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FAULT-TOLERANT DESIGNS IN TRIANGULAR

LATTICE NETWORKS

Ayesha Shabbir, Tudor Zamfirescu

We present fault-tolerant designs in the form of Pj

k-graphs and C
j

k-graphs,
in which n processing units are interlinked as parts of a triangular lattice
network, and ℓ of these n units, forming a chain or cycle of maximal length,
are used to solve some task. These graphs can tolerate the failure of up to
two components or communication links, keeping constant performance. We
extend the results to triangular lattices on the torus and Möbius strip.

1. INTRODUCTION

1.1. Motivation and history

Suppose that n processing units are interlinked, and ℓ of these n units, forming
a chain of maximal length, are used to solve some task. To have a fault-tolerant
self-stable system, it is necessary that in case of failure of any single unit, another
chain of ℓ units not containing the faulty unit can replace the originally used chain.
One uses graphs to represent the units and the links, see [1], [5]. This is the kind of
application addressed in the present paper. Fault-tolerant designs are widely used
in engineering and computer sciences.

A finite graph is called a P
j
k-graph (Cj

k-graph), if it is k-connected and any
set of j vertices is missed by some longest path (cycle). One can interpret any such
graph as a j-fault-tolerant design, which is perfectly reliable, because its perfor-
mance remains of constant quality, whether or not any j of its components fail.

A related situation is that of j-fault hamiltonicity (see e.g. [8], [9]). However,
in that case the (maximal) length of the used circuit changes when failure occurs,
that is, the system is not perfectly stable.

2010 Mathematics Subject Classification. 05C38.
Keywords and Phrases. Triangular lattice networks, longest paths and cycles, torus, Möbius strip,
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Research onP
j
k- andC

j
k-graphs started in 1966, whenGallai asked the ques-

tion “do we have graphs in which every vertex is missed by some longest path?” [4].
In 1972, Zamfirescu asked for Pj

k- and C
j
k-graphs of small (if possible minimal)

order [14]. The question was also asked for the special case of planar graphs. In
2001, with lattice networks in mind, he asked about the existence of such graphs
in geometrical lattices [16]. Any answer to this question is a j-fault-tolerant de-
sign in lattice networks, also known as grid or mesh networks and widely used in
distributed parallel computation, distributed control and wired circuits.

In [7], Nadeem, Shabbir and Zamfirescu proved the existence of P1
1-, P

1
2-

and C1
2-graphs in the infinite square lattice and hexagonal lattice of the Euclidean

plane. In [3], Dino and Zamfirescu presented P1
1- and P1

2-graphs in the infinite
equilateral triangular lattice T . Moreover, Shabbir and Zamfirescu proved the
existence of P1

k- and C1
k-graphs (for k = 1, 2) in finite square and hexagonal lattices

on tori and Möbius strips, see [11].

First we prove the existence of Cj
2-graphs (for j = 1, 2) in T , and then by

considering (finite) triangular lattices on the torus and on the Möbius strip we
construct P1

k- and C
j
2-graphs (k = 1, 2; j = 1, 2) there. Any finite connected graph

in T has connectivity at most 3. For j ≥ 3, no P
j
1- or C

j
2-graph (whether planar

or not) is known (see [12], p. 79).

1.2. Auxiliary results

Let G, H and K be graphs homeomorphic to the graphs G′, H ′ and K ′ in Fig.
1(a), (b) and 3(a), respectively. The graph K contains ten subgraphs isomorphic
to the graph of Fig. 3(b). The variables v, x, y, z, t and w denote the number of
vertices of degree 2 on paths corresponding to edges shown on the respective figures
as well.

Figure 1.

We need the following lemmas.

Lemma 1. Let v ≤ x ≤ w. The longest paths of G have empty intersection if

x+ v = y + 2z + w + 1.

Proof. The possible longest paths of G are shown in Fig. 2, where the paths in b),
c), d) and e) have equal lengths. The longest paths of G have empty intersection
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if the paths in Fig. 2, a) and b) are among the longest ones and consequently the
paths in f), g), h), i), j), k), l), m) and n) are not longer. The lengths of the paths
shown in Fig. 2 a), b), f), g), h), i), j), k), l), m) and n) are respectively

Figure 2.

a = 8x+ 2v + 2y + 2z + w + 18, j = 5x+ v + 4y + 4z + 2w + 20,

b = 7x+ v + 3y + 4z + 2w + 19, k = 8x+ 2y + 4z + w + 18,

f = 8x+ v + 3y + 4z + w + 19, ℓ = 8x+ 3y + 5z + w + 19,

g = 7x+ 3y + 5z + 2w + 19, m = 7x+ 2y + 5z + 2w + 19,

h = 8x+ 4y + 6z + w + 20, n = 8x+ v + 2y + 3z + w + 18.

i = 5x+ 4y + 5z + 2w + 20,
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The equality a = b is equivalent to x+v = y+2z+w+1.Moreover, v ≤ x ≤ w

implies that a is not smaller than f , g, h, i, j, k, l, m or n.

Lemma 1 also appears – without proof – in [7].

Lemma 2. [7] The longest cycles of H have an empty intersection if 2y ≥ 3x+1.

Lemma 3. Any two vertices of K are missed by some longest cycle of K if 2x ≥

y + 2z + 1 and 2t = x+ y + 3z + 3w + 8.

The proof of Lemma 3 is similar to that of Lemma 1 and will therefore be
omitted.

Figure 3.

2. MAIN RESULTS

2.1. Triangular lattice in the plane

In this section we prove the existence of Cj
2-graphs (for j = 1, 2) in the infinite

triangular lattice T .

Theorem 1. In T we have a C1
2-graph of order 60.

Proof. The conditions of Lemma 2 are satisfied for x = 0 and y = 10. We are led
to a graph of order 60 which is embeddable in T , see Fig. 4.

Theorem 2. There exists a C2
2-subgraph of T of order 375.

Proof. For y = 1, z = 0, x = 2, t = 19 and w = 9, the conditions of Lemma 3
are verified and the corresponding graph K is of order 375 and has the desired
property. Fig. 5 reveals an embedding of K in T .
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Figure 4. A C
1

2-graph in T . Figure 5. A C
2

2-graph in T .

Once the existence of a certain P
j
k- or C

j
k-graph in the plane was established,

and small examples have been found, one can be interested in embeddings on
surfaces of higher genus, provided the graphs have smaller order. This is what we
do in the next two sections.

2.2. Toroidal triangular lattices

We start with the definition of a toroidal triangular lattice.

We consider an (m+1)× (n+1) parallelogram (with (m+1)(n+1) vertices)
in T . By identifying opposite vertices on the boundary as indicated on Fig. 6, we
obtain the toroidal triangular lattice T T

m,n. It has mn vertices.

In the rest of the section we
present P1

k-subgraphs (for k = 1, 2) and

C
j
2-subgraphs (for j = 1, 2) of triangu-

lar toroidal lattices.

From Theorem 1 in [11] we de-
duce the existence of a spanning P1

1-
graph in T T

5,4 of order 20. But we can
do better.

Walther and Voss [13] and
Zamfirescu [15] independently exhib-
ited a P1

1-graph of order 12, see Fig.
7(a), which remained to date the small-
est known P1

1-graph.

Figure 6.

Theorem 3. There exists a spanning P1
1-subgraph of T T

4,3.

Proof. An embedding of the graph of Fig. 7(a) in T T
4,3 is shown in Fig. 7(b).
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Figure 7. A spanning P
1

1-graph in T
T
4,3.

The existence of a P1
2-graph in T T

10,10 follows from Theorem 2 in [11]. That
graph has 80 vertices.

Theorem 4. There exists a planar P1
2-graph in T T

7,8 of order 48.

Proof. It can easily be checked that the values y = 1, z = 0, and x = v = w = 2
satisfy the conditions of Lemma 1. The resulting graph G is a planar P1

2-graph of
order 48. Fig. 8 presents an embedding of G in the toroidal lattice T T

7,8.

Figure 8. A P
1

2-subgraph of T T
7,8. Figure 9. A spanning C

1

2-subgraph of

T
T
5,3.

Theorem 5. In T T
5,3 we have a spanning planar C1

2-graph.

Proof. Since the toroidal square lattice LT
5,3 (for a definition, see [11]) is a spanning

subgraph of T T
5,3, and in LT

5,3 we have a spanning planar C1
2-graph (see [11]), the

theorem follows, see Fig. 9.

Regarding C2
k-graphs, we present the following existence result.

Theorem 6. In T T
25,11 there exists a planar C2

2-graph of order 235.

Proof. To obtain a graph as required we use Lemma 3 once again. Now we take
y = 1, z = 0, x = 2, t = 7 and w = 1, which satisfy the conditions of the lemma,
and the resulting graph K is a planar C2

2-graph of order 235. Fig. 10 presents an
embedding of K in T T

25,11.
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Figure 10. A C
2

2-subgraph of T T
25,11.

2.3. Triangular lattices on Möbius strips

We define the lattice T M
m,n on the Möbius strip, according to Fig. 11(a) and

(b). When n is odd it has mn vertices and for an even value of n its order is
n

2
(2m+ 1).

Figure 11.

Theorem 7. There exists a planar P1
1-subgraph of T M

4,4 of order 17.

Proof. This follows from Theorem 6 in [11], and uses the smallest known planar
P1

1-graph (see Fig. 12(a)), which was found by Schmitz [10]. See Fig. 12(b).

Figure 12. A P
1

1-graph and an embedding of it in T
M
4,4 .

From Theorem 7 in [11] we know that there exists a planar P1
2-graph of order

112 in T M
10,14. The following result presents a smaller example.



454 Ayesha Shabbir, Tudor Zamfirescu

Theorem 8. In T M
8,11 we have a planar P1

2-graph of order 64.

Proof. Let us take y = 0, z = 1 and x = v = w = 3 in Lemma 1. The conditions
of the lemma are verified for these values and the resulting graph G is a planar
P1

2-graph of order 64. Fig. 13 illustrates an embedding of G in T M
8,11.

Figure 13. A P
1

2-subgraph of T M
8,11. Figure 14. A C

1

2-graph and an embedding of it

in T
M
4,3 .

Theorem 9. The lattice T M
4,3 contains a spanning C1

2-graph.

Proof. The graph used was found by Zamfirescu, see Fig. 14(a) and [6]. For
the embedding, see Fig. 14(b).

The existence of a C2
2-graph in a triangular lattice on the Möbius strip is

established in the next theorem.

Theorem 10. In T M
12,33 we have a planar C2

2-graph of order 235.

Proof. The graph K of Theorem 6 is also embeddable in T M
12,33, which is shown in

Fig. 15.

Figure 15. A C
2

2-subgraph of T M
12,33.
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We conclude this paper with the following open problem.

Problem. Do there exist P2
2-graphs in T ?

For P1
2-graphs in various triangular lattice networks, see [2].

Acknowledgements. The second author’s work was supported by a grant of the
Romanian National Authority for Scientific Research, CNCS – UEFISCDI, project
number PN-II-ID-PCE-2011-3-0533.

REFERENCES

1. D. P. Agrawal: Graph theoretical analysis and designs of multistage interconnection

networks. IEEE Trans. Comput., 32 (1983).

2. Y. Bashir, F. Nadeem, A. Shabbir: Highly non-concurrent longest paths in lattices.

Turkish J. Math., 40 (2016), 21–31.

3. A. Dino, T. Zamfirescu: On longest paths in triangular lattice graphs. Util. Math.,
89 (2012), 269–273.

4. T. Gallai: Problem 4. In: Theory of Graphs. Proc. Tihany 1966 (ed: P. Erdös & G.
Katona), Academic Press, New York, 1968, 362.

5. J. P. Hayes: A graph model for fault-tolerant computer systems. IEEE Trans. Com-
put., 34 (1985).
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