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Critical Points on Convex Surfaces

Tudor Zamfirescu

Abstract. The cut locus C(x) of some point x on an open convex surface is
a forest and has measure zero. However, we show here that topologically
it can be quite large, namely residual. All critical points with respect to x
belong to C(x). We also show that, irrespective of how large C(x) might
be, there is a Jordan arc in C(x) containing all critical points.
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1. Introduction

Let S be a convex surface, which is by definition the boundary of a convex set
with non-empty interior in the 3-dimensional Euclidean space, but is neither
a plane, nor the union of two planes. If S is compact, then it is said to be
a closed convex surface. If S is unbounded, then it is called an open convex
surface.

We denote by ρ the intrinsic metric of S and, for x ∈ S, let ρx : S → R

be defined by ρx(y) = ρ(x, y). In this paper we investigate the critical points
of x on S with respect to this function ρx.

An important role will be played by the cut locus C(x) of x, defined as
the set of all y ∈ S such that no segment, i.e. shortest path, from x to y can be
extended as a segment beyond y. The cut locus was introduced by Poincaré
[5] in 1905. Among other things, it is known that C(x) is a forest, i.e. a union
of pairwise disjoint trees, including the cases of a single tree, a point, and the
empty set. For an introduction to the cut locus, see for example [4].

For any tree, a point of the tree is called an extremity if its deletion does
not disconnect the tree. Let E(x) denote the set of all extremities of trees
which are components of C(x).

http://crossmark.crossref.org/dialog/?doi=10.1007/s00025-018-0777-x&domain=pdf


19 Page 2 of 8 T. Zamfirescu Results Math

A point y is called critical with respect to x (and ρx) if for any tangent
direction τ at y there exists a segment from y to x with direction σ at y such
that ∠τ, σ ≤ π/2 (see, for instance, [3], p. 2). For example, all relative maxima
of ρx and all relative minima of ρx|C(x)\E(x) are critical points. Let Q(x) be the
set of all critical points with respect to x. It is easily seen that Q(x) ⊂ C(x).

Let S be the space of all convex surfaces in R
3. Its subspace Sc of all closed

convex surfaces, endowed with the well-known Pompeiu–Hausdorff metric, is
a Baire space.

Contrary to the case of Riemannian surfaces, on an arbitrary convex
surface the cut locus may be residual in the surface. In fact, we proved in 1982
that this holds for most closed convex surfaces, in the sense of Baire categories,
that is for all surfaces in Sc except those in a first category subset [8].

With possibly so large cut loci, it is surprising that the distribution of
the critical points with respect to x is always very nice: they all lie on a single
Y-tree, i.e. a tree with at most 3 extremities, included in C(x), except for the
case of boundaries of tetrahedra of a very special type. This result, proven in
[10] for closed surfaces, will be extended here to all convex surfaces; it even
takes a stronger form in the case of open surfaces: the Y-tree is a Jordan arc,
or a point, or empty.

For related work on farthest points in the case of closed convex surfaces,
see [9]. Further research on the location of critical points can be found in
[2,7,11].

An arc J ⊂ S from a to b will be called obtuse (non-acute) if, for any
point c ∈ J\{a, b}, ∠acb > π/2 (∠acb ≥ π/2).

In the following, Tx denotes the space of all unit tangent vectors at x ∈ S.
For M ⊂ S, clM means the topological closure of M . If σ is a segment,

λσ denotes its length. For any Borel set M ⊂ S, the Gauß image of M is the
set of all outer normal unit vectors at points of M , and the curvature ω(M)
of M is the measure on the unit sphere of that Gauß image (see [1], p. 207).

For x, y ∈ R
3, xy denotes the line-segment from x to y, and xy the line

containing x, y.

2. Residual Cut Loci

A point in a convex surface S which is not interior to any segment is called an
endpoint of S. Let E(S) be the set of endpoints of S.

Since E(S) ⊂ C(x) for every x ∈ S, to show that there are open convex
surfaces all cut loci of which are residual, it suffices to show that there exist
such surfaces S with E(S) residual in S. Exceptionally, we present the result
of this section in arbitrary dimension.

We shall use the following mentioned result.

Lemma I [8]. On most closed convex hypersurfaces, most points are endpoints.
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Theorem 0. There exist open convex hypersurfaces S ⊂ R
d with E(S) residual

in S.

Proof. Let P ⊂ R
d be the hyperparaboloid

xd = x2
1 + x2

2 + · · · + x2
d−1.

For i = 1, 2, 3, . . . , take the hyperplane Hi of equation xd = i, the halfspace
H−

i defined by xd ≤ i, and the halfspace H+
i defined by xd ≥ i.

Let Ci be the intersection of all halfspaces containing the origin, bounded
by hyperplanes tangent to P at the points of P ∩Hi (i = 1, 2, 3, . . .). Consider
the convex body

Di = Ci ∩ H+
i−3 ∩ H−

i+3 (i = 1, 2, 3, . . .),

and put D0 = R
d. The intersection Di−1 ∩ Di ∩ Di+1 is another convex body,

and Fi = Di−1 ∩ (bdDi) ∩ Di+1 is a piece of a cone (i = 1, 2, 3, . . .).
By Lemma I, we can choose D∗

i to be a convex body with E(bdD∗
i )

residual in bdD∗
i , close to Di (in the sense of Pompeiu–Hausdorff distance).

Then

F ∗
i = D∗

i−1 ∩ (bdD∗
i ) ∩ D∗

i+1

also has residually many endpoints and is close to Fi; so, the open convex
surface

⋃∞
i=1 F ∗

i has the desired property. �

3. Auxiliary Material

We recall Alexandrov’s comparison theorem, the convex version of the Pizzeti–
Toponogov comparison theorem.

Lemma C [1]. If a triangle on a convex surface with segments as sides has
angles α, β, γ, and a triangle in R

2 with the same side-lengths has respective
angles αE , βE , γE, then α ≥ αE, β ≥ βE, γ ≥ γE.

Lemma O. Let S be a convex surface, x ∈ S, and J ⊂ C(x) a Jordan arc
joining critical points a, b. If for some segments from x to a and b their angle
at x is at most (less than) π/2, then J is non-acute (obtuse).

Proof. Choose the two (possibly coinciding) segments from x to a determining
the domains A,A∗ (with A possibly void) such that A∗ ⊃ J\{a} and the angle
α at a between the segments towards A∗ is minimal.

From the definition of a critical point it follows that α ≤ π. Similarly,
we obtain segments from x to b and domains B,B∗ with analogous properties.
The hypothesis implies that one of these segments from x to a and one of those
from x to b make an angle γ ≤ π/2. (The case of strict inequality is treated
analogously.)

Let y be an arbitrary point of J different from a and b. Suppose, on the
contrary, that for some segments σay, σby, from a and b to y, one of the angles
δ1, δ2 at y, say δ2, is less than π/2.
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Consider the points aE , bE , xE , yE ∈ R
2 such that the line xEyE separates

aE from bE , the 3-point set {aE , xE , yE} is isometric to {a, x, y} ⊂ S and
{bE , xE , yE} is isometric to {b, x, y} ⊂ S.

Let αE , γE , βE , δE be the respective angles of the quadrilateral aExEbEyE .
The arc σay ∪ σby divides S\(A ∪ B) into two quadrilateral domains

Q1, Q2 with angles α1, β1, γ1, δ1 and α2, β2, γ2, δ2 at a, b, x, y respectively. We
have αi ≥ αE , βi ≥ βE , γi ≥ γE , δi ≥ δE (i = 1, 2). To see this, it suffices to
join y with x by two segments, one through each quadrilateral domain (this is
known to be possible [1]), and apply Lemma C to the four geodesic triangles.
Since δ2 < π/2, we must have δE < π/2, whence αE + βE + γE > 3π/2. Since
α1 +α2 = α ≤ π and β1 +β2 ≤ π, we must also have αE ≤ π/2 and βE ≤ π/2,
hence γE > π/2. This implies γ1 > π/2 and γ2 > π/2. Since γ equals γ1 or γ2,
a contradiction is obtained. �
Lemma B. For any convex surface S and point x ∈ S, the set Q(x) is bounded.

Proof. Of course, the lemma is meaningful only for open surfaces, so assume
S is an open convex surface. Now, suppose Q(x) contains the unbounded
sequence {qn}∞

n=1. With at most one exception, each of these points qn has
curvature less than π and is therefore joined to x by at least two segments.
We choose σn, σ′

n among them such that the bounded domain determined by
σn ∪ σ′

n be maximal. Let τn, τ ′
n be the directions of σn, σ′

n at x. By selecting
a subsequence if necessary, we may assume that the sequences of directions
{τn}∞

n=1 and {τ ′
n}∞

n=1 converge to, say, τ, τ ′ ∈ Tx, respectively.
Let ε ∈ (0, π/10). For n large enough, ∠τn, τ < ε/2.
Let σmn be a segment from qn to qm (n 
= m).
Consider the points x, qn, qm ∈ R

2 with ‖x − qn‖ = λσn, ‖x − qm‖ =
λσm, ‖qn − qm‖ = λσnm. For m > n large enough, λσm becomes as large as
necessary for ∠x qn qm > π − ε to hold. This implies that ∠σn, σnm > π − ε
and ∠σ′

n, σnm > π − ε. Thus, no segment from x to qn makes an angle at most
π/2 with σnm, which contradicts qn ∈ Q(x). �

4. The Arc Containing Q(x) on Open Convex Surfaces

Let S be an open convex surface, and x ∈ S. In the forest C(x) with its possibly
infinitely many trees and uncountably many endpoints, we shall single out the
antipodal arc of x, an arc in C(x) entirely containing Q(x).

Theorem 1. For any open convex set S and point x ∈ S, if Q(x) contains more
than one point, then there is a single Jordan arc Jx joining critical points, lying
in C(x) and containing Q(x).

Proof. Every pair of critical points belonging to the same tree in C(x) can
be uniquely joined by a Jordan arc. We do this for all such pairs of points.
The union of all these arcs is a subforest F of C(x), which, by Lemma B, is
bounded, because the points of F farthest from x lie in Q(x).
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Suppose some component T of F has at least three extremities a, b, c.
Then these are critical points; from the definition it follows that there are
(possibly coinciding) segments from x to a determining two domains A,A∗,
one of which, say A∗, contains T\{a} and has at a an angle α ≤ π, and the
other having at x an angle αx ≥ 0, but being possibly empty (the case αx = 0).
Similarly, we obtain segments from x to b and c, and domains B,B∗ and C,C∗

with analogous properties. Of course, at most one of the domains A,B,C, say
C, is unbounded. By respecting elementary intersection properties of segments
(see [1]), either A ⊂ B, or B ⊂ A, or A ∩ B = ∅. But, clearly, A 
= B. Since
T ∩ A = T ∩ B = ∅, but a, b ∈ T , the first two possibilities are excluded for
non-empty A, respectively B. So, A ∩ B = ∅.

We have

ω(A ∪ {a}) = 2π − α + αx ≥ π + αx, ω(B ∪ {b}) ≥ π + βx.

Therefore

ω(S) ≥ ω(A ∪ {a}) + ω(B ∪ {b}) ≥ 2π.

Since S is open, we must have the equality case, which implies αx = βx =
0, whence A = B = ∅ and ω(S\{a, b}) = 0. Hence S has vanishing curvature
except at two points, which is impossible for non-degenerate surfaces.

Hence, every component of F has at most two extremities. Suppose F
is disconnected, choose as above the bounded domain A corresponding to an
extremity of one component of F , and choose the bounded domain A� corre-
sponding to an extremity of another component of F . Then A ∩ A� = ∅, and
the same contradiction as before is obtained. In conclusion, F is a single tree
with at most two extremities a, b. This means that F is a Jordan arc Jx joining
a to b. �

We call Jx the antipodal arc of x on S.

Lemma G. Let uv be a line-segment included in the convex surface S ⊂ R
3.

Let σ be a segment of S from u to w orthogonal at u to uv, and assume that,
for every t ∈ σ, the line-segment uv + t−u lies in S. Then σ is a line-segment
or ω({u}) < π.

Proof. Let σ′ be a segment of S from v to w. Consider the surface S′ =
bdconv(σ ∪ σ′). At u, the Gauß image of S is included in the Gauß image
of S′. Assume σ is not a line-segment. Since S is not degenerate, σ and uw
make a non-vanishing angle ν at u. Then the curvature of {u} in S′ equals
2π − (π

2 + π
2 + ν) < π, which a fortiori yields ω({u}) < π on S. �

Theorem 2. On any open convex surface S, if x ∈ S and cardQ(x) > 1, then
Jx is obtuse and has at least one extremity b joined to x by segments opposite
at b. The latter assertion remains true if Q(x) reduces to a single point {b}.
Proof. We use the notation of Lemma O; in particular, let J = Jx join a to b.

One of the domains A,B, say B, is unbounded.
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Consider the unbounded domain B′ ⊂ B with the union of two segments
from x to b as boundary, such that its angle β′ at b be minimal.

If β′ < π, then ρx(z) < ρx(b) for points z ∈ C(x) ∩ B′ close to B′. This
yields that the absolute minimum of ρx on C(x) ∩ clB′ lies in B′, which is
absurd, being a critical point. Hence, β′ ≥ π. Since b ∈ Q(x), β′ ≤ π. Thus,
β′ = π. This guarantees that Jx admits two segments from x to b opposite
at b.

We now prove that Jx is obtuse. Suppose, on the contrary, that for some
point y of Jx different from a and b and some segments σa, σb from a and b to
y, one of the angles δ1, δ2 between them at y, say δ2, is at most π/2.

The arc σa ∪ σb divides S\(A ∪ B) into two quadrilateral domains
Q1, Q2 with angles α1, β1, γ1, δ1 and α2, β2, γ2, δ2 at a, b, x, y respectively. By
Lemma O, γ1 ≥ π/2 and γ2 ≥ π/2.

Similarly, σa∪σb divides S\(A∪B′) into two quadrilateral domains Q′
1, Q

′
2

with angles α1, β
′
1, γ

′
1, δ1 and α2, β

′
2, γ

′
2, δ2 at a, b, x, y respectively. Clearly,

γ′
1 + γ′

2 ≥ γ1 + γ2 ≥ π.

Let γ∗ be the angle of S\B′ at x. Then

ω(S\clB′) = π + γ∗,

whence γ∗ ≤ π. This can happen only if A = ∅ and γ′
1+γ′

2 = γ1+γ2 = π. Then
γ∗ = π, ω(S\clB′) = 2π, ω(clB′) = 0, and γE = π/2. (Recall the notation in
the proof of Lemma O.) It follows further that αE = βE = π/2, and δE = π/2.
Hence,

α1 = α2 = β1 = β2 = γ1 = γ2 = π/2

and δ2 = π/2. Consequently, ω({a}) = π and ω(Q′
2) = 0.

Because ω(S) = 2π and ω(clB′) = 0, clB′ must be cylindrical, and if
the segments joining x to b were line-segments then S would be degenerate.
Hence, clB′ is a non-planar piece of a cylinder. Since ω(Q′

2 ∪ clB′) = 0 too,
Q′

2 ∩ clB′ contains no vertex, and Q′
2 ∪ clB′ is a larger non-planar piece of a

cylinder, a half-line (generator) of which contains the segment (there is only
one because A = ∅) from x to a. Also, σa is congruent to one of the segments
from x to b; hence, σa is not a line-segment. Since α1 = π/2, Lemma G implies
ω({a}) < π, and a contradiction is obtained. �

5. Non-acute Arcs in the Y-tree Containing Q(x)

On any closed convex surface S ⊂ R
3, each cut locus is a tree. We have shown

in [10] that in this case all critical points belong to a Y-tree, or else S is a
tetrahedral surface of a special type. The latter case will be tacitly excluded
in the rest of this paper.
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Theorem 3. Let S be a convex surface and J ⊂ C(x) be an arc joining two
points critical with respect to x. If a ∈ J is an additional critical point, then
at least one of the two arcs into which a decomposes J is non-acute.

Proof. If b, c are the extremities of J , let σb be a segment from x to b, σc a
segment from x to c, and σa, σ′

a two segments from x to a separating together
b from c (see [5] or [6]). Let γb be the angle between σa and σb, and γ′

b the
angle between σ′

a and σb. Also, consider the analogous angles γc ad γ′
c.

Since

γb + γ′
b + γc + γ′

c ≤ 2π,

one of these angles, say γb, is at most π/2. Now, by Lemma O, the subarc of
J joining a to b is non-acute. �

On closed convex surfaces the antipodal tree Yx of x, being a Y-tree, has
at most one ramification point.

Theorem 4. If S is a closed convex surface, x ∈ S, and Yx has a critical
ramification point y, then at least two of the three arcs into which y decomposes
Yx are non-acute.

Proof. Let a, b, c be the endpoints of Yx. One of the Jordan arcs in Yx from y
to a and from y to b, say the second, is non-acute, by Theorem 3. Similarly,
one of the arcs from y to a and from y to c is non-acute. �

Theorem 4 assumes that the Y-tree Yx has a critical ramification point.
Is this possible?

Remark. For the ramification point y of Yx to be critical with respect to x,
it is sufficient that the degree of y in C(x) is 3 and no angle formed by the
branches of Yx at y is less than π/2.

This can be seen in the following way. There must exist precisely three
segments from x to y forming at y the angles α1, α

′
1, α2, α

′
2, α3, α

′
3 with the

neighbouring branches of Yx, respectively, where α′
1 = α2, α′

2 = α3, α′
3 = α1.

These equalities, as well as the existence of directions of the branches of Tx at
y have been established in [5,6].

Thus, α1 +α′
1 ≥ π/2 implies α′

3 +α1 +α′
1 +α2 ≥ π, whence α′

2 +α3 ≤ π.
This and the other two analogous inequalities guarantee that y ∈ Q(x).
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