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Introduction Let S be a compact convex surface in IR3, with intrinsic metric ρ and
intrinsic diameter 2.

A segment ab is a shortest path on S from a to b (of length ρ(a, b)).
Let M ⊂ S be compact. A point x ∈ S, such that some shortest path xy from x to

M , called a segment from x to M, cannot be extended as a shortest path to M beyond
x , is called a cut point with respect to M in direction of yx . Moreover, the set C(M)

of all cut points with respect to M is called the cut locus of M . If M contains a
single point x , we write C(x) for C(M). Let λ denote the length, i.e. 1-dimensional
Hausdorff measure.

It is known that cut loci are local trees [5], even trees if card M = 1. We are
looking for bounds for the length of the cut locus.

Take M = {x}. It was shown in [2] and [5] (and it already followed from [7]) that
λC(x) may be infinite. C(x) may even fail to have locally finite length: there are
convex surfaces S on which, for any point x , every open set in S contains a compact
subset of C(x) with infinite length [8]. Even if in the Riemannian case this cannot
happen (see [1, 2]), λC(M) still has no upper bound depending only on card M .

The case when the surface S is a sphere shows that the lower bound vanishes.
So, which bounds do we want to discover?

Polyhedral surfaces (Vîlcu). We restrict now the study to the surface S of a convex
polytope, still of diameter 2, and to sets M of cardinality 1, when cut loci enjoy very
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nice properties. See e.g. [3] and the references therein. For example, C(x) contains
all vertices of S (excepting x , if x is a vertex), and its leaves are vertices of S. The
ramification points of C(x), which are the points v ∈ C(x) of degree d(v) ≥ 3, are
joined to x by precisely d(v) segments. The graph edges of C(x) (here regarded as
a 1-dimensional complex) are segments on S.

Notice first that the upper bound for λC(x) cannot be achieved at a vertex x of S,
because points close enough to x have a longer cut locus.

Consider a tetrahedron Tε = abcx with λab = λbc = λca = ε. Then λC(x) =
ε
√
3 on Tε; hence, the lower bound for λC(x) is zero if x is allowed to be a vertex.
We can give now four problems, originating from a procedure of flattening convex

polyhedral surfaces, and mainly based on [3].

1. Give lower and upper bounds for λC(x), where x ∈ S is not a vertex of S.
2. Locate on S a point x for which C(x) has minimal length.
3. Locate on S a point x with minimal number of ramification points for C(x).
4. Characterize S such that, for some x ∈ S, C(x) has precisely one ramification

point. How many such points x may exist?

Arbitrary convex surfaces (Zamfirescu). If card M = 2, the lower bound forλC(M)

is also zero: take S to be an ellipsoid of revolution with two axes of arbitrarily small
length, and take M to consist of the two endpoints of the long axis.

At theMulhouseConference onConvex andDiscreteGeometry (7 – 11September
2014), the second author recalled the conjecture in [4] from 2005, saying that
λC(M) ≥ 1 whenever 3 ≤ cardM < ℵ0 and S is smooth, and announced that the
case card M = 3 was solved. Now he announces that the conjecture is proven, for
any compact convex surface S [6].

But, for infinite M , the bound vanishes again! Take M to be a great circle on a
sphere.

And now the last two problems:

5. Find a lower bound for the length of the cut locus of a countably infinite compact
set.

6. Find a lower bound for the length of the cut locus of a Jordan arc (i.e., of a
topological line-segment).
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