zzp,x = 7/2.

For all other points y € K, the pair z,y enjoys the rt-property in K U {z}, by
Lemma 5.

Hence, K U {z, z} is rt-convex. O

Theorem 7. If the convex body K is neither rt-convex, nor strictly convex, then
v(K) = 1. Hence, for every convezx body K, v(K) < 2.

Proof. Assume K is neither rt-convex, nor strictly convex. Let aa® be the
(unique) diameter of K.

Let o C bd K be a line-segment. Consider a point 2’ € o\ {a,a*}. An arbitrary
outer normal at z’ to bd K meets Sk at z, say. Then K U {x} is a completion
of K.

Indeed, a, a* have the rt-property in K U{x}; x, 2" have the rt-property because
xx’ and o are orthogonal; x,y have it for any y € F,, the argument being the
same as in the preceding proof. ]

Theorem 8. Let e > 0. If K s strictly convex or a polytope, then a completion
K* of K can be chosen such that h(K, K*) < e. This is not necessarily true for
other conver sets.

Proof. Assume K is not rt-convex, otherwise the statement is trivially true.
Let again aa™ be the unique diameter of K.
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If K is a polytope, then a is one of its vertices. If we choose o to have an
endpoint in a, to lie in a facet and to be small enough, and then follow the
preceding proof, we find a completion K* with h(K, K*) < ¢.

If K is strictly convex, we use the proof of Theorem 6. The choice of x in Sk \ aa*
was arbitrary. Now, we choose x close to a. The second point of the completion,
z, which exists according to the Claim, is by construction close to a, too. Thus,
for ||z — a|| small enough, h(K, K U{z,z}) <e.

To see why the statement is not true for all convex sets, consider a smooth convex
body K which is not strictly convex, such that card(K N Sk) = 2 and all the
boundary line-segments are far away from {a,a*} = K N Sk (for example, the
Minkowski sum of a ball and a line-segment). Take ¢ = d(Sk,bd K \ extK) > 0.
Then ~(K) = 1, and the additional point = must be chosen so that p, lies
in a boundary line-segment, otherwise z,p, don’t enjoy the rt-property. As
raa® must also be a right triangle, this implies that * € W_.«. Under these
circumstances,

h(K,KU{z}) = ||z — ps|| = d(Sk,bd K \ extK) = e. [

2-connected sets

We investigated in [4] the rt-convexity of 2-connected, polygonally connected
sets in IR? and of planar 3-connected sets. In this section we add information
about their rt-completion number.

It will be seen that it is at most 1, with just one exceptional situation.

Lemma 9. Let K € R? be a 2-connected, not rt-convex continuum, such that
card(K N Sk) = 2, and conv K is not strictly convex. If d = 2, then y(K) = 1.
If d > 3 and K is polygonally connected, then again v(K) = 1.

Proof. Let d > 2 be arbitrary and K N Sk = {a,a*}.

Let x € Sk \ {a,a*} and y € K. Since y € (intconvSk) U {a,a*} and = €
Sk \{a,a*}, ||z — y|| < ||la — a*||. Therefore, the points a,a* cannot be both in
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conv Sg,. Suppose w.l.o.g. that a* ¢ conv S,,. Also, observe that a,a* have the
rt-property in K U {z}.

Since conv K is not strictly convex, there are two distinct points 2/, 2" € K with
x'z"” C bdconv K. See Fig. 3.

Assume that the outer normal of bdconv K at 2z’ orthogonal to a supporting
hyperplane = of conv K including /2" meets S,.+ \ {a,a*}. Let = be this inter-
section point, and y € K.

We saw that a* ¢ conv S,,. On the other hand, z and y are separated by H,,
so Zzxx'y > ©/2, and 2’ € intconv S;,. Thus, S,, separates 2’ from a*, and
Sy N K # {y}, because K is 2-connected, whence x,y have the rt-property in
K U {z}.

Assume now that both outer normals of bd conv K at z’ and z” orthogonal to
= miss Suar \ {a,a*}. This can only happen if {2’ 2"} = {a,a*}. Then K is
included in the closure A of one half of D = int conv S, determined by =. Let
the 2-plane Il D aa* be orthogonal to =.

Now, z will be taken arbitrarily in IT N Sge+ \ A. We show that K U {z} is
rt-convex. Consider a point y of K. We remember that a* ¢ conv S,,,.

If KNconvS,, # {y}, then another point of K lies on S,, and sees {z, y} under
a right angle, or S, separates two points of K, an interior point of conv S, and
a*, which again implies that a further point of K must lie on S;,, whence z,y
have the rt-property in K U {z}.

If K Nconv S,y = {y}, consider H,,. This hyperplane does not separate = from
both a,a*, otherwise

o =yl <d(z,a0”) = d(z,Z) < d(z, K),

which is false. It follows that H,, either meets {a, a*}, or separates a from a*, or
does not meet conv{x, a,a*}. In the first two situations, H,, N K \ {y} # 0. Let
now d = 2. In this case, if Hy, Nconv{z,a,a*} =0, then the line H,, separates
a from a* in D \ conv S,,. Thus, once more the 2-connectedness of K implies
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Figure 5.

that K N Hy, \ {y} contains some point z, whence Zzryz = n/2. See Fig. 4.
Finally, let d > 3. If H,, N conv{z,a,a*} = ), then any polygonal line from a
to y meets Wy, hence again K N Hy, \ {y} # 0 and z, y have the r&-property in
K u{z}. O

Theorem 10. Let K € IRY be a 2-connected, polygonally connected, not rt-
convez continuum. Then v(K) = 2 if conv K is strictly convez, and v(K) = 1
otherwise.

Proof. By Lemma 2, K is almost rt-convex, and the exceptional pair is diame-
tral, so card(K N Sk) = 2. If conv K is strictly convex, then bdconv K C K,
and we closely follow the proof of Theorem 6, leading to v(K) = 2. If conv K is
not strictly convex, then, by Lemma 9, v(K) = 1. O

Theorem 11. Let K € IR? be a 3-connected, not rt-convex continuum. Then
v(K) =2 if conv K is strictly convex, and v(K) = 1 otherwise.

Proof. By Lemma 3, K has a single pair of points a, a* without the rt-property.

Let D be the bounded component of the complement of W,«, and E, E’ its two
unbounded components located between H,,« and Hy«,. Then K\ {a,a*} lies
in one of these three components.

If K\{a,a*} C D, we have y(K) = 1 for not strictly convex conv K, by Lemma
9, and y(K') = 2 for strictly convex conv K, along the lines of Theorem 6.

So, suppose K \ {a,a*} C E, see Fig. 5.

Take arbitrarily a point z € Sk Nbd E'\ {a,a"}. Any line through x obviously
separates a from a* in E. Thus, it must meet K. Hence, for any point y € K,
H,, N K # 0, and so z,y have the rt-property in K U {z}.

By symmetry, the case K \ {a,a*} C E’ is also solved. O

Starshaped sets

In [4] we discussed the rt-convexity of starshaped sets. We saw that the most
common starshaped sets with a single-point kernel are not rt-convex, while in
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Figure 6.

the sense of Baire categories most of them are. We shall now investigate their
completion.

Let K be the space of all compact starshaped sets in IR?. For K € K, let ker K’
denote its kernel.

For K € K, let the set ex K of extremities of K be the set of all points x € K
such that kx C ky C K and k € ker K imply y = x.

We have seen in [4] (Corollary 3) that starshaped sets with finitely many extrem-
ities are not rt-convex. In fact, if they have finite length, they already cannot
be rt-convex, for that reason [4].

Theorem 12. If K € K has a single-point kernel and ex K s finite, then, for
any completion K* of K, K*\ K is uncountable.

Proof. Let {k} = ker K and choose zy € K with ||zo— k|| maximal. Since ex K
is finite, the orthogonal projection of (K \ kxg) U{k} on lx,, is a line-segment not
containing xy. Hence, there is a line-segment zoyo C K such that W,, N K = ()
for any pair of distinct points x,y € xgyo. This means that any completion K*
of K must contain a point in W, for every choice of x and y. Identify zy, with
the real interval .

We have to prove that Z = K* \ K cannot be countable. Assume it is. Each
point z € Z has a distance b to l,,, and let a = |zg — Z||, where Z is the
orthogonal projection of z onto Iy,

For each point z € Z, the set of pairs (x,y) covered by z, i.e. for which z € W,
either satisfies x = a or y = a or

b2

y=a+—,
a—x

while (z,y) € I? \ A, where A = {(§,n) € I* : £ = n}. This is a (disconnected)
piece of hyperbola plus two line-segments, a nowhere dense set in I?. See Fig.
6. So, the set of pairs covered by the whole countable set Z is of first Baire
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category. Thus, it cannot equal I? \ A, which is obviously of second category
(in I?%). O

Finite sets
Let € be the family of all finite sets in IR%.

Theorem 13. For any set A € & with card A = n > 3, we have y(A) <
(n=3)

=+ 2,
Proof. If A is included in a line L, take a € A and consider a line L’ parallel to

L and the orthogonal projection A" of A\ {a} onto L’. Then obviously AU A’

is rt-convex and card A’ =n —1 < ”("T_g) + 2.

If A is not included in any line, let ab be a side of the polygon convA, and let L
be now the line containing ab.

Consider the at most n—1 lines through the points of A, parallel to (or coinciding
with) L. Also, consider all n — 2 line-segments cic, cach, ... ¢,_oc,_, orthogonal
to L, from the points ¢, ¢a,...,c,_ o € A\ {a,b} to points ¢}, c},...,c, o, € L.
Consider ¢y, ¢y, ..., ¢,_o ordered such that the distance from ¢; to L is a non-
decreasing function of 7.

Let B’ be the set of intersection points of all these lines and line-segments.

Obviously, ¢1¢] has only its endpoints in B’. In general, ¢;c; contributes i + 1
points in B’. So, B’ has at most Y7 >(i + 1) = (n — 2)(n + 1)/2 points. All
pairs of points in B = B’ U {a,b} D A but possibly {a, b} enjoy the rt-property.
So, by adding the point a* completing the rectangle c;cjaa*, we obtain the
rt-convex set B U {a*} of cardinality

(n—2)(n—|—1)+3:n(n—1)

2.
2 2 *

Hence v(A) < ”("2_3) +2. O
Let y(n) = max{y(A) : card A = n}.

Corollary 14. Forn >3, y(n) < @ + 9.

How tight is this inequality?
We show that v(3) = 2.
Let A ={a,b,c}. We first find an rt-convex set B O A with cardB = 5.

Let conv{b, c,d, e} be a rectangle, such that — in case a,b, ¢ are not collinear —
a,d, e are collinear. Then B = {a,b,c,d, e} is as desired.

Now we show that no set B O A with less than 5 points is rt-convex, if A is
suitably chosen.
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Let abc be an isosceles triangle with Zabc = 27/3. Assume there exists an
rt-convex set B = {a, b, ¢, z}.

The point z must lie in Wy, N Wy N Wy, But Wy, N W, consists of four points,
(a+c¢)/2,d" € HypNHye, ¢ € HpNHpa, V' € HypyNHy,. Obviously, (a+c¢)/2 ¢ We,.
The other points do not belong to H,. U H.,. The points ¢’ and ¢ belong to
S.q only if cos2ac = (v/5 — 1)/2, where « is one of the two equal angles of the
triangle abc; but we chose the triangle such that o = 7/6, and the preceding
condition is not satisfied. The point b belongs to S, only if 2« = /2, and this
does not hold either. Hence

Wab N Wbc N Wca - @

and B does not exist. This ends the proof.
For arbitrary n, we only offer the following.

Open Problem 15. Prove (or disprove) that the inequality in Corollary 7 is
best possible.

Acknowledgements. We are indebted to X. Feng for valuable comments on a pre-
vious version of this paper. The final form of Theorem 13 is due to her.
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