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A set M in IRd is rt-convex if every pair of its points is included in a 3-point subset {x, y, z}
of M satisfying ∠xyz = π/2.

We find here for various families of sets the minimal number of points necessary to add to the
sets in order to render them rt-convex.
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Introduction

Given a family F of sets in a certain space X, a set M ⊂ X is called F -convex if
for any pair of distinct points x, y ∈ M there is a set F ∈ F such that x, y ∈ F
and F ⊂ M . The second author proposed at the 1974 meeting on Convexity in
Oberwolfach the investigation of F -convexity.
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Obviously, usual convexity, affine linearity, arc-wise connectedness, polygonal
connectedness, are all examples of F -convexity (for suitably chosen families F).

Blind, Valette and the second author [1], and also Böröczky Jr. [2], investi-
gated the rectangular convexity, the case when F contains all non-degenerate
rectangles.

More recently, Magazanik and Perles dealt with staircase connectedness, a spe-
cial kind of polygonal connectedness [3].

In [5] the second author studied the case when F is the family of all right
triangles in a Hilbert space of dimension at least 2.

In [4] we introduced the right triple convexity, for short rt-convexity, where F
is the family of all triples {x, y, z} such that ∠xyz = π/2.

Let K be a compact set in IRd, where d ≥ 2. We call K∗ an rt-convex completion
of K, for short a completion of K, if K∗ is rt-convex, K∗ ⊃ K and card(K∗ \K)
is minimal. This minimal number γ(K) is then called the rt-completion number
of K. Of course, γ(K) = 0 iff K is rt-convex.

In this paper we investigate the rt-convex completion of convex bodies, of star-
shaped sets and of 2-connected, polygonally connected sets in IRd, and of 3-
connected sets and of finite sets in IR2.

Definitions, notation and prerequisites

As usual, for M ⊂ IRd, M , intM and bdM denote its topological closure,
interior and boundary, and diamM = supx,y∈M ‖x− y‖. A 2-point set {x, y} ⊂
M with ‖x−y‖ = diamM is called a diametral pair of M , while the line-segment
xy is a diameter of M .

Two points in M are said to enjoy the rt-property in M if they belong to some
set {x, y, z} ⊂ M such that ∠xyz = π/2.

As already mentioned, a set M ⊂ IRd is called right triple convex, for short rt-
convex, if any pair of its points enjoys the rt-property. Clearly, this rt-convexity
generalizes the concept of right convexity introduced in [5]. Open sets are obvi-
ously rt-convex.

A set M ⊂ IRd is called almost rt-convex if each pair of points of M , with at
most one exception, enjoys the rt-property.

A set in IRd is called polygonally connected if any pair of its points can be joined
by a polygonal line included in the set.

A continuum, i.e. a compact connected set, C is said to be n-connected if for
any subset F ⊂ C with cardF ≤ n− 1, the set C \ F is connected.

For any compact set K ⊂ IRd, let SK be the smallest hypersphere containing
K in its convex hull, and denote by Fx the set of all points in K farthest from
x ∈ IRd.
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For distinct x, y ∈ IRd, let xy be the line-segment from x to y, and lxy the line
including xy. Also, let Hxy be the hyperplane through x orthogonal to lxy, and
put Wxy = (Hxy ∪Hyx ∪ Sxy) \ {x, y}.
A convex body is a compact convex set in IRd with non-empty interior. A con-
vex body K is called strictly convex if its boundary bd K contains no (non-
degenerate) line-segments. It is smooth if its boundary bd K is of class C1.

If K is a convex body, let px be the closest point of K from x ∈ IRd, and put
pM = {px : x ∈ M}, for M ⊂ IRd.

Also, let h denote the Pompeiu-Hausdorff distance between compact sets, and
d the minimal distance

d(x,K) = min
y∈K

‖x− y‖, d(K,K ′) = min
x∈K

d(x,K ′),

where K,K ′ ⊂ IRd are compact and x ∈ IRd.

Lemma 1. A convex body K is rt-convex if and only if card(K ∩ SK) ≥ 3.

Lemma 2. Each 2-connected, polygonally connected continuum is almost rt-
convex. If it is not rt-convex, then the exceptional pair without the rt-property
is diametral.

Lemma 3. Every 3-connected continuum in IR2 is almost rt-convex.

These lemmas are Theorem 3 in [4], applied to convex bodies, and Theorems 1
and 5 in [4], respectively.

Convex bodies

Not all compact sets are rt-convex. Finite sets may have a rather large rt-
completion number. Convex bodies are almost rt-convex, but not necessarily
rt-convex either. How large can their rt-completion number be? Theorem 7 will
give the answer.

Theorem 4. For any convex body K which is strictly convex, γ(K) 6= 1.

Proof. If K is rt-convex, γ(K) = 0. So, supposeK is not rt-convex. Let x /∈ K.
It is easily seen that K ∪ {x} is not rt-convex for any choice of x. Indeed, for
the point x and the point px, there exists no third point z ∈ K such that xpxz
be a right triangle. Here we used the fact that the boundary of K contains no
line-segments.

Lemma 5. Let K ⊂ IRd be a convex body, x /∈ K, y ∈ K. If y /∈ {px} ∪ Fx,
then x, y have the rt-property in K ∪ {x}.

Proof. If y ∈ Hpxx, then ∠xpxy = π/2. Otherwise, Hpxx separates x from y,
whence ∠xpxy > π/2 and px ∈ int convSxy. For all points z ∈ convSxy,

‖x− z‖ ≤ ‖x− y‖ < ‖x− w‖,
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for any point w of Fx. Hence, Sxy separates px from w and contains therefore
some point of K different from y. Thus, x, y have indeed the rt-property in
K ∪ {x}.

Theorem 6. For any convex body K which is strictly convex, but not rt-convex,
γ(K) = 2.

Proof. By Lemma 1, card(K ∩SK) = 2. Let a, a∗ be the two points of K ∩SK .
Choose x ∈ (convSK)\K and y ∈ Fx. Since y ∈ (int convSK)∪{a, a∗}, ‖x−y‖ <
‖a− a∗‖. Therefore, convSxy cannot contain both a, a∗, say a∗ /∈ convSxy. We
have ∠xya∗ < π/2, because ‖x− a∗‖ ≤ ‖x− y‖. Hence, ya∗ ∩ Sxy 6= {y}. Since
ya∗ ⊂ K, x, y have the rt-property in K ∪ {x}. See Fig. 1.

Claim. There are two points x ∈ SK \K, z ∈ (convSK)\K, such that x ∈ Hpzz

and z ∈ Hpxx.

Indeed, let y ∈ SK\aa∗ and C = Hpyy∩SK . If, for some point x ∈ C, Hpxx meets
ypy in a point z, then for these points x, z the Claim is verified. So, assume now
that Hpxx ∩ ypy = ∅ for all x ∈ C.

Let s ∈ lypy \ K. Consider the set V (s) = {t ∈ K : ts ∩K ⊂ bdK}. Clearly,
s′ ∈ spy implies V (s′) ⊂ V (s).

For each x ∈ C, let i(x) denote the intersection point Hxpx ∩ lypy . Since i is
continuous, there is a point x0 ∈ C for which i(x0) is closest to y.

Choose now again x ∈ C arbitrarily. Consider the triangle ∆ = conv{px, i(x), py}
and its plane Π, see Fig. 2. Let γ = ∆∩bdK. Clearly, one of the two supporting
lines of Π∩bdK through y touches bdK at a point v′ ∈ γ. Of course, v′ ∈ V (y).
But

V (y) ⊂ V (i(x0)) ⊂ pconvC .

This implies that some outer normal of K at v′ meets convC in w, say. Then,
the points y and w playing the roles of x and z respectively, the Claim is verified.
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To finish the proof, we show now that K ∪ {x, z} is rt-convex, the points x and
z being delivered by the Claim.

The only pair of points of K without the rt-property in K is, by Lemma 2, a, a∗.
In K ∪ {x, z}, a, a∗ have the rt-property, because ∠axa∗ = π/2. For y ∈ Fx, we
proved already that x, y have the rt-property in K ∪ {x}. For y ∈ {px, z}, the
pair x, y has the rt-property in K ∪ {x, z}, since the triangle conv{x, px, z} is
right. For all other points y ∈ K, the pair x, y enjoys the rt-property in K∪{x},
by Lemma 5.

For y ∈ Fz, we proved already that z, y have the rt-property in K ∪ {z}. The
pair z, y has the rt-property in K ∪ {x, z}, since ∠zpzx = π/2.

For all other points y ∈ K, the pair z, y enjoys the rt-property in K ∪ {z}, by
Lemma 5.

Hence, K ∪ {x, z} is rt-convex.

Theorem 7. If the convex body K is neither rt-convex, nor strictly convex, then
γ(K) = 1. Hence, for every convex body K, γ(K) ≤ 2.

Proof. Assume K is neither rt-convex, nor strictly convex. Let aa∗ be the
(unique) diameter of K.

Let σ ⊂ bdK be a line-segment. Consider a point x′ ∈ σ \{a, a∗}. An arbitrary
outer normal at x′ to bd K meets SK at x, say. Then K ∪ {x} is a completion
of K.

Indeed, a, a∗ have the rt-property in K ∪{x}; x, x′ have the rt-property because
xx′ and σ are orthogonal; x, y have it for any y ∈ Fx, the argument being the
same as in the preceding proof.

Theorem 8. Let ε > 0. If K is strictly convex or a polytope, then a completion
K∗ of K can be chosen such that h(K,K∗) < ε. This is not necessarily true for
other convex sets.

Proof. Assume K is not rt-convex, otherwise the statement is trivially true.
Let again aa∗ be the unique diameter of K.



296 L. Yuan, T. Zamfirescu / Right Triple Convex Completion

a∗

y

A

x

x′

x′′

a

Figure 3.

If K is a polytope, then a is one of its vertices. If we choose σ to have an
endpoint in a, to lie in a facet and to be small enough, and then follow the
preceding proof, we find a completion K∗ with h(K,K∗) < ε.

IfK is strictly convex, we use the proof of Theorem 6. The choice of x in SK\aa∗
was arbitrary. Now, we choose x close to a. The second point of the completion,
z, which exists according to the Claim, is by construction close to a, too. Thus,
for ‖x− a‖ small enough, h(K,K ∪ {x, z}) < ε.

To see why the statement is not true for all convex sets, consider a smooth convex
body K which is not strictly convex, such that card(K ∩ SK) = 2 and all the
boundary line-segments are far away from {a, a∗} = K ∩ SK (for example, the
Minkowski sum of a ball and a line-segment). Take ε = d(SK , bdK \ extK) > 0.
Then γ(K) = 1, and the additional point x must be chosen so that px lies
in a boundary line-segment, otherwise x, px don’t enjoy the rt-property. As
xaa∗ must also be a right triangle, this implies that x ∈ Waa∗ . Under these
circumstances,

h(K,K ∪ {x}) = ‖x− px‖ ≥ d(SK , bdK \ extK) = ε.

2-connected sets

We investigated in [4] the rt-convexity of 2-connected, polygonally connected
sets in IRd and of planar 3-connected sets. In this section we add information
about their rt-completion number.

It will be seen that it is at most 1, with just one exceptional situation.

Lemma 9. Let K ∈ IRd be a 2-connected, not rt-convex continuum, such that
card(K ∩ SK) = 2, and convK is not strictly convex. If d = 2, then γ(K) = 1.
If d ≥ 3 and K is polygonally connected, then again γ(K) = 1.

Proof. Let d ≥ 2 be arbitrary and K ∩ SK = {a, a∗}.
Let x ∈ SK \ {a, a∗} and y ∈ K. Since y ∈ (int convSK) ∪ {a, a∗} and x ∈
SK \ {a, a∗}, ‖x− y‖ < ‖a− a∗‖. Therefore, the points a, a∗ cannot be both in
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convSxy. Suppose w.l.o.g. that a∗ /∈ convSxy. Also, observe that a, a∗ have the
rt-property in K ∪ {x}.
Since convK is not strictly convex, there are two distinct points x′, x′′ ∈ K with
x′x′′ ⊂ bd convK. See Fig. 3.

Assume that the outer normal of bd convK at x′ orthogonal to a supporting
hyperplane Ξ of convK including x′x′′ meets Saa∗ \ {a, a∗}. Let x be this inter-
section point, and y ∈ K.

We saw that a∗ /∈ convSxy. On the other hand, x and y are separated by Hx′x,
so ∠xx′y > π/2, and x′ ∈ int convSxy. Thus, Sxy separates x′ from a∗, and
Sxy ∩K 6= {y}, because K is 2-connected, whence x, y have the rt-property in
K ∪ {x}.
Assume now that both outer normals of bd convK at x′ and x′′ orthogonal to
Ξ miss Saa∗ \ {a, a∗}. This can only happen if {x′, x′′} = {a, a∗}. Then K is
included in the closure A of one half of D = int convSaa∗ determined by Ξ. Let
the 2-plane Π ⊃ aa∗ be orthogonal to Ξ.

Now, x will be taken arbitrarily in Π ∩ Saa∗ \ A. We show that K ∪ {x} is
rt-convex. Consider a point y of K. We remember that a∗ /∈ convSxy.

If K ∩ convSxy 6= {y}, then another point of K lies on Sxy and sees {x, y} under
a right angle, or Sxy separates two points of K, an interior point of convSxy and
a∗, which again implies that a further point of K must lie on Sxy, whence x, y
have the rt-property in K ∪ {x}.
If K ∩ convSxy = {y}, consider Hyx. This hyperplane does not separate x from
both a, a∗, otherwise

‖x− y‖ < d(x, aa∗) = d(x,Ξ) ≤ d(x,K),

which is false. It follows that Hyx either meets {a, a∗}, or separates a from a∗, or
does not meet conv{x, a, a∗}. In the first two situations, Hyx∩K \ {y} 6= ∅. Let
now d = 2. In this case, if Hyx ∩ conv{x, a, a∗} = ∅, then the line Hyx separates
a from a∗ in D \ convSxy. Thus, once more the 2-connectedness of K implies
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that K ∩ Hyx \ {y} contains some point z, whence ∠xyz = π/2. See Fig. 4.
Finally, let d ≥ 3. If Hyx ∩ conv{x, a, a∗} = ∅, then any polygonal line from a
to y meets Wxy, hence again K ∩Hyx \ {y} 6= ∅ and x, y have the rt-property in
K ∪ {x}.
Theorem 10. Let K ∈ IRd be a 2-connected, polygonally connected, not rt-
convex continuum. Then γ(K) = 2 if convK is strictly convex, and γ(K) = 1
otherwise.

Proof. By Lemma 2, K is almost rt-convex, and the exceptional pair is diame-
tral, so card(K ∩ SK) = 2. If convK is strictly convex, then bd convK ⊂ K,
and we closely follow the proof of Theorem 6, leading to γ(K) = 2. If convK is
not strictly convex, then, by Lemma 9, γ(K) = 1.

Theorem 11. Let K ∈ IR2 be a 3-connected, not rt-convex continuum. Then
γ(K) = 2 if convK is strictly convex, and γ(K) = 1 otherwise.

Proof. By Lemma 3, K has a single pair of points a, a∗ without the rt-property.

Let D be the bounded component of the complement of Waa∗ , and E,E′ its two
unbounded components located between Haa∗ and Ha∗a. Then K \ {a, a∗} lies
in one of these three components.

If K \{a, a∗} ⊂ D, we have γ(K) = 1 for not strictly convex convK, by Lemma
9, and γ(K) = 2 for strictly convex convK, along the lines of Theorem 6.

So, suppose K \ {a, a∗} ⊂ E, see Fig. 5.

Take arbitrarily a point x ∈ SK ∩ bdE \ {a, a∗}. Any line through x obviously
separates a from a∗ in E. Thus, it must meet K. Hence, for any point y ∈ K,
Hxy ∩K 6= ∅, and so x, y have the rt-property in K ∪ {x}.
By symmetry, the case K \ {a, a∗} ⊂ E ′ is also solved.

Starshaped sets

In [4] we discussed the rt-convexity of starshaped sets. We saw that the most
common starshaped sets with a single-point kernel are not rt-convex, while in
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the sense of Baire categories most of them are. We shall now investigate their
completion.

Let K be the space of all compact starshaped sets in IRd. For K ∈ K, let kerK
denote its kernel.

For K ∈ K, let the set exK of extremities of K be the set of all points x ∈ K
such that kx ⊂ ky ⊂ K and k ∈ kerK imply y = x.

We have seen in [4] (Corollary 3) that starshaped sets with finitely many extrem-
ities are not rt-convex. In fact, if they have finite length, they already cannot
be rt-convex, for that reason [4].

Theorem 12. If K ∈ K has a single-point kernel and exK is finite, then, for
any completion K∗ of K, K∗ \K is uncountable.

Proof. Let {k} = kerK and choose x0 ∈ K with ‖x0−k‖ maximal. Since exK
is finite, the orthogonal projection of (K \kx0)∪{k} on lkx0

is a line-segment not
containing x0. Hence, there is a line-segment x0y0 ⊂ K such that Wxy ∩K = ∅
for any pair of distinct points x, y ∈ x0y0. This means that any completion K∗

of K must contain a point in Wxy for every choice of x and y. Identify x0y0 with
the real interval I.

We have to prove that Z = K∗ \ K cannot be countable. Assume it is. Each
point z ∈ Z has a distance b to lx0y0 and let a = ‖x0 − z̃‖, where z̃ is the
orthogonal projection of z onto lx0y0 .

For each point z ∈ Z, the set of pairs (x, y) covered by z, i.e. for which z ∈ Wxy,
either satisfies x = a or y = a or

y = a+
b2

a− x
,

while (x, y) ∈ I2 \∆, where ∆ = {(ξ, η) ∈ I2 : ξ = η}. This is a (disconnected)
piece of hyperbola plus two line-segments, a nowhere dense set in I2. See Fig.
6. So, the set of pairs covered by the whole countable set Z is of first Baire
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category. Thus, it cannot equal I2 \ ∆, which is obviously of second category
(in I2).

Finite sets

Let E be the family of all finite sets in IR2.

Theorem 13. For any set A ∈ E with cardA = n ≥ 3, we have γ(A) ≤
n(n−3)

2
+ 2.

Proof. If A is included in a line L, take a ∈ A and consider a line L′ parallel to
L and the orthogonal projection A′ of A \ {a} onto L′. Then obviously A ∪ A′

is rt-convex and cardA′ = n− 1 ≤ n(n−3)
2

+ 2.

If A is not included in any line, let ab be a side of the polygon convA, and let L
be now the line containing ab.

Consider the at most n−1 lines through the points of A, parallel to (or coinciding
with) L. Also, consider all n− 2 line-segments c1c

′
1, c2c

′
2, ... cn−2c

′
n−2 orthogonal

to L, from the points c1, c2, ..., cn−2 ∈ A \ {a, b} to points c′1, c
′
2, ..., c

′
n−2 ∈ L.

Consider c1, c2, ..., cn−2 ordered such that the distance from ci to L is a non-
decreasing function of i.

Let B′ be the set of intersection points of all these lines and line-segments.

Obviously, c1c
′
1 has only its endpoints in B′. In general, cic

′
i contributes i + 1

points in B′. So, B′ has at most
∑n−2

i=1 (i + 1) = (n − 2)(n + 1)/2 points. All
pairs of points in B = B′ ∪ {a, b} ⊃ A but possibly {a, b} enjoy the rt-property.

So, by adding the point a∗ completing the rectangle c1c
′
1aa

∗, we obtain the
rt-convex set B ∪ {a∗} of cardinality

(n− 2)(n+ 1)

2
+ 3 =

n(n− 1)

2
+ 2.

Hence γ(A) ≤ n(n−3)
2

+ 2.

Let γ(n) = max{γ(A) : cardA = n}.

Corollary 14. For n ≥ 3, γ(n) ≤ n(n−3)
2

+ 2.

How tight is this inequality?

We show that γ(3) = 2.

Let A = {a, b, c}. We first find an rt-convex set B ⊃ A with cardB = 5.

Let conv{b, c, d, e} be a rectangle, such that – in case a, b, c are not collinear –
a, d, e are collinear. Then B = {a, b, c, d, e} is as desired.

Now we show that no set B ⊃ A with less than 5 points is rt-convex, if A is
suitably chosen.
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Let abc be an isosceles triangle with ∠abc = 2π/3. Assume there exists an
rt-convex set B = {a, b, c, z}.
The point z must lie in Wab ∩Wbc ∩Wca. But Wab ∩Wbc consists of four points,
(a+c)/2, a′ ∈ Hab∩Hbc, c

′ ∈ Hcb∩Hba, b
′ ∈ Hab∩Hcb. Obviously, (a+c)/2 /∈ Wca.

The other points do not belong to Hac ∪ Hca. The points a′ and c′ belong to
Sca only if cos2α = (

√
5 − 1)/2, where α is one of the two equal angles of the

triangle abc; but we chose the triangle such that α = π/6, and the preceding
condition is not satisfied. The point b′ belongs to Sca only if 2α = π/2, and this
does not hold either. Hence

Wab ∩Wbc ∩Wca = ∅

and B does not exist. This ends the proof.

For arbitrary n, we only offer the following.

Open Problem 15. Prove (or disprove) that the inequality in Corollary 7 is
best possible.

Acknowledgements. We are indebted to X. Feng for valuable comments on a pre-

vious version of this paper. The final form of Theorem 13 is due to her.
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