Right Triple Convex Completion

Liping Yuan*

College of Mathematics and Information Science, Hebei Normal University, 050024 Shijiazhuang, P.R. China; and: Hebei Key Laboratory of Computational Mathematics and Applications, 050024 Shijiazhuang, P.R. China lpyuan@mail.hebtu.edu.cn

Tudor Zamfirescu[†]

Fachbereich Mathematik, Universität Dortmund,
44221 Dortmund, Germany;
and: Institute of Mathematics "Simion Stoilow",
Roumanian Academy, Bucharest, Roumania;
and: College of Mathematics and Information Science,
Hebei Normal University, 050024 Shijiazhuang, P.R. China
tudor.zamfirescu@mathematik.uni-dortmund.de

Received: November 20, 2013 Accepted: March 22, 2014

A set M in \mathbb{R}^d is rt-convex if every pair of its points is included in a 3-point subset $\{x, y, z\}$ of M satisfying $\angle xyz = \pi/2$.

We find here for various families of sets the minimal number of points necessary to add to the sets in order to render them rt-convex.

2010 Mathematics Subject Classification: 53C45, 53C22

Introduction

Given a family \mathcal{F} of sets in a certain space X, a set $M \subset X$ is called \mathcal{F} -convex if for any pair of distinct points $x, y \in M$ there is a set $F \in \mathcal{F}$ such that $x, y \in F$ and $F \subset M$. The second author proposed at the 1974 meeting on Convexity in Oberwolfach the investigation of \mathcal{F} -convexity.

*The first author gratefully acknowledges financial supports by NNSF of China (11071055, 11471095); NSF of Hebei Province (A2012205080, A2013205189); Program for New Century Excellent Talents in University, Ministry of Education of China (NCET-10-0129); the Plan of Prominent Personnel Selection and Training for the Higher Education Disciplines in Hebei Province (CPRC033); the project of Outstanding Experts' Overseas Training of Hebei Province.

[†]The second author thankfully acknowledges the financial support by the High-end Foreign Experts Recruitment Program of People's Republic of China. His work was also partly supported by a grant of the Roumanian National Authority for Scientific Research, CNCS –UEFISCDI, project number PN-II-ID-PCE-2011-3-0533.

ISSN 0944-6532 / \$ 2.50 © Heldermann Verlag

Obviously, usual convexity, affine linearity, arc-wise connectedness, polygonal connectedness, are all examples of \mathcal{F} -convexity (for suitably chosen families \mathcal{F}).

Blind, Valette and the second author [1], and also Böröczky Jr. [2], investigated the rectangular convexity, the case when \mathcal{F} contains all non-degenerate rectangles.

More recently, Magazanik and Perles dealt with staircase connectedness, a special kind of polygonal connectedness [3].

In [5] the second author studied the case when \mathcal{F} is the family of all right triangles in a Hilbert space of dimension at least 2.

In [4] we introduced the right triple convexity, for short rt-convexity, where \mathcal{F} is the family of all triples $\{x, y, z\}$ such that $\angle xyz = \pi/2$.

Let K be a compact set in \mathbb{R}^d , where $d \geq 2$. We call K^* an rt-convex completion of K, for short a completion of K, if K^* is rt-convex, $K^* \supset K$ and $\operatorname{card}(K^* \setminus K)$ is minimal. This minimal number $\gamma(K)$ is then called the rt-completion number of K. Of course, $\gamma(K) = 0$ iff K is rt-convex.

In this paper we investigate the rt-convex completion of convex bodies, of star-shaped sets and of 2-connected, polygonally connected sets in \mathbb{R}^d , and of 3-connected sets and of finite sets in \mathbb{R}^2 .

Definitions, notation and prerequisites

As usual, for $M \subset \mathbb{R}^d$, \overline{M} , int M and bd M denote its topological closure, interior and boundary, and diam $M = \sup_{x,y \in M} \|x - y\|$. A 2-point set $\{x,y\} \subset M$ with $\|x - y\| = \text{diam } M$ is called a diametral pair of M, while the line-segment xy is a diameter of M.

Two points in M are said to enjoy the rt-property in M if they belong to some set $\{x, y, z\} \subset M$ such that $\angle xyz = \pi/2$.

As already mentioned, a set $M \subset \mathbb{R}^d$ is called *right triple convex*, for short *rt-convex*, if any pair of its points enjoys the *rt*-property. Clearly, this *rt*-convexity generalizes the concept of right convexity introduced in [5]. Open sets are obviously *rt*-convex.

A set $M \subset \mathbb{R}^d$ is called *almost rt-convex* if each pair of points of M, with at most one exception, enjoys the *rt*-property.

A set in \mathbb{R}^d is called *polygonally connected* if any pair of its points can be joined by a polygonal line included in the set.

A continuum, i.e. a compact connected set, C is said to be n-connected if for any subset $F \subset C$ with $\operatorname{card} F \leq n-1$, the set $C \setminus F$ is connected.

For any compact set $K \subset \mathbb{R}^d$, let S_K be the smallest hypersphere containing K in its convex hull, and denote by F_x the set of all points in K farthest from $x \in \mathbb{R}^d$.

For distinct $x, y \in \mathbb{R}^d$, let xy be the line-segment from x to y, and l_{xy} the line including xy. Also, let H_{xy} be the hyperplane through x orthogonal to l_{xy} , and put $W_{xy} = (H_{xy} \cup H_{yx} \cup S_{xy}) \setminus \{x, y\}$.

A convex body is a compact convex set in \mathbb{R}^d with non-empty interior. A convex body K is called *strictly convex* if its boundary bd K contains no (non-degenerate) line-segments. It is *smooth* if its boundary bd K is of class C^1 .

If K is a convex body, let p_x be the closest point of K from $x \in \mathbb{R}^d$, and put $p_M = \{p_x : x \in M\}$, for $M \subset \mathbb{R}^d$.

Also, let h denote the Pompeiu-Hausdorff distance between compact sets, and d the minimal distance

$$d(x, K) = \min_{y \in K} ||x - y||, \qquad d(K, K') = \min_{x \in K} d(x, K'),$$

where $K, K' \subset \mathbb{R}^d$ are compact and $x \in \mathbb{R}^d$.

Lemma 1. A convex body K is rt-convex if and only if $card(K \cap S_K) \geq 3$.

Lemma 2. Each 2-connected, polygonally connected continuum is almost rt-convex. If it is not rt-convex, then the exceptional pair without the rt-property is diametral.

Lemma 3. Every 3-connected continuum in \mathbb{R}^2 is almost rt-convex.

These lemmas are Theorem 3 in [4], applied to convex bodies, and Theorems 1 and 5 in [4], respectively.

Convex bodies

Not all compact sets are rt-convex. Finite sets may have a rather large rt-completion number. Convex bodies are almost rt-convex, but not necessarily rt-convex either. How large can their rt-completion number be? Theorem 7 will give the answer.

Theorem 4. For any convex body K which is strictly convex, $\gamma(K) \neq 1$.

Proof. If K is rt-convex, $\gamma(K) = 0$. So, suppose K is not rt-convex. Let $x \notin K$. It is easily seen that $K \cup \{x\}$ is not rt-convex for any choice of x. Indeed, for the point x and the point p_x , there exists no third point $z \in K$ such that xp_xz be a right triangle. Here we used the fact that the boundary of K contains no line-segments.

Lemma 5. Let $K \subset \mathbb{R}^d$ be a convex body, $x \notin K$, $y \in K$. If $y \notin \{p_x\} \cup F_x$, then x, y have the rt-property in $K \cup \{x\}$.

Proof. If $y \in H_{p_x x}$, then $\angle x p_x y = \pi/2$. Otherwise, $H_{p_x x}$ separates x from y, whence $\angle x p_x y > \pi/2$ and $p_x \in \text{int conv } S_{xy}$. For all points $z \in \text{conv } S_{xy}$,

$$||x-z|| < ||x-y|| < ||x-w||,$$

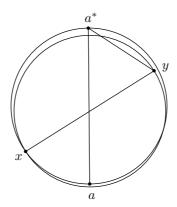


Figure 1.

for any point w of F_x . Hence, S_{xy} separates p_x from w and contains therefore some point of K different from y. Thus, x, y have indeed the rt-property in $K \cup \{x\}$.

Theorem 6. For any convex body K which is strictly convex, but not rt-convex, $\gamma(K) = 2$.

Proof. By Lemma 1, $\operatorname{card}(K \cap S_K) = 2$. Let a, a^* be the two points of $K \cap S_K$. Choose $x \in (\operatorname{conv} S_K) \setminus K$ and $y \in F_x$. Since $y \in (\operatorname{int} \operatorname{conv} S_K) \cup \{a, a^*\}, \|x - y\| < \|a - a^*\|$. Therefore, $\operatorname{conv} S_{xy}$ cannot contain both a, a^* , say $a^* \notin \operatorname{conv} S_{xy}$. We have $\angle xya^* < \pi/2$, because $\|x - a^*\| \le \|x - y\|$. Hence, $ya^* \cap S_{xy} \ne \{y\}$. Since $ya^* \subset K$, x, y have the rt-property in $K \cup \{x\}$. See Fig. 1.

Claim. There are two points $x \in S_K \setminus K$, $z \in (\text{conv } S_K) \setminus K$, such that $x \in H_{p_z z}$ and $z \in H_{p_x x}$.

Indeed, let $y \in S_K \setminus aa^*$ and $C = H_{p_y y} \cap S_K$. If, for some point $x \in C$, $H_{p_x x}$ meets yp_y in a point z, then for these points x, z the Claim is verified. So, assume now that $H_{p_x x} \cap yp_y = \emptyset$ for all $x \in C$.

Let $s \in l_{yp_y} \setminus K$. Consider the set $V(s) = \{t \in K : ts \cap K \subset bd K\}$. Clearly, $s' \in sp_y$ implies $V(s') \subset V(s)$.

For each $x \in C$, let i(x) denote the intersection point $H_{xp_x} \cap l_{yp_y}$. Since i is continuous, there is a point $x_0 \in C$ for which $i(x_0)$ is closest to y.

Choose now again $x \in C$ arbitrarily. Consider the triangle $\Delta = \text{conv}\{p_x, i(x), p_y\}$ and its plane Π , see Fig. 2. Let $\gamma = \Delta \cap \text{bd } K$. Clearly, one of the two supporting lines of $\Pi \cap \text{bd } K$ through y touches bd K at a point $v' \in \gamma$. Of course, $v' \in V(y)$. But

$$V(y) \subset V(i(x_0)) \subset p_{\operatorname{conv} C}$$
.

This implies that some outer normal of K at v' meets conv C in w, say. Then, the points y and w playing the roles of x and z respectively, the Claim is verified.

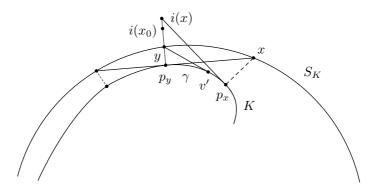


Figure 2.

To finish the proof, we show now that $K \cup \{x, z\}$ is *rt*-convex, the points x and z being delivered by the Claim.

The only pair of points of K without the rt-property in K is, by Lemma 2, a, a^* . In $K \cup \{x, z\}$, a, a^* have the rt-property, because $\angle axa^* = \pi/2$. For $y \in F_x$, we proved already that x, y have the rt-property in $K \cup \{x\}$. For $y \in \{p_x, z\}$, the pair x, y has the rt-property in $K \cup \{x, z\}$, since the triangle $\operatorname{conv}\{x, p_x, z\}$ is right. For all other points $y \in K$, the pair x, y enjoys the rt-property in $K \cup \{x\}$, by Lemma 5.

For $y \in F_z$, we proved already that z, y have the rt-property in $K \cup \{z\}$. The pair z, y has the rt-property in $K \cup \{x, z\}$, since $\angle zp_z x = \pi/2$.

For all other points $y \in K$, the pair z, y enjoys the rt-property in $K \cup \{z\}$, by Lemma 5.

Hence, $K \cup \{x, z\}$ is rt-convex.

Theorem 7. If the convex body K is neither rt-convex, nor strictly convex, then $\gamma(K) = 1$. Hence, for every convex body K, $\gamma(K) \leq 2$.

Proof. Assume K is neither rt-convex, nor strictly convex. Let aa^* be the (unique) diameter of K.

Let $\sigma \subset \operatorname{bd} K$ be a line-segment. Consider a point $x' \in \sigma \setminus \{a, a^*\}$. An arbitrary outer normal at x' to $\operatorname{bd} K$ meets S_K at x, say. Then $K \cup \{x\}$ is a completion of K.

Indeed, a, a^* have the rt-property in $K \cup \{x\}$; x, x' have the rt-property because xx' and σ are orthogonal; x, y have it for any $y \in F_x$, the argument being the same as in the preceding proof.

Theorem 8. Let $\varepsilon > 0$. If K is strictly convex or a polytope, then a completion K^* of K can be chosen such that $h(K, K^*) < \varepsilon$. This is not necessarily true for other convex sets.

Proof. Assume K is not rt-convex, otherwise the statement is trivially true. Let again aa^* be the unique diameter of K.

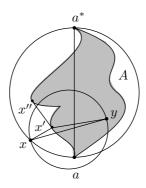


Figure 3.

If K is a polytope, then a is one of its vertices. If we choose σ to have an endpoint in a, to lie in a facet and to be small enough, and then follow the preceding proof, we find a completion K^* with $h(K, K^*) < \varepsilon$.

If K is strictly convex, we use the proof of Theorem 6. The choice of x in $S_K \setminus aa^*$ was arbitrary. Now, we choose x close to a. The second point of the completion, z, which exists according to the Claim, is by construction close to a, too. Thus, for ||x-a|| small enough, $h(K, K \cup \{x, z\}) < \varepsilon$.

To see why the statement is not true for all convex sets, consider a smooth convex body K which is not strictly convex, such that $\operatorname{card}(K \cap S_K) = 2$ and all the boundary line-segments are far away from $\{a, a^*\} = K \cap S_K$ (for example, the Minkowski sum of a ball and a line-segment). Take $\varepsilon = d(S_K, \overline{\operatorname{bd} K} \setminus \operatorname{ext} K) > 0$. Then $\gamma(K) = 1$, and the additional point x must be chosen so that p_x lies in a boundary line-segment, otherwise x, p_x don't enjoy the x-property. As xaa^* must also be a right triangle, this implies that $x \in W_{aa^*}$. Under these circumstances,

$$h(K, K \cup \{x\}) = ||x - p_x|| \ge d(S_K, \overline{\operatorname{bd} K \setminus \operatorname{ext} K}) = \varepsilon.$$

2-connected sets

We investigated in [4] the rt-convexity of 2-connected, polygonally connected sets in \mathbb{R}^d and of planar 3-connected sets. In this section we add information about their rt-completion number.

It will be seen that it is at most 1, with just one exceptional situation.

Lemma 9. Let $K \in \mathbb{R}^d$ be a 2-connected, not rt-convex continuum, such that $\operatorname{card}(K \cap S_K) = 2$, and $\operatorname{conv} K$ is not strictly convex. If d = 2, then $\gamma(K) = 1$. If $d \geq 3$ and K is polygonally connected, then again $\gamma(K) = 1$.

Proof. Let $d \geq 2$ be arbitrary and $K \cap S_K = \{a, a^*\}$.

Let $x \in S_K \setminus \{a, a^*\}$ and $y \in K$. Since $y \in (\operatorname{int conv} S_K) \cup \{a, a^*\}$ and $x \in S_K \setminus \{a, a^*\}$, $||x - y|| < ||a - a^*||$. Therefore, the points a, a^* cannot be both in

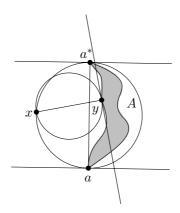


Figure 4.

conv S_{xy} . Suppose w.l.o.g. that $a^* \notin \text{conv } S_{xy}$. Also, observe that a, a^* have the rt-property in $K \cup \{x\}$.

Since conv K is not strictly convex, there are two distinct points $x', x'' \in K$ with $x'x'' \subset \operatorname{bd} \operatorname{conv} K$. See Fig. 3.

Assume that the outer normal of $\operatorname{bd} \operatorname{conv} K$ at x' orthogonal to a supporting hyperplane Ξ of $\operatorname{conv} K$ including x'x'' meets $S_{aa^*} \setminus \{a, a^*\}$. Let x be this intersection point, and $y \in K$.

We saw that $a^* \notin \text{conv } S_{xy}$. On the other hand, x and y are separated by $H_{x'x}$, so $\angle xx'y > \pi/2$, and $x' \in \text{int conv } S_{xy}$. Thus, S_{xy} separates x' from a^* , and $S_{xy} \cap K \neq \{y\}$, because K is 2-connected, whence x, y have the rt-property in $K \cup \{x\}$.

Assume now that both outer normals of bd conv K at x' and x'' orthogonal to Ξ miss $S_{aa^*} \setminus \{a, a^*\}$. This can only happen if $\{x', x''\} = \{a, a^*\}$. Then K is included in the closure A of one half of $D = \operatorname{int} \operatorname{conv} S_{aa^*}$ determined by Ξ . Let the 2-plane $\Pi \supset aa^*$ be orthogonal to Ξ .

Now, x will be taken arbitrarily in $\Pi \cap S_{aa^*} \setminus A$. We show that $K \cup \{x\}$ is rt-convex. Consider a point y of K. We remember that $a^* \notin \text{conv } S_{xy}$.

If $K \cap \text{conv } S_{xy} \neq \{y\}$, then another point of K lies on S_{xy} and sees $\{x,y\}$ under a right angle, or S_{xy} separates two points of K, an interior point of conv S_{xy} and a^* , which again implies that a further point of K must lie on S_{xy} , whence x,y have the rt-property in $K \cup \{x\}$.

If $K \cap \text{conv } S_{xy} = \{y\}$, consider H_{yx} . This hyperplane does not separate x from both a, a^* , otherwise

$$||x - y|| < d(x, aa^*) = d(x, \Xi) \le d(x, K),$$

which is false. It follows that H_{yx} either meets $\{a, a^*\}$, or separates a from a^* , or does not meet $\operatorname{conv}\{x, a, a^*\}$. In the first two situations, $H_{yx} \cap K \setminus \{y\} \neq \emptyset$. Let now d = 2. In this case, if $H_{yx} \cap \operatorname{conv}\{x, a, a^*\} = \emptyset$, then the line H_{yx} separates a from a^* in $\overline{D} \setminus \operatorname{conv} S_{xy}$. Thus, once more the 2-connectedness of K implies

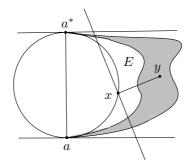


Figure 5.

that $K \cap H_{yx} \setminus \{y\}$ contains some point z, whence $\angle xyz = \pi/2$. See Fig. 4. Finally, let $d \geq 3$. If $H_{yx} \cap \text{conv}\{x, a, a^*\} = \emptyset$, then any polygonal line from a to y meets W_{xy} , hence again $K \cap H_{yx} \setminus \{y\} \neq \emptyset$ and x, y have the rt-property in $K \cup \{x\}$.

Theorem 10. Let $K \in \mathbb{R}^d$ be a 2-connected, polygonally connected, not rt-convex continuum. Then $\gamma(K) = 2$ if conv K is strictly convex, and $\gamma(K) = 1$ otherwise.

Proof. By Lemma 2, K is almost rt-convex, and the exceptional pair is diametral, so $\operatorname{card}(K \cap S_K) = 2$. If $\operatorname{conv} K$ is strictly convex, then $\operatorname{bd} \operatorname{conv} K \subset K$, and we closely follow the proof of Theorem 6, leading to $\gamma(K) = 2$. If $\operatorname{conv} K$ is not strictly convex, then, by Lemma 9, $\gamma(K) = 1$.

Theorem 11. Let $K \in \mathbb{R}^2$ be a 3-connected, not rt-convex continuum. Then $\gamma(K) = 2$ if conv K is strictly convex, and $\gamma(K) = 1$ otherwise.

Proof. By Lemma 3, K has a single pair of points a, a^* without the rt-property.

Let D be the bounded component of the complement of $\overline{W_{aa^*}}$, and E, E' its two unbounded components located between H_{aa^*} and H_{a^*a} . Then $K \setminus \{a, a^*\}$ lies in one of these three components.

If $K \setminus \{a, a^*\} \subset D$, we have $\gamma(K) = 1$ for not strictly convex conv K, by Lemma 9, and $\gamma(K) = 2$ for strictly convex conv K, along the lines of Theorem 6.

So, suppose $K \setminus \{a, a^*\} \subset E$, see Fig. 5.

Take arbitrarily a point $x \in S_K \cap \operatorname{bd} E \setminus \{a, a^*\}$. Any line through x obviously separates a from a^* in \overline{E} . Thus, it must meet K. Hence, for any point $y \in K$, $H_{xy} \cap K \neq \emptyset$, and so x, y have the rt-property in $K \cup \{x\}$.

By symmetry, the case $K \setminus \{a, a^*\} \subset E'$ is also solved. \square

Starshaped sets

In [4] we discussed the rt-convexity of starshaped sets. We saw that the most common starshaped sets with a single-point kernel are not rt-convex, while in

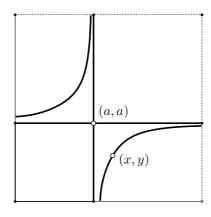


Figure 6.

the sense of Baire categories most of them are. We shall now investigate their completion.

Let \mathcal{K} be the space of all compact starshaped sets in \mathbb{R}^d . For $K \in \mathcal{K}$, let ker K denote its kernel.

For $K \in \mathcal{K}$, let the set ex K of extremities of K be the set of all points $x \in K$ such that $kx \subset ky \subset K$ and $k \in \ker K$ imply y = x.

We have seen in [4] (Corollary 3) that starshaped sets with finitely many extremities are not rt-convex. In fact, if they have finite length, they already cannot be rt-convex, for that reason [4].

Theorem 12. If $K \in \mathcal{K}$ has a single-point kernel and $\operatorname{ex} K$ is finite, then, for any completion K^* of K, $K^* \setminus K$ is uncountable.

Proof. Let $\{k\} = \ker K$ and choose $x_0 \in K$ with $||x_0 - k||$ maximal. Since $\operatorname{ex} K$ is finite, the orthogonal projection of $(K \setminus kx_0) \cup \{k\}$ on l_{kx_0} is a line-segment not containing x_0 . Hence, there is a line-segment $x_0y_0 \subset K$ such that $W_{xy} \cap K = \emptyset$ for any pair of distinct points $x, y \in x_0y_0$. This means that any completion K^* of K must contain a point in W_{xy} for every choice of x and y. Identify x_0y_0 with the real interval I.

We have to prove that $Z = K^* \setminus K$ cannot be countable. Assume it is. Each point $z \in Z$ has a distance b to $l_{x_0y_0}$ and let $a = ||x_0 - \tilde{z}||$, where \tilde{z} is the orthogonal projection of z onto $l_{x_0y_0}$.

For each point $z \in Z$, the set of pairs (x, y) covered by z, i.e. for which $z \in W_{xy}$, either satisfies x = a or y = a or

$$y = a + \frac{b^2}{a - x},$$

while $(x, y) \in I^2 \setminus \Delta$, where $\Delta = \{(\xi, \eta) \in I^2 : \xi = \eta\}$. This is a (disconnected) piece of hyperbola plus two line-segments, a nowhere dense set in I^2 . See Fig. 6. So, the set of pairs covered by the whole countable set Z is of first Baire

category. Thus, it cannot equal $I^2 \setminus \Delta$, which is obviously of second category (in I^2).

Finite sets

Let \mathcal{E} be the family of all finite sets in \mathbb{R}^2 .

Theorem 13. For any set $A \in \mathcal{E}$ with card $A = n \geq 3$, we have $\gamma(A) \leq \frac{n(n-3)}{2} + 2$.

Proof. If A is included in a line L, take $a \in A$ and consider a line L' parallel to L and the orthogonal projection A' of $A \setminus \{a\}$ onto L'. Then obviously $A \cup A'$ is rt-convex and card $A' = n - 1 \le \frac{n(n-3)}{2} + 2$.

If A is not included in any line, let ab be a side of the polygon convA, and let L be now the line containing ab.

Consider the at most n-1 lines through the points of A, parallel to (or coinciding with) L. Also, consider all n-2 line-segments c_1c_1' , c_2c_2' , ... $c_{n-2}c_{n-2}'$ orthogonal to L, from the points $c_1, c_2, ..., c_{n-2} \in A \setminus \{a, b\}$ to points $c_1, c_2, ..., c_{n-2} \in L$. Consider $c_1, c_2, ..., c_{n-2}$ ordered such that the distance from c_i to L is a non-decreasing function of i.

Let B' be the set of intersection points of all these lines and line-segments.

Obviously, c_1c_1' has only its endpoints in B'. In general, c_ic_i' contributes i+1 points in B'. So, B' has at most $\sum_{i=1}^{n-2} (i+1) = (n-2)(n+1)/2$ points. All pairs of points in $B = B' \cup \{a,b\} \supset A$ but possibly $\{a,b\}$ enjoy the rt-property.

So, by adding the point a^* completing the rectangle $c_1c_1'aa^*$, we obtain the rt-convex set $B \cup \{a^*\}$ of cardinality

$$\frac{(n-2)(n+1)}{2} + 3 = \frac{n(n-1)}{2} + 2.$$

Hence $\gamma(A) \leq \frac{n(n-3)}{2} + 2$.

Let $\gamma(n) = \max{\{\gamma(A) : \operatorname{card} A = n\}}.$

Corollary 14. For $n \ge 3$, $\gamma(n) \le \frac{n(n-3)}{2} + 2$.

How tight is this inequality?

We show that $\gamma(3) = 2$.

Let $A = \{a, b, c\}$. We first find an rt-convex set $B \supset A$ with card B = 5.

Let $conv\{b, c, d, e\}$ be a rectangle, such that – in case a, b, c are not collinear – a, d, e are collinear. Then $B = \{a, b, c, d, e\}$ is as desired.

Now we show that no set $B \supset A$ with less than 5 points is *rt*-convex, if A is suitably chosen.

Let abc be an isosceles triangle with $\angle abc = 2\pi/3$. Assume there exists an rt-convex set $B = \{a, b, c, z\}$.

The point z must lie in $W_{ab} \cap W_{bc} \cap W_{ca}$. But $W_{ab} \cap W_{bc}$ consists of four points, (a+c)/2, $a' \in H_{ab} \cap H_{bc}$, $c' \in H_{cb} \cap H_{ba}$, $b' \in H_{ab} \cap H_{cb}$. Obviously, $(a+c)/2 \notin W_{ca}$. The other points do not belong to $H_{ac} \cup H_{ca}$. The points a' and c' belong to S_{ca} only if $\cos 2\alpha = (\sqrt{5} - 1)/2$, where α is one of the two equal angles of the triangle abc; but we chose the triangle such that $\alpha = \pi/6$, and the preceding condition is not satisfied. The point b' belongs to S_{ca} only if $2\alpha = \pi/2$, and this does not hold either. Hence

$$W_{ab} \cap W_{bc} \cap W_{ca} = \emptyset$$

and B does not exist. This ends the proof.

For arbitrary n, we only offer the following.

Open Problem 15. Prove (or disprove) that the inequality in Corollary 7 is best possible.

Acknowledgements. We are indebted to X. Feng for valuable comments on a previous version of this paper. The final form of Theorem 13 is due to her.

References

- [1] R. Blind, G. Valette, T. Zamfirescu: Rectangular convexity, Geom. Dedicata 9 (1980) 317–327.
- [2] K. Böröczky Jr.: Rectangular convexity of convex domains of constant width, Geom. Dedicata 34 (1990) 13–18.
- [3] E. Magazanik, M. A. Perles: Staircase connected sets, Discrete Comput. Geom. 37 (2007) 587–599.
- [4] L. Yuan, T. Zamfirescu: Right triple convexity, manuscript.
- [5] T. Zamfirescu: Right convexity, J. Convex Analysis 21 (2014) 253–260.