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Abstract
We prove the titular statement. This settles a problem

of Chvátal from 1973 and encompasses earlier results

of Thomassen, who showed it for 𝐾3, and Collier and

Schmeichel, who proved it for bipartite graphs. We also

show that for every outerplanar graph there exists a pla-

nar hypohamiltonian graph containing it as an induced

subgraph.
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1 INTRODUCTION

Consider a non-hamiltonian graph 𝐺. We call 𝐺 hypohamiltonian if for every vertex 𝑣 in 𝐺, the graph

𝐺 − 𝑣 is hamiltonian. In similar spirit, 𝐺 is said to be almost hypohamiltonian if there exists a vertex

𝑤 in 𝐺, which we will call exceptional, such that 𝐺 −𝑤 is non-hamiltonian, and for any vertex 𝑣 ≠ 𝑤

in 𝐺, the graph 𝐺 − 𝑣 is hamiltonian. For an overview of results on hypohamiltonicity till 1993, see

the survey by Holton and Sheehan [7]. For newer material that also includes work on the recently

introduced almost hypohamiltonian graphs, we refer the reader to [4,5,8,15] and the references found

therein.

In 1973, Chvátal [2] asked whether every graph may occur as the induced subgraph of some hypo-

hamiltonian graph. As Thomassen writes in [10], an important partial answer was provided by Collier

and Schmeichel [3] who proved that every bipartite graph is an induced subgraph of some hypohamil-

tonian graph. In [11], Thomassen constructs an infinite family of planar cubic hypohamiltonian graphs

and shows that certain edges can be added to these graphs such that the resulting graphs are hypo-

hamiltonian, as well. He uses this to give a simple proof of the aforementioned result of Collier and

Schmeichel.
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Earlier, Thomassen [9] had proven that hypohamiltonian graphs of girth 3 and 4 exist, i.e. that 𝐾3
and 𝐶4 can occur as induced subgraphs of hypohamiltonian graphs—see also [3]. This refuted the

conjecture of Herz et al. [6] that hypohamiltonian graphs have girth at least 5. Thomassen emphasizes

in [10] that even for 𝐾4 the answer to Chvátal's problem is unknown.

In this note, we prove that any graph can appear as an induced subgraph of some hypohamiltonian

graph.

2 AUXILIARY RESULTS

Consider a planar almost hypohamiltonian graph with a cubic exceptional vertex, for example the graph

𝐹 of order 36 (discovered by Goedgebeur and the first author [5], and independently by Wiener [13,

14]), with exceptional vertex 𝑣. Note that 𝐹 is the smallest known planar graph fit for the construction

to come—however, there might be smaller graphs usable that have not been found yet. In fact, there is

a smaller planar almost hypohamiltonian graph known (found by Wiener [14] and of order 31), but it

does not contain a cubic exceptional vertex, which is needed for the method to work.
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F I G U R E 1 The copy 𝐹 ′′ of 𝐹 . The exceptional vertex is marked 𝑣′′

Take two disjoint copies 𝐹 ′, 𝐹 ′′ of 𝐹 , with 𝑣′ ∈ 𝑉 (𝐹 ′) and 𝑣′′ ∈ 𝑉 (𝐹 ′′) corresponding to 𝑣. Put

𝑁(𝑣′) = {𝑜, 𝑏, 𝑐} and 𝑁(𝑣′′) = {𝑜′, 𝑑, 𝑎}. For an illustration of 𝐹 ′′, see Figure 1. Take 𝐹 ′ − 𝑣′, 𝐹 ′′ −
𝑣′′, identify 𝑜 with 𝑜′, and add the edges 𝑎𝑏 and 𝑐𝑑. The neighbors 𝑎, 𝑏, 𝑐, 𝑑 are chosen such that we

obtain the graph 𝐻 depicted in Figure 2. (The “half-edges” shown in Figures 2 and 3 end in vertices

outside 𝐻 .) Already Thomassen used such a construction in [9]. In what follows, we see 𝐹 ′ − 𝑣′ and

𝐹 ′′ − 𝑣′′ as subgraphs of 𝐻 . In particular, 𝑎, 𝑏, 𝑐, 𝑑 denote vertices in 𝐻 , as well.

Suppose an arbitrary but fixed graph 𝑊 has a hamiltonian cycle Λ, and let 𝑊 include the graph 𝐻

such that among the vertices of 𝐻 only 𝑎, 𝑏, 𝑐, 𝑑 are connected by edges with vertices in 𝑊 −𝐻 .

Lemma 1. Either 𝐻 ∩ Λ is (i) the union of two disjoint paths, one from 𝑎 to 𝑏 and the other from 𝑐 to
𝑑, or (ii) a path from 𝑎 to 𝑐, or (iii) a path from 𝑏 to 𝑑.

Proof. There is no hamiltonian path 𝔭 in 𝐻 between 𝑎 and 𝑏, since 𝔭 would have to use the edge

𝑑𝑐, yielding a hamiltonian path between 𝑎 and 𝑑 in 𝐹 ′′ − 𝑣′′ or a hamiltonian path between 𝑐 and 𝑏

in 𝐹 ′ − 𝑣′ (depending on when 𝔭 picks up 𝑜). Adding the path 𝑎𝑣′′𝑑 or 𝑏𝑣′𝑐, respectively, we get a

hamiltonian cycle in 𝐹 and a contradiction is obtained. Now assume there is a hamiltonian path 𝔮 in
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F I G U R E 2 We depict diagrammatically the graph 𝐻 shown above with the rectangle shown below
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F I G U R E 3 There are two essentially different ways to traverse the rectangle 𝑎𝑏𝑐𝑑: in the first situation (𝑎𝑏 ∪ 𝑐𝑑)

we traverse disconnectedly, while in the latter two (𝑎𝑐 or 𝑏𝑑) we traverse diagonally

𝐻 between 𝑎 and 𝑑. Then there exists a hamiltonian path between 𝑜 and 𝑏 in 𝐹 ′ or a hamiltonian path

between 𝑜 and 𝑐 in 𝐹 ′. As above, we are led to a contradiction since 𝐹 is non-hamiltonian.

If 𝐻 ∩ Λ is the union of two disjoint paths, one from 𝑏 to 𝑐, the other from 𝑑 to 𝑎, then one of

these paths must contain 𝑜. Assume w.l.o.g. the former to be that path. Considering it in 𝐹 ′ and

adding to it the path 𝑏𝑣′𝑐, we obtain a hamiltonian cycle in 𝐹 ′, a contradiction since 𝐹 ′ is almost

hypohamiltonian. ■

In case (i) we say that 𝐻 is disconnectedly traversed, while if case (ii) or (iii) occurs 𝐻 is called

diagonally traversed. In cases (ii) and (iii) of Lemma 1, when 𝐻 is diagonally traversed, we say more

precisely that 𝐻 is 𝑎 − 𝑐 and 𝑏 − 𝑑 traversed, respectively.

Consider the graph 𝐺∗ of Figure 4. There, 𝐴, 𝐵, 𝐶 , ..., 𝑄 are graphs isomorphic to 𝐻 . The

length of the cycle Γ = 𝑤𝑦𝑦∗ … 𝑦′ equals the number of copies of 𝐻 used to construct 𝐺∗, i.e.

|{𝐴,𝐵, 𝐶,… , 𝑄}| = |𝑉 (Γ)|. Γ is included in an arbitrary hamiltonian graph 𝑍 with the hamiltonian

cycle Γ.

Lemma 2. The graph 𝐺∗ is not hamiltonian.

Proof. Suppose 𝐺∗ has a hamiltonian cycle Λ. Obviously, not all copies of 𝐻 are disconnectedly

traversed. Suppose 𝐴 is 𝑎 − 𝑐 traversed. Then Λ quickly visits 𝑦, as it must continue with the path

𝑐𝑢𝑥𝑦. If 𝐵 is also diagonally traversed, then analogously Λ quickly visits 𝑦, and Λ is not hamiltonian.

Hence, by Lemma 1, 𝐵 is disconnectedly traversed. Thus 𝑥𝑦𝑧 ⊂ Λ.
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F I G U R E 4 The graph 𝐺∗

Necessarily, 𝑄 is 𝑏 − 𝑑 traversed. So, analogously, 𝑥′𝑦′𝑧′ ⊂ Λ. Continuing this reasoning, we see

that no edge of 𝑍 is in Λ. Indeed, all other copies of 𝐻 are disconnectedly traversed, so 𝑥∗𝑦∗𝑧∗ ⊂ Λ
etc. Thus 𝑤 ∉ Λ, and a contradiction is obtained. ■

3 MAIN RESULTS

A graph is outerplanar if it possesses a planar embedding in which every vertex belongs to the

unbounded face. Note that a graph is outerplanar if and only if it does not contain a graph homeo-

morphic to 𝐾4 or 𝐾2,3, see [1]. We now present our main theorem.

Theorem 1. Every graph is contained in some hypohamiltonian graph as an induced subgraph.

Proof. Let 𝐺 be an arbitrary graph. In the remainder of this proof, all notation refers to notions intro-

duced in Section 2. Choose 𝑍 to be Γ to which 𝐺 is added in such a way that the finite sequence of its

vertices is placed at every second vertex of Γ. (So, the length of Γ is 2|𝑉 (𝐺)|.) By Lemma 2, 𝐺∗ is not

hamiltonian. It remains to provide a hamiltonian cycle in 𝐺∗ − 𝑠, for every vertex 𝑠 in 𝐺∗.

A hamiltonian cycle of𝐺∗ −𝑤 is shown in Figure 4. By changing 𝑢𝑥𝑦 into 𝑢𝑤𝑦we get a hamiltonian

cycle in 𝐺∗ − 𝑥.

Due to the symmetries, it remains to show that 𝐺∗ − 𝑠 is hamiltonian for any 𝑠 ∈ 𝑉 (𝐹 ′). Consider

𝑠 ∈ 𝑉 (𝐹 ′). There is a hamiltonian path in 𝐹 ′ − 𝑠 joining 𝑏 to 𝑐, or 𝑐 to 𝑜, or 𝑜 to 𝑏. In the second case

(𝑐 to 𝑜), we change the route of Λ inside the subgraph spanned by 𝑉 (𝐴) ∪ {𝑥, 𝑦, 𝑢, 𝑤} as shown in

Figure 5 (a), and in the third case (𝑜 to 𝑏), we change the route as depicted in Figure 5 (b). In the first

case, if 𝑠 is the central vertex 𝑜 of 𝐴, we obtain a hamiltonian cycle of 𝐺∗ − 𝑜 as pictured in Figure 6.

For other positions of 𝑠 ∈ 𝑉 (𝐹 ′), see Figure 7. ■

From the above proof, we immediately obtain the following.
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F I G U R E 5 The route of Λ inside the subgraph spanned by 𝑉 (𝐴) ∪ {𝑥, 𝑦, 𝑢, 𝑤}
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F I G U R E 6 A hamiltonian cycle of 𝐺∗ − 𝑜
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F I G U R E 7 A hamiltonian cycle of 𝐺∗ − 𝑠

Theorem 2. If𝐺 is an outerplanar graph, then there exists a planar hypohamiltonian graph containing
𝐺 as an induced subgraph.

Theorem 2 cannot be extended to include all planar graphs due to an elegant argument of Thomassen,

who proves in [11] that by Whitney's Theorem [12]—which states that planar triangulations without

separating triangles are hamiltonian—, a planar triangulation cannot be an induced subgraph of any pla-
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nar hypohamiltonian graph. However, by Theorem 1, any planar triangulation is very well an induced

subgraph of some (necessarily nonplanar) hypohamiltonian graph.

Thomassen's results from [11] can be used to describe certain bipartite planar graphs that can be

subgraphs of planar hypohamiltonian graphs. He goes on to write: “Maybe this is the case for every

bipartite planar graph.” This question remains unresolved, as for instance 𝐾2,3 is planar yet neither a

planar triangulation, nor among Thomassen's aforementioned planar bipartite graphs, nor an outerpla-

nar graph.

Theorem 3.

(i) There exists a hypohamiltonian graph of order 20𝑛 containing 𝐾𝑛 as an induced subgraph. In
particular, there exists a hypohamiltonian graph of order 80 containing 𝐾4.

(ii) There exists a planar hypohamiltonian graph of girth 3 and order 216.
(iii) For an outerplanar graph 𝐺 of order 𝑛 there exists a planar hypohamiltonian graph of order 144𝑛

containing 𝐺 as an induced subgraph.

Proof. For (i), we may modify the construction from the proof of Theorem 1 by using every vertex of

Γ (since 𝐺 is in this case a complete graph). Thus, here the length of Γ is |𝑉 (𝐾𝑛)| = 𝑛. Furthermore,

we use the Petersen graph instead of the graph from Figure 1. It is now easy to verify that the order of

𝐺∗ is indeed 20𝑛.

The proof of (ii) is the same as the proof of (i), but we replace Petersen's graph by the plane almost

hypohamiltonian graph shown in Figure 1. Here, 𝑛 = 3.

In (iii), the length of Γ is 2𝑛. We use 2𝑛 copies of the graph from Figure 2, which is of order 69. We

obtain a graph of order ((69 + 4) ⋅ 2𝑛) − 2𝑛 = 144𝑛. ■

Part (ii) improves a bound given in [4, Corollary 3.4]. We end this note with the following.

Problem. Characterize those planar graphs that occur as induced subgraphs of planar hypohamiltonian

graphs.
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