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A set M in IRd is rt-convex if every pair of its points is included in a 3-point subset {x, y, z}
of M satisfying ∠xyz = π/2.

We characterize rt-convex sets, and investigate rt-convexity for 2-connected polygonally con-
nected sets, for 3-connected sets, for geometric graphs, and for finite sets.
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Introduction

At the meeting on Convexity in Oberwolfach from 1974, the second author
proposed the investigation of the following convexity concept: Given a family F
of sets in a certain space X , a set M ⊂ X is called F -convex if for any pair of
distinct points x, y ∈ M there is a set F ∈ F such that x, y ∈ F and F ⊂ M .
This appeared explicitly as a problem, on that occasion.

It is easily seen that usual convexity, affine linearity, arc-wise connectedness,
polygonal connectedness, are all examples of F -convexity (for suitably chosen
families F).

Blind, Valette and the second author [1], and later Böröczky Jr. [2], investi-
gated the rectangular convexity, the case when F contains all non-degenerate
rectangles, but a conjectured characterization remained unproved.
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Among the more recent investigations, let us mention Magazanik and Perles’
staircase connectedness, a special kind of polygonal connectedness [3].

In [8] the second author studies the F -convex sets when F is the family of all
right triangles in a Hilbert space of dimension at least 2. A right triangle is the
convex hull of 3 distinct points x, y, z with ∠xyz = π/2. Those F -convex sets
are all convex, because so are the elements of F .

In [8] it is also mentioned that “this F -convexity is a special case of F ′-convexity,
where F ′ is the family of all triples {x, y, z} such that ∠xyz = π/2. The (inter-
esting) study of F ′-convexity includes a more discrete geometric research, while
the F -convexity, called right convexity, is fully embedded in convex geometry.”

As usual, for M ⊂ IRd with d ≥ 2, M denotes its topological closure, and
diamM = supx,y∈M ‖x− y‖. A 2-point set {x, y} ⊂ M with ‖x− y‖ = diamM
is called a diametral pair of M , while the line-segment xy is a diameter of M .

Let M ⊂ IRd. A pair of points in M is said to enjoy the rt-property in M if it is
included in a set {x, y, z} ⊂ M such that ∠xyz = π/2

A set M ⊂ IRd is called right-triple-convex, for short rt-convex, if any pair of its
points enjoys the rt-property. Clearly, this rt-convexity generalizes the concept
of right convexity introduced in [8].

A set in IRd is called polygonally connected if any pair of its points can be joined
by a polygonal line included in the set.

A continuum, i.e. a compact connected set, C is said to be n-connected if for
any subset F ⊂ C with cardF ≤ n− 1, the set C \ F is connected.

A set M ⊂ IRd is called almost rt-convex if each pair of points of M , with at
most one exception, enjoys the rt-property.

For any compact set C ⊂ IRd, let SC be the smallest hypersphere containing C
in its convex hull.

For distinct x, y ∈ IRd, let lxy be the line through x, y and Hxy be the hyperplane
through x orthogonal to lxy. Also, put Wxy = (Sxy ∪Hxy ∪Hyx) \ {x, y}.

We shall denote by µn the n-dimensional Hausdorff measure.

rt-convexity of 2-connected polygonally connected continua.

Let A be the space of all compact 2-connected polygonally connected sets in
IRd.

Proposition. Let σ be a diametral pair in K ∈ A. Then every pair of points
in K different from σ has the rt-property.

Proof. Let σ = {u, v}, and let x, y ∈ K verify {x, y} 6= σ.

Either uv is another diameter of the hypersphere Sxy, or at least one of the
points u and v, say v, lies outside Sxy.
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If uv is another diameter of Sxy, then ∠xvy = π/2.

If v lies outside Sxy, there are four possibilities:

1) v ∈ Hxy ∪Hyx.

2) v lies between Hxy and Hyx.

3) v is separated by Hxy from y.

4) v is separated by Hyx from x.

In case 1) we have ∠vxy = π/2 or ∠vyx = π/2.

In case 2), let P ⊂ K be a polygonal line joining v to x. Obviously P meets
Sxy∪Hxy not only in x, or only in y and x. So, there is a point s ∈ P∩Sxy\{x, y}
and ∠xsy = π/2, or there is a point h ∈ P ∩Hxy \ {x} and ∠hxy = π/2, or else
there is a point h′ ∈ P ∩Hyx \ {y} and ∠h′yx = π/2.

In case 3), K \ {x} being connected and containing both v and y, it must meet
Hxy at some point h, whence ∠hxy = π/2.

Case 4) is analogous to 3).

Corollary 1. A set K ∈ A is rt-convex if and only if some diametral pair σ of
K is seen from some point in K \ σ under a right angle.

The non-trivial implication follows by choosing the diametral pair σ from the
hypothesis and using the Proposition with this σ.

Theorem 1. Each set K ∈ A is almost rt-convex. If it is not rt-convex, then
the exceptional pair without the rt-property is diametral.

Theorem 1 follows directly from the Proposition, while Theorem 2 is obtained
by taking successively two different diametral pairs to play the role of σ.

Theorem 2. If a set K ∈ A has more than one diametral pair, then it is rt-
convex.

Convex bodies, i.e. compact convex sets with non-empty interior, also belong to
A.

Corollary 2. Every convex body of constant width is rt-convex[8].

Corollary 1 and Theorem 2 generalize Theorems 1 and 4 from [8], while our next
result generalizes Theorem 2 from [8].

Theorem 3. A set K ∈ A is rt-convex if and only if card(K ∩ SK) ≥ 3.

Proof. It is well-known that card(K ∩ SK) ≥ 2. If card(K ∩ SK) = 2, then
K ∩ SK is the only diametral pair of K and no other point of K sees it under a
right angle. So, by Corollary 1, K is not rt-convex.

Conversely, suppose K is not rt-convex. By Theorem 1, K has a single diametral
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pair {x, y} which is exceptional, i.e. K ∩Wxy = ∅.

We claim that Sxy = SK . Indeed, assume u ∈ K lies outside Sxy. There exists
a polygonal line P ⊂ K joining u to x. Notice that u lies strictly between the
hyperplanes through x and y orthogonal to xy, because ‖x− u‖ ≤ ‖x− y‖ and
‖y − u‖ ≤ ‖x− y‖. But the existence of P , disjoint from Wxy, is impossible.

Thus, Sxy = SK and card(K ∩ SK) = 2.

Lemma 1 ([4]). For most convex bodies K (in the sense of Baire categories),
card(K ∩ SK) = d+ 1.

Since d ≥ 2, from Theorem 3 and Lemma 1 it follows that most convex bodies
are rt-convex. But more than this is true.

Lemma 2. For all convex bodies K ⊂ IRd, except those in a nowhere dense
subset, card(K ∩ SK) ≥ d+ 1.

The assertion of Lemma 2 was not explicitly stated, but proved in [4] for d = 2;
the extension to higher dimensions presents no special difficulty.

Theorem 4. All convex bodies except those of a nowhere dense family are rt-
convex.

Proof. By Lemma 2, those convex bodies K ⊂ IRd for which card(K ∩SK) ≤ d
form a nowhere dense family. As d ≥ 2, by Theorem 3, the assertion is true.

For an alternative proof of Theorem 4, see Theorem 12 in [8].

rt-convexity of 3-connected continua.

We can renounce the condition of polygonal connectedness, but have to pay for
this. First, the set should be 3-connected, not just 2-connected. And second,
we can only work in the Euclidean plane.

Theorem 5. Every 3-connected continuum in the plane is almost rt-convex.

Proof. Let {u, v} be a diametral pair of the 3-connected continuum C. If every
other pair enjoys the rt-property, we are done. If not, let x, y be a pair not
enjoying the rt-property. At least one of the points u, v, say v, lies outside the
circle Sxy of diameter xy, otherwise uv must be another diameter of Sxy because
‖u− v‖ ≥ ‖x− y‖, and this yields ∠xvy = π/2.

If some point of C is separated from y by the line Hxy, then C \ {x} meets Hxy,
and if z lies in their intersection, ∠zxy = π/2, and we obtain a contradiction.
Since C is 3-connected, it is included in one of those two unbounded components
of the complement of Wxy, which are not half-planes. Call this component E.
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Now, let x′, y′ ∈ C be both distinct from x, y. Then either Hx′y′ separates one of
the points x, y from y′, or Hy′x′ separates one of the points x, y from x′. Thus,
there exists a point z′ ∈ C yielding a right triangle conv{x′, y′, z′}.

Consider now a pair {x, y′} ⊂ C. Since Sxy′ \ {x} separates x from y in E and
C \ {y′} is connected, there must be some point z ∈ C ∩ Sxy′ different from y′,
whence ∠xzy′ = π/2.

Figure 1:

Example 1. Contrary to the situation in Theorem 1, in Theorem 5 two kinds
of exceptional pairs can occur, see Fig. 1.

Theorem 5 cannot be extended to higher dimensions. A counterexample is an
ellipsoid with pairwise distinct axis lengths.

rt-convexity of geometric graphs.

We consider in this section geometric graphs, which are finite unions of line-
segments in IRd. Starting with an abstract finite graph G, with V (G) and E(G)
as vertex- and edge-set, respectively, we take V (G) to be a set in IRd, and each
edge a line-segment joining its incident vertices, such that any two such line-
segments meet in at most one point which is a vertex for both. So we obtain the
geometric graph G∗ = ∪{e : e ∈ E(G)} ⊂ IRd. Edges do not cross. We identify
G with G∗. In this section, all graphs are geometric graphs.

Let G be such a graph. Whenever it is connected, G is a polygonally connected
continuum. As a continuum, G cannot be 3-connected. But 2-connectedness as
a graph and as a continuum are equivalent notions.

Let G be the space of all 2-connected geometric graphs. So, by Theorem 1,
each graph of G is almost rt-convex. How scarce are rt-convex graphs among all
graphs in G ?

Endow G with the Pompeiu-Hausdorff metric h.

Theorem 6. The set of all rt-convex graphs is dense in G.

Proof. Let G ∈ G and ε > 0.We look for an rt-convex graph G′ with h(G,G′) <
ε.
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Choose the diametral pair {u, v} ⊂ G. If the hypersphere Suv meets G in any
third point, then take G′ = G.

If not, then choose the edge wv ∈ E(G) such that ∠uvw be maximal. Take a
new vertex v∗ in the half-circle of Suv containing u, w, v, at distance less than ε
from v, and add the new edges v∗v and v∗w, which is allowed, as v∗v ∩G = {v}
and v∗w∩G = {w} Obviously, the new graph G′ ∈ G obtained this way satisfies
h(G,G′) < ε. Moreover, ∠uv∗v = π/2. By Corollary 1, G′ is rt-convex.

The infinite square lattice graph L in IR2 admits a natural kind of 2-connected
geometric subgraphs called grid graphs, defined as follows.

Take in L some (finite) cycle C, considered as a geometric graph, and consider
the geometric graph, called grid graph, the vertices and edges of which are all
vertices and edges lying on C or inside the bounded plane region of boundary
C.

Being 2-connected, each grid graph is, by Theorem 1, almost rt-convex. Can we
again find (rather) close to any grid graph an rt-convex grid graph? The answer
is no, not necessarily very close. More precisely, we have the following.

Theorem 7. If G is a grid graph of order n in L, then there exists an rt-convex
grid graph G′ ⊃ G of order at most 3n

2
+ 2.

Proof. The only grid graph on n < 12 vertices which is not rt-convex is easily
found, see Fig. 2, and addition of one vertex and two edges suffices to render it
rt-convex. So, assume n ≥ 12.

Figure 2:

If G itself is rt-convex, we take G′ = G. If not, consider a diametral pair of
G, and assume w.l.o.g. that {(0, 0), (v, u)} is this pair, where v ≥ u > 0. (It
is easily seen that u = 0 and u = 1 are impossible.) By Theorem 1, it will be
enough to arrange that a diametral pair have the rt-property.

Let Γ be the boundary cycle of G. From (0, 0) to (v, u) there are two paths
P1, P2 ⊂ Γ which only meet at their endpoints. The length of Γ = P1 ∪ P2 does
not exceed n, of course, but λPi ≥ u+ v (i = 1, 2). Hence n ≥ 2(u+ v).

Clearly, the path (v − 1, u)(v, u)(v, u− 1) is included in Γ.
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Consider the path

Q = (v, u)(v + 1, u)(v + 2, u)...(v + u, u)(v + u+ 1, u)(v + u+ 1, u− 1)

...(v + u+ 1, 0)(v + u, 0)(v + u, 1)

...(v + u, u− 1)(v + u− 1, u− 1)...(v, u− 1).

The path Q meets G in {(v, u), (v, u− 1)} and has length 4u+ 1.

�����

��
�

�

�����

�

������

Figure 3:

Let us define the paths

R = (v − 1, v − 3)(v − 2, v − 3)(v − 2, v − 2)(v − 2, v − 1)

(v − 1, v − 1)(v − 1, v − 2)(v, v − 2)

and

R′ = (v − 1, v − 3)(v − 1, v − 2)(v − 1, v − 1)(v − 1, v)

(v, v)(v, v − 1)(v + 1, v − 1)(v + 1, v − 2)(v, v − 2).

of length λR = 6, λR′ = 8.

Now, let w = max{x : (v−1, x) ∈ V (G)}, and w′ = max{x : (v−2, x) ∈ V (G)}.

We assume w′ < v − 3.

We define a path P as follows.

If w equals u or u+ 1, set

P = (v − 1, w)(v − 1, w + 1)...(v − 1, v − 4)R(v, v − 3)...(v, u).

The length of P is 2(v − u) + 1, respectively 2(v − u).

If u+ 2 ≤ w ≤ v − 4, set

P = (v − 1, w)(v − 1, w + 1)...(v − 1, v − 4)R(v, v − 3)

...(v, w)(v, w− 1)(v − 1, w − 1).
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Now the length of P is less than 2(v − u).

In case w′ ≥ v − 3, we replace R by R′ in the above definitions of P , thus
increasing its length by 2.

This works as long as u ≤ v − 2, w ≤ v − 3. Even for u = v − 2, and w = v − 1
or w = v− 2, we only take off R′ the vertex (v− 1, v− 3) or both (v− 1, v− 3),
(v − 1, v − 2).

We are left with the cases u = v − 1 and u = v. If u = v − 1, then w = v − 1,
otherwise G would be rt-convex, and take

P = (v − 1, v − 1)(v − 1, v)(v − 1, v + 1)

(v, v + 1)(v, v)(v + 1, v)(v + 1, v − 1)(v, v − 1),

which adds only 6 extra vertices to G.

If u = v, either (v − 2, v)(v − 1, v) ∈ E(G), or (v, v − 1)(v, v − 2) ∈ E(G), or
both hold. Assume w.l.o.g. that (v, v − 1)(v, v − 2) ∈ E(G), Then we take

P = (v, v − 1)(v + 1, v − 1)(v + 1, v − 2)(v, v − 2).

In all cases, G∪P determines a grid graph with {(0, 0), (v, v−2)} or {(0, 0), (v, v−
1)} or {(0, 0), (v + 1, v − 1)} as a diametral pair, with the rt-property.

If w = v − 2, then u = v − 2 or u = v − 1.

Indeed, u ≤ v − 4 implies, for v ≥ 6,

‖(v, u)‖ ≤ ‖(v, v − 4)‖ < ‖(v − 1, v − 2)‖,

which is not true. If v ≤ 5, then u ≤ v − 4 ≤ 1, which is also impossible.

Similarly, w ≥ v − 1 implies u = w or u = w − 1. The cases u ≥ v − 3 have
already been treated.

If u < v/3, we use Q, and G ∪ Q determines a grid graph with at most n + 4u
vertices, so

cardV (G ∪Q)

cardV (G)
≤ 1 +

4u

n
<

3

2
,

since n ≥ 2(v + u) > 8u. This graph is rt-convex because (v + u, 0) ∈ V (G ∪Q)
sees the diametral pair {(0, 0), (v + u, u)} under a right angle.

If u ≥ v/3, we use the path P , and the rt-convex grid graph determined by
G ∪ P has at most max{n + 8, n + 2(v − u) + 2} vertices. If this maximum is
n+ 8, then

cardV (G ∪ P )− 2

cardV (G)
≤ 1 +

6

n
≤

3

2
,

because we assumed n ≥ 12. Otherwise,

cardV (G ∪ P )− 2

cardV (G)
≤ 1 +

2(v − u)

n
≤

3

2
,

because v − u ≤ 2v/3 and n ≥ 2(v + u) ≥ 8v/3.
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rt-convexity of starshaped sets

We now investigate the rt-convexity of starshaped sets.

Let S be the space of all compact starshaped sets in IRd, where d ≥ 2. Let kerK
be the kernel of K. For K ∈ S, let exK be the set of all points x ∈ K such that
kx ⊂ ky and k ∈ kerK imply y = x.

Recall
Wxy = (Sxy ∪Hxy ∪Hyx) \ {x, y},

for x 6= y. Also, for x ∈ IRd and M ⊂ IRd, and for an affine subspace L of IRd,
denote by pL(x) and pL(M) the orthogonal projections of a ∈ IRd and M ⊂ IRd

onto L, and put

Dx(M) =

{
y − x

‖y − x‖
: y ∈ M \ {x}

}
.

Let us say that a compact set K looks at least half-dense from x ∈ K if there
is a closed half-space H+ with the origin 0 on its boundary, such that for any
neighbourhood N of x, the set Dx(N ⊂ K) is dense in Sd−1 ∩H+, where Sd−1

is the unit sphere in IRd.

Theorem 8. If K ∈ S is rt-convex, then µ1(K) = ∞.

Proof. Let k ∈ kerK and x ∈ K be farthest from k. Choose y1 ∈ kx. Since x, y1
have the rt-property, there exists a point z1 ∈ K ∩Wxy1 . As ‖k− z1‖ ≤ ‖k−x‖,
z1 ∈ Sxy1∪Hy1x. Consider the point z

′ satisfying z1 ∈ kz′ and ‖k−z′‖ = ‖k−x‖.
Then project z′ orthogonally onto kx and obtain a point z′′. Consider a point
y2 between z′′ and x on kx, and proceed with y2 and x exactly as before with y1
and x; we obtain a point z2 ∈ K ∩Wxy2 . Since Wxy2 is disjoint from kz′, but no
point of K is separated on lkz1 from k by z′, it follows that z2 /∈ lkz1.

By iterating this procedure, we obtain a sequence of points {zn}
∞

n=1 such that
the line-segments kzn pairwise meet only at k, and ‖k − zn‖ > ‖k − y1‖ for all
n. Thus,

∑
∞

n=1 ‖k − zn‖ = ∞, and µ1(K) = ∞.

Corollary 3. If K ∈ S is a finite union of line-segments, then K is not rt-
convex.

��� ������

Figure 4:

This does not mean that kerK cannot consist of a single point if K is rt-convex.
For one of the simplest starshaped sets which are rt-convex, see Fig. 4(a). This
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example also shows that the Hausdorff dimension of a compact starshaped rt-
convex set can be 1. Obviously, it can also be larger than 1, see Fig. 4(b).

The condition dim kerK > 0 does not guarantee the rt-convexity of K, see Fig.
4(c). However, higher dimension of the kernel ”almost” does.

Theorem 9. If K ∈ S and dimkerK ≥ 2, then K is almost rt-convex.

Proof. This is an immediate consequence of Theorem 1, because K is 2-con-
nected and polygonally connected. The latter is obvious, for any dimension of
kerK.

Also the 2-connectedness is quickly verified. Take two arbitrary points x, y ∈ K.
Since kerK is not included in lxy, we can choose k ∈ (kerK) \ lxy. Let Π be
the 2-plane containing x, y, k. If kerK is not included in Π, then for any choice
of k′ ∈ (kerK) \ Π the two polygonal paths xky and xk′y lie in K and meet
only at x, y. If kerK ⊂ Π, consider a first point k′ ∈ relint kerK and a second
point k′′ ∈ relint(kerK ∩ conv{k′, x, y}). For these two points it is again true
that xk′y ∪ xk′′y ⊂ K and xk′y ∩ xk′′y = {x, y}.

Theorem 10. Let K ∈ S be different from a line-segment, but have dimkerK
= 1, and let L be the line including kerK. If K ∩ L ⊂ pL(K \ L), then K is
almost rt-convex.

Proof. Put kerK = ab. Let K ′ = (K \L)∪ab. This set is 2-connected. Indeed,
let x, y ∈ K ′. Since K is not a line-segment, there exists a point z /∈ L.

If x, y ∈ ab, then they can be joined by two suitable broken lines inside
conv{a, b, z} ⊂ K, for example xzy and xgy, where g is the baricentre of
conv{x, y, z}.

Soppose now x /∈ ab. If xay∩xby = {x, y}, we are done. If not, then xa∩yb 6= ∅
or xb ∩ ya 6= ∅. Assume w.l.o.g. that the latter holds, and {c} = xb ∩ ya. Then
xcy and xc′y are suitable broken lines, where c′ = (a+ b)/2.

By Theorem 1, K ′ is almost rt-convex, and the only pair of points in K ′ possibly
without the rt-property is diametral. To finish the proof it remains to show that
every pair of points x ∈ K, y ∈ K \K ′ enjoy the rt-convex.

We have y ∈ K ∩ L. If x ∈ K ′ and y 6= pL(x), then ∠xpL(x)y = π/2. If x ∈ K ′

and y = pL(x), then ∠xya = π/2. If x ∈ K \ K ′, then x = pL(z) for some
z ∈ K \ L since K \K ′ ⊂ K ∩ L, whence ∠zxy = π/2.

While sets in S with higher kernel dimension are almost rt-convex, we saw that
for single-point kernels, rt-convexity is rather the exception than the rule.

From the point of view of Baire categories, perhaps counter-intuitively, most
sets in S have single-point kernels, as the second author proved in [5] (see the
Corollary to Theorem 1 there). So, the question whether most sets in S are
rt-convex or at least almost rt-convex becomes interesting.
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Lemma 3. For most K ∈ S, we have card(K ∩ SK) = d+ 1.

This is the version for starshaped sets of Lemma 1. The latter is a result from
[4] which deals there with convex curves and surfaces. Its proof, given in [4]
only for d = 2, can easily be modified to work for higher d, and adapted for the
space S, as well as for other Baire spaces of compact sets.

Lemma 4. Most K ∈ S look at least half-dense from any of their points.

This lemma is Theorem 1 in [7] for the space of starshaped sets, one of the spaces
treated there.

Theorem 11. Most K ∈ S are rt-convex.

Proof. We shall restrict S to those compact starshaped sets K with 0 ∈ kerK.
All known results about S remain of course true with this restriction. So, for
example, for most K ∈ S, kerK = {0}, and this will be assumed from now on.

Let x, y ∈ K \ {0}. We verify the rt-property for these two points. Indeed,
suppose on the contrary K ∩Wxy = ∅.

If K ⊂ conv Sxy, then K ∩Sxy = {x, y}. But in this case Sxy is the circumsphere
of K and card(K ∩ Sxy) = 2, contradicting Lemma 3.

Thus, K \ conv Sxy 6= ∅.

Assume now that 0 ∈ conv Sxy. Choose z ∈ K\convSxy. Then 0z∩Wxy ⊂ {x, y},
so either 0z cuts Hxy in x or 0z cuts Hyx in y. Assume w.l.o.g. the first case.
By Lemma 4, there are points in K \ l0z arbitrarily close to z. For such a point
z′, 0z′ cuts Hxy in a point different from x, and a contradiction is obtained.

The remaining possibility is that 0 /∈ convWxy. Suppose w.l.o.g. that Hxy sepa-
rates 0 from y. Then, clearly, x ∈ 0y. By Lemma 4, there are points in K \ l0y
arbitrarily close to y. For such a point y′, 0y′ cuts Hxy in a point different from
x, and a contradiction is obtained again.

Now let z ∈ K. We verify the rt-property for 0 and z.

Let Sn be the set of all K ∈ S possessing a point x ∈ exK with ‖x‖ ≥ 1/n such
that S0x ∩K = {0, x}. We show that Sn is nowhere dense.

Let K ∈ S and approximate K by F ∈ S with exF finite. For each x ∈ exF
with ‖x‖ ≥ 1/n, add a line-segment 0y to F such that ‖x‖ = ‖x− y‖ and ‖y‖
is as small as desired. Obtain in this manner F ′ ∈ S \ Sn close to F . Note that
S0x cuts 0y at its midpoint. So, there exists a neighbourhood V of F ′ in S such
that V ∩ Sn = ∅.

Thus, Sn is nowhere dense, which implies that
⋃

∞

n=1 Sn is of first category.

Hence, for most K ∈ S, S0x ∩K 6= {0, x} for all x ∈ exK. Note that, in these
sets K, 0 and z have the rt-property as soon as z ∈ 0x for some x ∈ exK
(because, writing z = λx, S0z ∩K ⊃ S0z ∩λK = λ(S0x ∩K)), and this happens
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for every z ∈ K \ {0}.

Can the case of starshaped sets with higher-dimensional kernels be treated using
Baire categories? Yes, it is enough to restrict S to the subspace SC of those
starshaped sets whose kernels include a given compact convex set C with 1 ≤
dimC ≤ d.We know, by Theorem 9, that all members of SC are almost rt-convex
if dimC ≥ 2; if dimC = 1, even that is not guaranteed.

We take C in a linear (dimC)-dimensional subspace LC of IRd.

We need the following old result (see the last four lines of [6]).

Lemma 5. For most K ∈ SC , no point of LC \ C belongs to K.

In fact, much more is known about mostK ∈ SC (see [6]); for example, that each
(dimC +1)-dimensional subspace containing LC and meeting K \LC intersects
K along a topological disc, which intersects LC along C.

Theorem 12. For any convex set C, most K ∈ SC are rt-convex.

Proof. Assume first dimC ≥ 2. Then dim kerK ≥ 2, too. In the proof of
Theorem 10 it is shown that each K ∈ SC is 2-connected and polygonally
connected. By Theorem 1, K is almost rt-convex, the exceptional pair, if it
exists, being diametral. Lemma 3 remains true when restricted to SC , see the
comment following Lemma 3. Thus, for most K ∈ SC ,

card(K ∩ SK) = d+ 1 ≥ 3,

which excludes the existence of an exceptional diametral pair. Hence most K
are rt-convex.

Now assume dimC = 1. If we can prove that dimK = 1 and that the condition
of Theorem 10 involving the line L ⊃ kerK is verified by most K, then the rest
follows like in the just discussed case dimC ≥ 2. And indeed, both dim kerK = 1
and the mentioned condition are verified, since, for most K, L ∩K = kerK, by
Lemma 5.

rt-convexity of finite sets.

Concerning the family E of all finite sets in IR2, in order to obtain classes of
rt-convex sets in E , finding some sufficient conditions for rt-convexity (or almost
rt-convexity) would be helpful. However, here we don’t enjoy the support of
Corollary 1 or Theorems 1, 2, 3.

A few examples of finite rt-convex sets can easily be constructed. See the next
sections for a classification of all 4-point and 5-point rt-convex sets.

In order to produce large families of rt-convex sets in E , one can use the next
straightforward but useful fact, valid in arbitrary dimension, and also for infinite
sets.
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Theorem 13. If M ⊂ IRd is rt-convex and L is an affine subspace of IRd, then
M ∪ pL(M) is also rt-convex.

Of course, starting with any rt-convex set one can produce in this way infinitely
many new rt-convex sets, each of them including the preceding one.

Let R be the family of all triples {x, y, z} such that conv{x, y, z} is a non-
degenerate right triangle, i.e. the family F ′ from the Introduction.

Consider {a, b, c} ∈ R with ∠abc = π
2
, and d0 the orthogonal projection of b

on ac. Let d2k+1 denote the orthogonal projection of d2k on ab, and d2k+2 the
orthogonal projection of d2k+1 on d0a, where k = 0, 1, 2, ... We call the sequence
of points b, d0, d1, d2, ..., dn an n-zigzag in the acute angle a. An even (odd) zigzag
is an n-zigzag such that n is even (odd). Infinite zigzags can also be conceived.

�����

�����
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Figure 5:

Let L and H be two families of parallel lines in IR2 such that l and h are
perpendicular, for any l ∈ L and h ∈ H. Let P = {p ∈ l∩h : l ∈ L, h ∈ H}. For
p ∈ P , let lp denote the line in L containing p, and put l∗p = lp\{p}. Introduce hp

and h∗

p analogously. A set S ⊂ P is called lattice-like. Consider the conditions:

(i) la = lb ⇒ (h∗

a ∪ h∗

b) ∩ S 6= ∅,

(ii) ha = hb ⇒ (l∗a ∪ l∗b ) ∩ S 6= ∅,

(iii) la 6= lb and ha 6= hb ⇒ (la ∩ hb) ∪ (ha ∩ hb) 6= ∅.

Remark. The following sets are rt-convex:

(a) a set consisting of pairs of antipodal points of a circle and at most one
other point on the circle;

(b) a lattice-like set verifying (i)–(iii);

(c) a set containing a vertex at an acute angle of a right triangle and a zigzag
in the other acute angle, where the second endpoint of the hypothenuse
may be included or not;

(d) a set containing two even (or two odd) zigzags of a right triangle in its two
acute angles, where each endpoint of the hypothenuse may be included or
not.

Note that all sets mentioned at (c), (d) can be obtained by repeatedly using
Theorem 13.
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Theorems 14 and 15 present two different sufficient conditions for a finite lattice-
like set to be rt-convex. They correspond to two classes of rt-convex sets in ZZ2

(called here positive sets without peaks, respectively convex sets).

Put [m,n] = {m,m+ 1, ..., n− 1, n}, where m,n ∈ ZZ and m < n.

Let the families L and H be finite, and cardL = u, cardH = v.

By numbering the families L and H with integers, every point l ∩ h becomes a
pair (x, y) ∈ ZZ2, P becomes [1, u]× [1, v], and S ⊂ P becomes a subset MS of
[1, u]× [1, v].

A function f : [1, u] → ZZ is called here positive if f ≥ 0, and f(x) > 0 for all
x ∈ [1, u] with at most one exception.

A set M ⊂ ZZ2 is called positive if, for some positive function f : [1, u] → ZZ,

M = {(x, y) : 1 ≤ x ≤ u and 0 ≤ y ≤ f(x)}.

We say that M has a peak at (x, f(x)) ∈ M if f has an absolute maximum at
x ∈ [1, u] and f(x) ≥ f(x′) + 2 for all x′ 6= x. A peak is a superpeak if strict
inequality holds.

Theorem 14. If MS is positive and has no superpeaks, then S is almost rt-
convex. If MS has no peaks, then S is rt-convex.

Proof. Let M ⊂ ZZ2 be positive. Let (x, y), (x′, y′) ∈ M and assume first that
x 6= x′ and y < y′. Then (x′, y) ∈ M sees the pair {(x, y), (x′, y′)} under a right
angle. If y > y′, then (x, y′) ∈ M sees the pair {(x, y), (x′, y′)} under a right
angle. If y = y′ > 0, then (x, y) sees the pair {(x, 0), (x′, y)} under a right angle.
If y = y′ = 0, we remember that f(x) or f(x′), say f(x), is non-zero, f being
positive. Then (x, 0) sees the pair {(x, 1), (x′, 0)} under a right angle.

Assume now that x = x′, and also w.l.o.g. that y > y′. If f has no maximum at
x, or not only at x, then it has a maximum at x′′ 6= x and f(x′′) ≥ f(x). Then
(x, y) sees the pair {(x, y′), (x′′, y)} under a right angle.

Assume now that x is the only maximum of f . If M has no peak, then f(x′′) =
f(x)− 1 for some x′′ 6= x. Hence y′ ≤ f(x′′) and (x′′, y′) ∈ M . The point (x, y′)
sees the pair {(x, y), (x′′, y′)} under a right angle.

Hence M is almost rt-convex in case of absence of superpeaks. If M has the
peak (x, f(x)), the exceptional pair is {(x, f(x)), (x, f(x) − 1)}. If M has no
peaks, it is rt-convex.

Now, observe that all triples in R with points in M correspond to triples in R
with points in S, if M = MS.

Let now f : [1, u] → ZZ be unimodal, i.e. non-decreasing on a subinterval [1, w]
and non-increasing on [w, u], where 1 ≤ w < u, and let g : [1, w] → ZZ be non-
increasing, such that g(1) ≤ min{f(1), f(u)} if f(1) 6= f(u), and g(1) < f(1)
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otherwise. Define h : [w + 1, u] → ZZ as follows: Let h(w + 1) = g(w). For
w + 2 ≤ i ≤ u, let h(i) = g(x(i)), where x(i) = min{ξ ≤ w : f(ξ) ≥ f(i)}.

It is easily checked that, defined in this way, h is non-decreasing.

Indeed, let z, z′ ∈ [w + 1, u], with z < z′. Then f(z) ≥ f(z′), which implies
x(z) ≥ x(z′), whence g(x(z)) ≤ g(x(z′)), i.e. h(z) ≤ h(z′).

A set M ⊂ ZZ2 will be called convex if, for some functions f, g, h defined as above,

M = {(x, y) : 1 ≤ x ≤ w and g(x) ≤ y ≤ f(x)}

∪ {(x, y) : w < x ≤ u and h(x) ≤ y ≤ f(x)}.

Theorem 15. If MS is convex, then S is rt-convex.

Proof. Again, we show that MS itself is rt-convex.

Suppose that (i, j), (i′, j′) ∈ MS and i′ < i, j′ < j. If (i′, j) ∈ MS, we are done.
If (i′, j) /∈ MS and x∗ = min{ξ ≤ w : f(ξ) ≥ j}, then i′ < x∗. It follows that
g(i′) ≥ g(x∗), while f(i′) < f(x∗).

Let i∗ = max{ξ : f(ξ) ≥ j}. Clearly, i∗ ≥ i and f(i∗) ≥ j. Hence, x(i∗) ≥ x∗,
yielding h(i∗) = g(x(i∗)) ≤ g(x∗) ≤ g(i′) ≤ j′.

Since h is non-decreasing, h(i) ≤ h(i∗) ≤ j′. Hence, (i, j′) ∈ MS and (i, j), (i′, j′)
have the rt-property.

Suppose now that (i, j), (i′, j′) ∈ MS and i′ < i, j′ > j. If f(i) ≥ j′ then
(i, j′) ∈ MS and we are done. Otherwise, f(i) < j′ and f(i′) ≥ j′ imply
x(i) ≤ i′. This in turn yields g(x(i)) ≥ g(i′), that is h(i) ≥ g(i′). A fortiori
j ≥ g(i′), whence (i′, j) ∈ MS .

For (i, j), (i′, j) ∈ MS, and i > i′, we have {(i, j), (i′, j), (i′, j − 1)}) ∈ R if
j > g(1), and {(i, j), (i′, j), (i′, j + 1)}) ∈ R if j ≤ g(1).

For (i, j′), (i, j) ∈ MS, and j > j′, we have {(i, j), (i, j′), (i+1, j′)}) ∈ R if i ≤ w,
and {(i, j), (i, j′), (i− 1, j′)}) ∈ R otherwise.

Classification of 4-point rt-convex sets in the plane

In this and the next two sections we provide a classification of all 4-point and
5-point rt-convex sets in IR2.

Theorem 16. There are precisely three different types of 4-point rt-convex sets
in the plane:

type 4-1: the three vertices of a right triangle and the foot of the height at the
right angle;

type 4-2: the four vertices of a rectangle;

type 4-3: the vertex of an acute angle of a right triangle together with the 1-zigzag
in the other acute angle.
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For an illustration of Theorem 16, see Figure 6.

����������

Figure 6: 4-point rt-convex sets

Proof. Let T = {a, b, c, d} be a 4-point rt-convex set. By the definition, for
any two points, say, a, b ∈ T , there is a point, say c ∈ T such that {a, b, c} ∈ R.
We assume without loss of generality that ∠abc = π

2
. Now we consider the

position of d. Since for any x ∈ {a, b, c}, there exists y ∈ {a, b, c}\{x} such that
{d, x, y} ∈ R, there are three cases to consider.
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(a) d ∈ Kab ∩Kac. (b) d ∈ Kab ∩Kbc.

Figure 7: 4-point rt-convex sets.

Case 1. {d, a, b} ∈ R, {d, a, c} ∈ R. See Figure 7 (a). Clearly d /∈ Sab ∩ Sac.
Thus, the possible positions for d are d1 ∈ Sab ∩Hac \ {a} and in this case T is
of type 4-3; d2 ∈ Hab ∩ Sac \ {a} and T is of type 4-2; d3 ∈ Hab ∩Hca and T is
again of type 4-3; d4 ∈ Hba ∩Hac and then T is of type 4-1.

Case 2. {d, a, b} ∈ R, {d, c, b} ∈ R. See Figure 7 (b). Clearly d /∈ lab, d /∈ lbc.
So, the solutions for d are d1 ∈ Sab ∩ Sbc \ {b}, and then T is of type 4-1;
d2 ∈ Hab ∩Hcb and T is of type 4-2; {d3, d4} = Hab ∩ Scb (under the condition
‖b− c‖ ≥ 2‖a− b‖), when T is of type 4-3.

Case 3. {d, b, c} ∈ R, {d, a, c} ∈ R. Then T is as described in Case 1, to which
Case 3 is symmetrical.

We shall call the three 4-point rt-convex sets described above the 4-point rt-
convex sets generated by a, b, c.
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Classification of planar 5-point rt-convex sets with 4-point rt-convex
subsets

We are going to classify all possible configurations for a 5-point rt-convex set
F = {a, b, c, d, e}.

In this section we consider the case that F contains a 4-point rt-convex subset,
which can be w.l.o.g. supposed to be F1 = {a, b, c, d}, generated by a, b, c, where
∠abc = π/2.

By the definition of rt-convexity, e must meet one of the following 7 conditions.

C1. {{e, a, b}, {e, c, d}} ⊂ R;

C2. {{e, a, c}, {e, b, d}} ⊂ R;

C3. {{e, a, d}, {e, b, c}} ⊂ R;

C4. {{e, a, b}, {e, a, c}, {e, a, d}} ⊂ R;

C5. {{e, b, a}, {e, b, c}, {e, b, d}} ⊂ R;

C6. {{e, c, a}, {e, c, b}, {e, c, d}} ⊂ R;

C7. {{e, d, a}, {e, d, b}, {e, d, c}} ⊂ R.

According to the different configurations of F1, there are three cases to consider.

Case 1. F1 is of type 4-1. Then d is the orthogonal projection of b on ac.

Clearly, C1 and C3 generate the same F , and so do C4 and C6.
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Figure 8: F1 is of type 4-1, e ∈ Wab ∩Wcd

If e satisfies C1, then e ∈ Wab ∩ Wcd. All six possible positions e1, ..., e6 of e
are shown in Figure 8, where {e1} = Hab ∩ Hdc, {e2} = Hab ∩ Hcd, {e3} =
Hba ∩ Scd \ {c}, {e4} = Sab ∩ Scd \ {d}, and {e5, e6} = Hab ∩ Scd. The latter
intersection is non-empty if and only if

0 < sin∠acb ≤ x0,

where x0 is the real root of x3 + x2 + x − 1 = 0. In case of equality e5 and e6
exist, but coincide.

Indeed, let λ denote the distance from the centre of Scd to the line Hab. Then
λ − 1

2
‖c − d‖ = ‖a − b‖ − 1

2
‖c − d‖ sin∠acb − 1

2
‖c − d‖ = 1

2
(2‖a − b‖ − ‖b −

c‖ cos∠acb(sin∠acb + 1) = 1
2
‖a − b‖(2 − cos2 ∠acb(sin∠acb+1)

sin∠acb
) ≤ 0, i.e. cos2∠

acb(sin∠acb+1) ≥ 2 sin∠acb. Putting x = sin∠acb, this means x3+x2+x−1 ≤
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0. The left side is monotone increasing everywhere, so the inequality holds on
the interval ]0, x0].
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Figure 9: F1 is of type 4-1, e ∈ Wac ∩Wbd

If e satisfies C2, then e ∈ Wac∩Wbd. Clearly Hdb∩Wac = ∅. We assume without
loss of generality that ‖a − b‖ ≤ ‖b − c‖. Then we have for e the solutions
e1 ∈ Hac ∩ Hbd, e2 ∈ Hca ∩ Hbd, e3 ∈ Sac ∩ Sbd \ {b}, and e4 ∈ Sac ∩ Hbd \ {b}.
Note that e3 and e4 exist under the condition ‖a− b‖ < ‖b− c‖. See Figure 9.
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Figure 10: F1 is of type 4-1, e ∈ Wab ∩Wac ∩Wad

If e satisfies C4, then e ∈ Wab ∩ Wac ∩ Wad. Clearly Wac ∩ Wad = Had \ {a}.
Since Hab ∩Had \ {a} = ∅, we obtain 2 possible configurations for F as shown
in Figure 10, where e1 ∈ Had ∩ Sab \ {a}, and e2 ∈ Had ∩Hba.

Since Wba ∩Wbc = (Hcb∩Hab)∪{d}, which has an empty intersection with Wbd,
there is no point e satisfying C5. Similarly, Wda ∩Wdb ∩Wdc = ∅, and there is
no point e satisfying C7.

Case 2. F1 is of type 4-2. Then C1, C3 generate the same set F , and so do C4,
C5, C6 and C7.

If e satisfies C1, then e ∈ Wab ∩Wcd. Clearly, F can be of 3 different kinds, as
shown in Figure 11 (a), where e1 ∈ ad \ {a, d}, e2 ∈ Hab \ ad, and e3 ∈ Sab ∩Scd,
supposing w.l.o.g. for the latter that ‖a− b‖ ≥ ‖a− d‖.

Note that the solution provided here by e2 includes the previous ones obtained
for F1 of type 4-1, case C2, both e1, e2, and case C4, e1.

If e satisfies C2, then e ∈ Wac ∩ Wbd. Clearly, Sac = Sbd. Then F can again
be of 3 different kinds, as shown in Figure 11 (b), where {e1} = Hca ∩ Hdb,
{e2} = Hca ∩Hbd, and e3 ∈ Sac \ {a, b, c, d}.
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(a) (b)

Figure 11: F1 is of type 4-2

Furthermore, Wab ∩ Wad \ {c} = Sab ∩ Sad \ {a} ∈ int convSac), which means
that Wab ∩Wac ∩Wad = ∅. So there is no point e satisfying C4; consequently,
C5, C6, C7 cannot be satisfied either.

Case 3. F1 is of type 4-3.
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Figure 12: F1 is of type 4-3, e ∈ Wab ∩Wcd

If e satisfies C1, then e ∈ Wab∩Wcd. Thus we have as solutions {e1} = Hab∩Hcd,
{e2} = Hab∩Scd\{d}, {e3} = Sab∩Hdc\{b}, {e4} = Hba∩Scd\{c}, and {e5, e6} =
Sab ∩ Scd, the latter under the condition ‖a− d‖+ ‖b− c‖ ≤ ‖a− b‖+ ‖c− d‖,
see Figure 12. In case of equality, e5 = e6.

Note that e2, e4 don’t lead to new solutions, being particular cases of F obtained
for F1 of type 4-2, C1, e1, e2, respectively.
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Figure 13: F1 is of type 4-3, e ∈ Wac ∩Wbd
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If e satisfies C2, then e ∈ Wac ∩ Wbd. This leads to 6 different configurations
shown in Figure 13, where e1 ∈ Hac ∩Hdb, e2 ∈ Hac ∩ Sbd \ {a}, e3 ∈ Hac ∩Hbd,
e4 ∈ Hca ∩Hbd, e5 ∈ Sac ∩Hdb \ {c}, e6 ∈ Sac ∩Hbd \ {b}.
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Figure 14: F1 is of type 4-3, e ∈ Wad ∩Wbc

If e satisfies C3, then e ∈ Wad ∩ Wbc. Clearly, Had = Hbc. So we have e ∈
Had \ {a, b}, which leads to 3 different types of F , see e1, e2, e3 in Figure 14, or
the solutions e4 ∈ Sad ∩ Sbc \ {d}, and e5 ∈ Hda ∩ Sbc \ {d}.

Clearly, Wab∩Wad ⊂ conv{a, b, c, d}, whereas Wac∩conv{a, b, c, d}\{a, b, c, d} =
∅. So there is no point e satisfying C4.

Let {p} = Hab ∩Hcb. Then Wba ∩Wbc ⊂ conv{a, b, d} ∪ dp, which has an empty
intersection with Wbd. Thus, Wba ∩Wbc ∩ Wbd = ∅, which means that there is
no point e satisfying C5.

If e satisfies C6, then e ∈ Wca ∩Wcb ∩Wcd. It is not hard to check that F must
be as shown in Figure 15, where e ∈ Sca ∩Hcb ∩ Scd.

Note that this coincides with the solution e2 if e satisfies C1, itself a particular
case of a previous solution.
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Figure 15: F1 is of type 4-3, e ∈ Wca ∩Wcb ∩Wcd.

If e satisfies C7, e ∈ Wda ∩Wdb ∩Wdc. Then

Wda ∩Wdc = (Sdc ∩ (Sda ∪Hda) \ {d}) ∪ (Hcd ∩ (Had ∪Hda)),

which contains 4 points, see Figure 16 (a).

One of them, {e1} = Hda ∩ Hba, lies on Wdb, too, and is a solution, but not a
new one, as it coincides with e4 if e satisfies C1, which in turn is a particular



L. Yuan, T. Zamfirescu / Right Triple Convexity 21

��� ���

��

�

��

�

� � ��

� �

Figure 16: F1 is of type 4-3, e1, e2 ∈ Wda ∩Wdb ∩Wdc

case of another solution, as we noticed. A second one, {e2} = Hcd ∩ Hda, is a
solution in case ‖a− b‖ = ‖a− d‖, see Fig. 16 (b). This is also not new, being
a particular case of the solution obtained for F1 of type 4-2, C2, e1.

Classification of planar 5-point rt-convex sets without 4-point rt-convex
subsets

Now we consider the case when F = {a, b, c, d, e} is a 5-point rt-convex set
containing no 4-point rt-convex set. We still assume that {a, b, c} ∈ R, but not
any more ∠abc = π/2.

Since the analysis of all cases leading to our classification is lengthy, but does not
offer any new kinds of approach, and always follow similar methods, we decide
to present here rather sketchily some of the proofs, but all pertinent figures.

For the point z ∈ {d, e}, if there exist x, y ∈ {a, b, c} such that {x, y, z} ∈ R,
then we say that z is rt-good.

There are two cases to be considered, first that both d and e are rt-good, and
then that at least one of them is not rt-good.

Assume first that both d and e are rt-good.

Suppose that x1, y1 ∈ {a, b, c} satisfy {d, x1, y1} ∈ R, x2, y2 ∈ {a, b, c} satisfy
{e, x2, y2} ∈ R.

Case 1. x1y1 and x2y2 are the same side of the right triangle abc.

We assume w.l.o.g. that x1y1 = x2y2 = ab. Since F does not contain a 4-
point rt-convex set generated by {a, b, c}, we have {d, a, b} ∈ R =⇒ {d, a, c} /∈
R, {d, b, c} /∈ R, and therefore {d, c, e} ∈ R; similarly, {e, a, b} ∈ R =⇒
{e, a, c} /∈ R, {e, b, c} /∈ R, and therefore {e, c, d} ∈ R. Thus the points d, e
satisfy

{{d, a, b}, {d, c, e}, {e, a, b}} ⊂ R.

Recalling that {a, b, c} ∈ R, we actually have c, d, e ∈ Wab satisfying {c, d, e} ∈
R.
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Subcase 1.1. At least two points from {c, d, e}, say c and d, lie in one of the sets
Hab, Hba, Sab.
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Figure 17: c, d ∈ Hba, c ∈ relint bd.

(I) c, d ∈ Hba, c ∈ relint bd. See Figure 17, where e ∈ Sab∩Hcd if 2‖b−c‖ ≤ ‖a−b‖
(see e1, e2); or e ∈ Sab ∩ Scd if ‖a+ b− c− d‖ ≤ ‖a− b‖+ ‖c− d‖ (see e3, e4); or
e ∈ Hab ∩ Scd under the condition ‖c− d‖ ≥ 2‖a− b‖ (see e5, e6).
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Figure 18: c, d ∈ Hba, b ∈ relint cd.

(II) c, d ∈ Hba, b ∈ relint cd, and we assume without loss of generality that
‖b− c‖ ≤ ‖b− d‖. See Figure 18, where e3, e4 appear only under the condition
‖c− d‖ ≥ 2‖a− b‖.

(III) c, d ∈ Sa,b. Then ‖c− d‖ < ‖a− b‖ and cd is not parallel to ab. See Figure
19, where e ∈ Hba ∩ (Hcd∪Hdc) (see e1, e2); or e ∈ Hba ∩Scd if the distance from
the point (c+ d)/2 to the line Hba is less than or equal to ‖c− d‖/2 (see e3, e4);
or e ∈ Hab ∩ (Hcd ∪Hdc) (see e5, e6). Note that e ∈ Sab ∩ (Hcd ∪Hdc) is not an
option, because {a, b, c, e} becomes rt-convex.

Subcase 1.2. Exactly one of the points c, d, e, belongs to each of the sets Hab,
Hba, Sab.

We suppose w.l.o.g. that c ∈ Hba, d ∈ Hab, e ∈ Sab, and ‖a− d‖ ≤ ‖b− c‖.

If c, d lie on the same side of lab, then see Figure 20 (a) . If c, d lie on different
sides of lab, then see Figure 20 (b) and (c) .

Case 2. x1y1 and x2y2 are two different sides of the right triangle abc. We assume
without loss of generality that x1 = x2 = b, y1 = a, y2 = c.
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(a) c, d lie on a same semicircle bounded by ab.
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(b) c, d lie on different semicircles bounded by ab.

Figure 19: c, d ∈ Sa,b, |cd| < |ab| and cd ∦ ab.
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Figure 20: c ∈ Hba, d ∈ Sba, e ∈ Hab.
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Since F does not contain a 4-point rt-convex set generated by {a, b, c}, we have
{d, a, b} ∈ R =⇒ {d, a, c} /∈ R, {d, b, c} /∈ R, and therefore {d, c, e} ∈ R;
similarly, {e, b, c} ∈ R =⇒ {e, a, b} /∈ R, {e, a, c} /∈ R, and therefore {e, a, d} ∈
R. Thus the points d, e satisfy

{{d, a, b}, {d, c, e}, {e, b, c}, {e, a, d}} ⊂ R,

i.e., d ∈ Wab, and e ∈ Wcd ∩Wbc ∩Wad.

Subcase 2.1. ∠abc = π
2
.

(I) d ∈ Hba.
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(a) (b) (c)

Figure 21: ∠abc = π
2
, d ∈ Hba

Then Wcd ∩Wbc ⊂ Hcb = Hcd, and therefore e ∈ Hcb ∩Wad. If c ∈ relint bd, see
Figure 21 (a); if d ∈ relint bc, then see Figure 21 (b); If d ∈ relint bc, then see
Figure 21 (c).

(II) d ∈ Hab. See Figure 22.
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(a) (b)

Figure 22: ∠abc = π
2
, d ∈ Hab

(III) d ∈ Sab. See Figure 23.

Subcase 2.2. ∠abc < π
2
.

We assume without loss of generality that ∠bac = π/2.

(I) d ∈ Hab. If d ∈ relint ac, we exchange the labels of a, b and c, d (relabel a by
b, b by a, c by d, d by c). Then F admits the solutions described in Subcase 1.2.1
(I) under the condition c ∈ relint bd, as shown in Figure 21 (a). If c ∈ relint ad,
we do the same relabeling and F has the solutions described in Subcase 1.2.1
(I) under the condition d ∈ relint bc, as shown in Figure 21 (b).
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Figure 23: ∠abc = π
2
, d ∈ Sab

(II) d ∈ Hba. Let c1 be the orthogonal projection of c on the line Hba and
{c2} = Hcb ∩Hba.
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Figure 24: ∠abc < π
2
, d ∈ Hba

If d ∈ bc1 \ {b, c1}, then there is a possible position of e = 3 as shown in Figure
24 (a). Further, if ‖a− c‖ < ‖a− b‖, then there is a possible position of e = 8
as shown in Figure 24 (b).

If d ∈ Hba and c2 ∈ relint c1b, we have a position of e = 5 as shown in Figure 24
(c). If d ∈ Hba and b ∈ relint c1d, then we have all the possible positions of e as
shown in Figure 25 (a) to (f) respectively. Furthermore, if ‖a − c‖ > ‖a − b‖,
then we also have a position of e as shown in Figure 26.

(III) d ∈ Sab. Let i be the orthogonal projection of a on the line segment bc.
Clearly d 6= i.

(i) d ∈ âi, where âi denotes the arc of Sab from a to i in dextrorsum sense. If
‖a − c‖ < ‖a − b‖, then see Figure 27 (a) and (b). If ‖a − c‖ ≥ ‖a − b‖, then
see Figure 27 (c).

(ii) d ∈ îb. See Figure 28.

(iii) d ∈ b̂a. See Figure 29.

Suppose now that at least one of the points d, e is not rt-good.

We assume without loss of generality that d is not rt-good. By the definition,
we must have {{d, a, e}, {d, b, e}, {d, c, e}} ⊂ R. Recalling that {a, b, c} ∈ R, we
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Figure 25: ∠abc < π
2
, d ∈ Hba, b ∈ relint c1d
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Figure 26: ∠abc < π
2
, d ∈ Hba, b ∈ relint c1d, |ac| > |bc|.
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Figure 27: ∠abc < π
2
, d ∈ Sab, d ∈ âi.
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Figure 28: ∠abc < π
2
, d ∈ Sab, d ∈ îb.
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Figure 29: ∠abc < π
2
, d ∈ Sab, d ∈ îb.
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actually have a, b, c ∈ Kde satisfying {a, b, c} ∈ R. Thus, we are in Case 1, with
d, e instead of a, b and vice-versa.
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