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Abstract. If every k-membered subfamily of a family of plane convex bod-
ies has a line transversal, then we say that this family has property T (k). We
say that a family F has property T −m, if there exists a subfamily G ⊂ F with
|F − G| ≤ m admitting a line transversal. Heppes [7] posed the problem whether
there exists a convex body K in the plane such that if F is a finite T (3)-family of
disjoint translates of K, then m = 3 is the smallest value for which F has property
T −m. In this paper, we study this open problem in terms of finite T (3)-families
of pairwise disjoint translates of a regular 2n-gon (n ≥ 5). We find out that, for
5 ≤ n ≤ 34, the family has property T − 3; for n ≥ 35, the family has property
T − 2.

1. Introduction

This paper deals with a problem of Heppes on transversal properties of
disjoint translates which was motivated by an old (disproved) conjecture of
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Katchalski and Lewis. The problem asks about the existence of a planar
convex body K with the following properties.

(1) If F is a family of disjoint translates of K in which every three mem-
bers admit a line transversal, then there is a line that intersects all but at
most 3 members of F .

(2) There exists a family F of disjoint translates of K in which any three
members admit a line transversal, but any line misses at least 3 members
of F .

If K exists, we call such a body a Heppes body.
Heppes’ problem is natural for the following reasons: On the one hand,

in a series of papers, Heppes showed that the unit disk misses Property (2),
while Holmsen showed that the parallelogram fails enjoying Property (1).

In this paper we make some progress on Heppes’ problem. We consider
the case when the convex set K is the regular 2n-gon and show that

(A) If n ≥ 35, then K does not satisfy Property (2).
(B) If 5 ≤ n ≤ 34, then K does satisfy Property (1).
The result (A) definitely rules out the regular 2n-gon K as a Heppes

body, for sufficiently large n, while the result (B) states that for n between 5
and 34, K might possibly be a Heppes body, it is a Heppes body candidate.
Also, (A) can be considered as a strengthening of the result of Heppes, as
the regular 2n-gon tends to the disk as n tends to infinity.

Our general approach is very reminiscent of the work by Heppes, who
showed that the unit disk fails to enjoy Property (2).

A line transversal to a family of convex bodies is a (straight) line having
a non-empty intersection with every member of the family. We also say that
this family has property T . A family F of at least k convex bodies is a T (k)-
family if any subfamily of F with k members has property T . Alternatively,
we also say that this family has property T (k).

We say that a family F has property T −m if there exists a subfamily
G ⊂ F with |F − G| ≤ m enjoying property T .

Over the years, considerable effort has been devoted to finding some con-
ditions on the finite family F of disjoint translates of a convex body such
that, for some integer n, T (n) would imply T .

Danzer [2] proved that every finite T (5)-family of disjoint congruent discs
in the plane has property T . Grünbaum [4] proved that every finite T (5)-
family of disjoint translates of a rectangle has property T . Based on the
above results, Grünbaum [4] formulated the conjecture below concerning
families of pairwise disjoint translates of a convex body.

Conjecture 1. Let F be a finite family of pairwise disjoint translates

of a convex body K. If F has property T (5), then it has property T .

Katchalski [10] proved that when the above family has property T (128),
this family has property T . Tverberg [12] gave the proof for Conjecture 1.
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Tverberg’s result is sharp in the sense that 5 cannot be replaced by 4.
However, if the family has only property T (3), then there exist interesting
consequences. Katchalski and Lewis [11] proved the following.

Theorem 1. There exists a constant m ∈ Z
+ such that every finite T (3)-

family of disjoint translates of a convex body in the plane has property T −m.

Katchalski and Lewis [11] proved that m < 192π, and conjectured that
m = 2. Afterwards many authors worked on improving the upper bound for
m or confirming the smallest value of m for a given convex body, that is,
dealing with the so-called Katchalski–Lewis transversal problem.

Due to the standard reductions described by Tverberg [12], we may as-
sume that K is a centrally symmetric convex body. For families of discs,
Heppes [6] proved the following.

Theorem 2. If F is a T (3)-family of n > 5 disjoint congruent discs,
then F has property T − 2.

On the other hand, by a construction of Bezdek [1], we have the following
lower bound.

Theorem 3. To every n > 5, there exists a T (3)-family of n disjoint

congruent discs without property T − 1.

Theorems 2 and 3 imply that m = 2 is the smallest value such that every
finite T (3)-family of disjoint congruent discs has property T −m.

For families of squares, Holmsen [7,8] found out the following.

Theorem 4. The smallest value of m, for which every finite T (3)-family

of disjoint translates of a square has property T −m, is 4.

Theorems 2–4 together show that, while the smallest possible number m
does not depend on the size of the finite family, it does depend on the shape
of the convex body. Since in a sense the discs are the roundest and the
squares the least round centrally symmetric convex bodies, Heppes [6] posed
the problem whether there exists a centrally symmetric convex body K in
the plane such that every finite T (3)-family of disjoint translates of K has
property T − 3, and moreover, m = 3 is the smallest value for which the
family has property T −m.

In the present paper, we probe into the above open problem and deter-
mine an upper bound for the Katchalski–Lewis transversal problem about
finite T (3)-families of disjoint translates of a regular 2n-gon.

Theorem 5. Let F be a finite T (3)-family of disjoint translates of a

regular 2n-gon, where n ≥ 5. The following statements hold :
(1) F has property T − 3 for 5 ≤ n ≤ 34;
(2) F has property T − 2 for n ≥ 35.
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2. Notation

Throughout this paper the convex body Rn(a) will be a regular 2n-
gon in R

2 centered at a, the circumcircle of which has diameter 1. Put
Un(a) = 2Rn(0) + a, where 0 is the coordinate origin. Denote by C(a) the
circumcircle of Rn(a), then put D(a) = convC(a), U(a) = 2D(0) + a. De-
note by C◦(a) the circle inscribed in Rn(a), then put D◦(a) = convC◦(a),
U◦(a) = 2D◦(0) + a.







Fig. 1: Width of K in the direction d

The width wd(K) of a convex body K in the direction d is the minimum
distance between the two parallel supporting lines of K that are perpen-
dicular to d and contain K between them (see Fig. 1). The minimum of
wd(K) taken over all possible directions d is the width of the convex body

K. The Rn-width ofK in the direction d is wRn

d (K) = wd(K)/wd(Rn), where
Rn = Rn(0).

A transversal strip of a family F of discs with diameter 1 is a closed par-
allel strip intersecting all members of F . Let w(F) > 0 denote the width of a
narrowest transversal strip S of the family F . Then w(F) + 1, w(F) + 2 are
the smallest widths of a strip parallel to S covering all centers, respectively
all discs.

Let K(0) be a centrally symmetric convex body centered at the ori-
gin 0, and K(a) = K(0) + a,K(b) = K(0) + b be two disjoint translates of
K(0). The sheaf of K(a) and K(b) is the union of all common transver-
sal lines of {K(a),K(b)}. This is a simply connected unbounded domain,
the boundary of which lies in the union of the four common supporting
lines of K(a) and K(b). It is denoted by ΣK(a, b) (see Fig. 2). The locus
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Fig. 2: ΣK(a, b)





Fig. 3: Σc

K(a, b)

of the centers of the translates of K(0) which have non-empty intersection
with the sheaf ΣK(a, b) is called the center sheaf belonging to a and b,
which is denoted by Σc

K(a, b). Two of the (at most) six lines generating the
boundary of the center sheaf are non-separating supporting lines to both con-
vex bodies K ′(a) and K ′(b), where K ′(a) = 2K(0) + a,K ′(b) = 2K(0) + b;
the other four are supporting lines of one of the two enlarged convex bod-
ies, passing through the center of the other one (see Fig. 3). Denote by
Σc
K(p1p2, q1q2) =

⋃

a∈p1p2,b∈q1q2 Σ
c
K(a, b) the generalized center sheaf belong-

ing to p1p2 and q1q2, where p1p2 and q1q2 denote the line-segments on the
x- and y-axis connecting p1 and p2, q1 and q2, respectively.

For a, b ∈ R
2, ab denotes the line-segment from a to b, ab is used for

the line through the points a and b, and d(a, b) = �a− b� for the Euclidean
distance between a and b. For p ∈ R

2, we write p = (xp, yp).

3. Proof of Theorem 5

In order to prove Theorem 5, we shall make use of the following lemma
in [3].

Lemma 1. Every finite T (3)-family of congruent discs with diameter 1
admits a transversal strip of width less than 0.67, if the distance between the

centers of any two members of the family is greater than 0.95.

With every member of the finite family F of pairwise disjoint translates
of the regular 2n-gon Rn(0), we can associate a circumscribed disc of diam-
eter 1. In this way, we obtain a family F ′ of discs, and F ′ inherits property
T (3) from F . Of course, the centers of the discs are the same as the centers
of the 2n-gons.

Due to the disjointness condition of F , the distance between the centers
of any two members of F is at least cos π

2n > 0.95 for n ≥ 5. By Lemma 1,
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the width of the narrowest transversal strip of F ′ is less than 0.67, hence
there exists a narrowest strip Sc covering all centers of discs in F ′, of width
w < 1.67. We suppose that Sc is horizontal.

We can assume that F satisfies the following conditions (see [5], [6]).
(i) no three 2n-gons have a common supporting line;
(ii) no three centers are the vertices of a right triangle;
(iii) no pair of 2n-gons have a common supporting line at angle τ or −τ

to the x-axis, where

(∗) τ =

{

arccos( 1
2.4 · cos

π
10 ) for 5 ≤ n ≤ 34,

arccos( 1
2.34 · cos

π
70) for n ≥ 35.

Because Sc is narrowest, there exist three basic centers of F ′(i.e. F) on
the boundary of the strip Sc such that two centers b and c lie on one of the
boundary lines and are strictly separated from each other by the vertical
line through the third center a, lying on the other boundary line of Sc. In a
canonically chosen coordinate system, these three points are a(0, α), b(β, 0)
and c(γ, 0), α = −w < 0, β > 0, γ < 0.

In the following, let the regular 2n-gon Rn(0) centered at the origin 0
be a member of the family F . The vertices of Rn(0) are labeled o0, o1,
. . . , o2n−1 in clockwise order from the positive y-axis (see Fig. 4). Let θ
denote the angle of the positive y-axis and 0o0, thus θ ∈ [0, π

n
). For any

2n-gon Rn(m) = Rn(0) +m ∈ F , the vertices of Rn(m) corresponding to
the vertices of Rn(0) are labeled m0, m1, . . ., m2n−1, respectively.

















 







Fig. 4: A regular 10-gon R5(0)
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The width of Rn(0) in the vertical direction v is:

wv(Rn(0)) =

�

cos θ, θ ∈ [0, π
2n ],

cos(π
n
− θ), θ ∈ ( π

2n ,
π
n
).

We only need to prove that Theorem 5 holds for w > wv(Rn(0)). In
fact, for w ≤ wv(Rn(0)), the family F has a common horizontal transver-
sal line, so Theorem 5 holds. By computer simulation in Maple, the in-
terval (wv(Rn(0)), 1.67) is divided, to prove Theorem 5, as (wv(Rn(0)),̟)
∪ [̟, 1.67), where ̟ = 1.2 if 5 ≤ n ≤ 34, ̟ = 1.17 if n ≥ 35.

A transversal line of all but 3 (or 2) members of F for 5 ≤ n ≤ 34 (n ≥ 35)
is called a candidate transversal line. The 2n-gons not met by the candidate
transversal line are called exceptional 2n-gons and their centers exceptional
centers.

3.1. Proof of Theorem 5 for w ∈ [̟, 1.67). Let ζ be the length
of the intersection of Rn(0) with the x-axis. We have

(1) if n ≡ 0 (mod 2), then

ζ =
cos π

2n

cos( π
2n − θ)

, where θ ∈
�

0,
π

n

�

;

(2) if n ≡ 1 (mod 2), then

ζ =







cos π

2n

cos θ , θ ∈ [0, π
2n ],

cos π

2n

cos(π

n
−θ) , θ ∈ ( π

2n ,
π
n
).

The diameter of the inscribed disc D◦(0) of Rn(0) is ι = cos π
2n .

Assume β ≤ |γ|. The disjointness hypothesis on the 2n-gons implies

β − γ > ζ ≥ ι. Since β ≤ −γ, we obtain that γ ≤ − ζ
2 ≤ − ι

2 .

In the following, we show that, for n = 5,6, the line y = α+ 1
2wv(Rn(0)),

which is the upper horizontal supporting line of Rn(a), will be our candidate
transversal line for F ; the strip bounded by the x-axis and y = α+wv(Rn(0))
will be denoted by S∗; for n ≥ 7, the line y = α+ ι

2 , which is the upper hori-
zontal supporting line of D◦(a), will be our candidate transversal line for F ;
the strip bounded by the x-axis and y = α+ ι will also be denoted by S∗.
Clearly, all exceptional centers are in the strip S∗; w0 denotes the width
of S∗.

Let ρ =
�

α2

4α2−1 . Then p = (ρ, 0) and −p = (−ρ, 0) are two points such

that the line parallel to ap and passing through the origin 0 is tangent to
D(p),D(−p) and D(a). Hence, it can be assumed that β ≤ ρ. Otherwise,
β > ρ would imply γ < −ρ, so D(p), D(−p) and D(a), as well as Rn(p),
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Rn(−p) and Rn(a), would have no common transversal line. This, together
with the assumption β ≤ |γ|, implies that Rn(a), Rn(b) and Rn(c) have no
common transversal line, in contradiction to property T (3).

Clearly, ρ is an increasing function of α which attains its maximum value
in each interval at the largest value of α. Thus,

β ≤ ρ ≤ ρ0 =

{

6√
119

, 5 ≤ n ≤ 34,
1.17√

4·1.172−1
, n ≥ 35.

holds in the whole interval α ∈ (−1.67,−̟].
Now, we introduce the following notation. Let λl(K1,K2) and λr(K1,K2)

denote the common nonhorizontal nonseparating supporting lines of the
convex bodies K1 and K2 on the left and on the right, respectively.










 

Fig. 5: c∗1 and c∗2















Fig. 6: cc1 and cc2

For given a and b, let c∗(γ∗, 0) denote the leftmost point of the center
sheaf Σc

Rn
(a, b) on the xaxis. This point is determined by λl(a,Un(b))

or λl(Un(a), Un(b)). Let c∗1(γ
∗
1(α, β, θ), 0) be the intersection point of

λl(a,Un(b)) with the xaxis, and c∗2(γ
∗
2(α, β, θ), 0) the intersection point of

λl(Un(a), Un(b)) with the xaxis (see Fig. 5).
Let

iλl(a,Un(b)) =

3π
2 − arctan α+β

√
α2+β2−1

α
√
α2+β2−1−β

− θ
π
n

.

If

β + sin
(

θ +
π⌊iλl(a,Un(b))⌋

n

)

cos
(

θ +
π⌊iλl(a,Un(b))⌋

n

)

− α
−

β + sin
(

θ +
π⌈iλl(a,Un(b))⌉

n

)

cos
(

θ +
π⌈iλl(a,Un(b))⌉

n

)

− α
≤ 0,
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then

γ∗1(α, β, θ) =
−α

(

β + sin
(

θ +
π⌊iλl(a,Un(b))⌋

n

))

cos
(

θ +
π⌊iλl(a,Un(b))⌋

n

)

− α
;

otherwise,

γ∗1(α, β, θ) =
−α(β + sin(θ +

π⌈iλl(a,Un(b))⌉
n

))

cos
(

θ +
π⌈iλl(a,Un(b))⌉

n

)

− α
.

Set

iλl(Un(a),Un(b)) =
3π
2 − arctan β

α
− θ

π
n

.

If iλl(Un(a),Un(b)) − ⌊iλl(Un(a),Un(b))⌋ − 0.5 ≤ 0, then

γ∗2(α,β, θ) =
β

α
cos

(

θ+
π

n

⌊

iλl(Un(a),Un(b))

⌋

)

+β+sin
(

θ+
π

n

⌊

iλl(Un(a),Un(b))

⌋

)

;

otherwise,

γ∗2(α,β, θ) =
β

α
cos

(

θ+
π

n

⌈

iλl(Un(a),Un(b))

⌉

)

+β+sin
(

θ+
π

n

⌈

iλl(Un(a),Un(b))

⌉

)

.

Now we consider the circumscribed discs U(a), U(b) of Un(a), Un(b). Let
cc(γc,0) denote the leftmost point of the center sheaf Σc

D(a, b) on the x-axis.

This point is determined by λl(a,U(b)) or λl(U(a), U(b)). Let cc1(γ
c
1(α,β),0)

(cc2(γ
c
2(α, β), 0)) be the point of intersection of λl(a,U(b)) (λl(U(a), U(b)))

with the x-axis (see Fig. 6). So we have γc1 ≤ γ∗1 , γ
c
2 ≤ γ∗2 , and

γc1(α, β) =
−α(

√

α2 + β2 − 1 + αβ)

1− α2
, γc2(α, β) =

√

α2 + β2

α
+ β.

As the distance between any two centers of F is at least cos π
2n , the

length of the projection on the x-axis of the line-segment connecting any

two centers in S∗ is at least ξ =
√

cos2 π
2n − w2

0 . Furthermore, we have

d(b, c∗1) = β − γ∗1 , d(b, c
∗
2) = β − γ∗2 , d(b, c

c
1) = β − γc1, and d(b, cc2) = β − γc2.

So d(b, cc1) ≥ d(b, c∗1), d(b, cc2) ≥ d(b, c∗2), and the length of bc is at most
max{d(b, c∗1), d(b, c

∗
2)} ≤ max{d(b, cc1), d(b, c

c
2)}.

Proposition 6. For any α ∈ (−1.67,−̟], β ∈ (0, ρ0], we have the fol-

lowing conclusions:
(1) if n = 5, then d(b, c∗1) < 3ξ, d(b, c∗2) < 3ξ;
(2) if 6 ≤ n ≤ 34, then d(b, cc1) < 3ξ, d(b, cc2) < 3ξ;
(3) if n ≥ 35, then d(b, cc1) < 2ξ, d(b, cc2) < 2ξ.
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Proof. (1) If n = 5, then for all vertices of U5(a), U5(b) which might be
touching points of λl(a,U5(b)) and λl(U5(a), U5(b)), we have d(b, c∗1) < 3ξ,
d(b, c∗2) < 3ξ.

(2) If n = 6, then d(b, cc1)− 3ξ, d(b, cc2)− 3ξ are increasing functions
of θ for θ ∈ [0, π

12 ), and they will reach the maximum values at θ = π
12 ;

d(b, cc1)− 3ξ, d(b, cc2)− 3ξ are decreasing functions of θ for θ ∈ ( π
12 ,

π
6 ),

and they will attain the maximum values at θ = π
12 . Routine calculation

shows that these maximum values are less than 0 for α ∈ (−1.67,−̟] and
β ∈ (0, ρ0].

If n ≥ 7, then d(b, cc1)− 3ξ, d(b, cc1)− 2ξ are decreasing functions of β
and n, and d(b, cc2)−3ξ, d(b, cc2)−2ξ are decreasing functions of n, increasing
functions of β. Hence, we have the following results:

If 7 ≤ n ≤ 34, then d(b, cc1)− 3ξ will attain the maximum value at β = 0,
n = 7, and d(b, cc2)−3ξ will attain the maximum value at β = ρ0, n = 7. One
can verify that these maximum values are less than 0 for α ∈ (−1.67,−̟];

If n ≥ 35, then d(b, cc1)− 2ξ will attain the maximum value at β = 0,
n = 35, and d(b, cc2)− 2ξ will attain the maximum value at β = ρ0, n = 35.
Again, one can prove that these maximum values are negative for α ∈
(−1.67,−̟]. �

Proposition 6 implies that d(b, c) < 3ξ for 5 ≤ n ≤ 34, and d(b, c) < 2ξ
for n ≥ 35.

Corollary 1. For w ∈ [̟, 1.67), there exists at most one center for
5 ≤ n ≤ 34 and no center for n ≥ 35 in S∗ between the vertical lines x = γ
and x = β.

Proof. For 5 ≤ n ≤ 34, we assume that there exist two centers m1, m2

in S∗ between the vertical lines x = γ and x = β, and the x-coordinate of m2

is not less than that of m1. The projections m′
1c, m

′
2m

′
1, bm

′
2 on the x-axis

of the line-segments m1c, m2m1, bm2 have length at least ξ, so d(b, c) =
d(b,m′

2) + d(m′
2,m

′
1) + d(m′

1, c) ≥ 3ξ, in contradiction with Proposition 6.
Therefore, the first conclusion holds as claimed.

The proof for n ≥ 35 is completely analogous. �

To complete the rest of the proof, the original intervals α ∈ (−1.67,−̟]
and β ∈ (0, ρ0] will be cut into a few smaller pieces. It is assumed in the
following that α ∈ [α2, α1] and β ∈ [β1, β2] hold, where [α2, α1] is one of the
nine subintervals

[−1.67,−1.61], [−1.61,−1.5], [−1.5,−1.4], [−1.4,−1.3], [−1.3,−1.25],

[−1.25,−1.2], [−1.2,−1.18], [−1.18,−1.175], [−1.175,−1.17];

and [β1, β2] is, independently, one of the three subintervals

[0, 0.04], [0.04, 0.2], [0.2, ρ0].
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Let [γ2, γ1] denote the feasible interval of γ for α∈ [α2, α1] and β∈ [β1, β2].
The endpoints of the above mentioned subintervals will be denoted by a2,
a1, b1, b2, c2, c1, respectively. This subdivision defines 18 (5 ≤ n ≤ 34) and
27 (n ≥ 35) analogous subproblems.

The generalized center sheaf Σc
Rn

(a2a1, b1b2) defined by the segments
a2a1 and b1b2 lies between two polygonal lines, where the left one consists
of parts of the lines

λl(a1, Un(b1)), λl(Un(a1), Un(b1)), λl(b2, Un(a1)),

and the right one is consisting of parts of the lines

λr(a1, Un(b2)), λr(Un(a2), Un(b2)), λr(b1, Un(a1)).

Analogously, the boundaries of Σc
Rn

(a2a1, c2c1) are included in the union
of

λl(a1, Un(c2)), λl(Un(a2), Un(c2)), λl(c1, Un(a1)),

and

λr(a1, Un(c1)), λr(Un(a1), Un(c1)), λr(c2, Un(a1)).

In the same way, we can get the boundaries of Σc
D(a2a1, b1b2) and

Σc
D(a2a1, c2c1). In addition, Σc

Rn
(a2a1, b1b2)⊂Σc

D(a2a1, b1b2), Σ
c
Rn

(a2a1, c2c1)
⊂ Σc

D(a2a1, c2c1).
To every box [α2, α1]× [β1, β2], with α ∈ [α2, α1], β ∈ [β1, β2], a feasible

interval [γ2, γ1] can be calculated for the x-coordinate of c = (γ, 0) based on
the condition β ≤ −γ, the disjointness hypothesis and the T (3)-property of
the family F . Therefore, we have

(1) for n = 5, 6, γ ≤ γ1 = min{β2 − ζ,− ζ
2}, γ ≥ γ2 = min{γ∗1(α1, β1, θ),

γ∗2(α1, β1, θ)};
(2) for n ≥ 7, γ ≤ γ1 = min{β2 − ι,− ι

2}, γ ≥ γ2 = min{γc1(α1, β1),
γc2(α1, β1)}.

We consider (for any arbitrary subproblem) the intersection Q of the
generalized center sheaves Σc

Rn
(a2a1, b1b2), Σ

c
Rn

(a2a1, c2c1) and the strip S∗

of α = α2. Clearly, the domain

Q = S∗ ∩ Σc
Rn

(a2a1, b1b2) ∩ Σc
Rn

(a2a1, c2c1)

contains all exceptional centers, and

Q ⊂ S∗ ∩ Σc
D(a2a1, b1b2) ∩ Σc

D(a2a1, c2c1) =: Q1.

All centers but a, b, c must lie, by disjointness, outside of Un(a), Un(b)
and Un(c), thus for any choice in the parameter boxes, these centers cannot
lie in Un(a2) ∩ Un(a1), Un(b1) ∩ Un(b2) and Un(c2) ∩ Un(c1).
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Proposition 7. (1) For n = 5, 6, if m ∈ Q is to the right of the line
x = β1, then m ∈ Un(b1) ∩ Un(b2); if m ∈ Q is to the left of the line x = γ1,
then m ∈ Un(c2) ∩ Un(c1).

(2) For n ≥ 7, if m ∈ Q1 is to the right of the line x = β1, then m ∈
U◦(b1) ∩ U◦(b2); if m ∈ Q1 is to the left of the line x = γ1, then m ∈ U◦(c2)
∩ U◦(c1).






  




Fig. 7: Ql and Qr






 








Fig. 8: Ql

1 and Qr

1

Proof. Denote by Ql the part of polygon Q to the left of the vertical
line x = γ1, and by Qr the part of polygon Q to the right of x = β1 (in Fig. 7
the domains Ql and Qr are shaded). Similarly, denote by Ql

1 and Qr
1 the part
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of polygon Q1 to the left of x = γ1 and to the right of x = β1, respectively (in
Fig. 8 the domains Ql

1 and Qr
1 are shaded). We can check that for n = 5, 6,

all possible vertices of Ql lie in Un(c2) ∩ Un(c1), and all possible vertices
of Qr lie in Un(b1) ∩ Un(b2). Hence, Ql ⊂ Un(c2) ∩ Un(c1), Q

r ⊂ Un(b1) ∩
Un(b2). For n ≥ 7, all possible vertices of Ql

1 lie in U◦(c2) ∩ U◦(c1), and all
possible vertices of Qr

1 lie in U◦(b1) ∩ U◦(b2). Hence, Ql
1 ⊂ U◦(c2) ∩ U◦(c1),

Qr
1 ⊂ U◦(b1) ∩ U◦(b2). Therefore, the claim of the proposition holds.
We illustrate our method of proving this proposition with the example

of showing that the intersection point m of λl(U(a1), U(b1)) with the line
y = α2 + cos π

2n lies in U◦(c2) ∩ U◦(c1) for n ≥ 7. We only prove the case of
α ∈ [−1.67,−1.61], β ∈ [0.04, 0.2]; the same conclusion can be obtained in a
similar way for other boxes. At present, γ1 = 0.2− ι, γ2 = γc1(α1, β1). The
coordinates of m are

(

β1 +

√

α2
1 + β2

1

α1
−

α2β1
α1

−
β1
α1

cos
π

2n
, α2 + cos

π

2n

)

.

Moreover, both d2(c1,m) − cos2 π
2n and d2(c2,m) − cos2 π

2n are decreasing
functions of n, so they attain the maximum values at n = 7, and these max-
imum values are negative. Hence, d(c1,m) < cos π

2n and d(c2,m) < cos π
2n .

So m ∈ U◦(c2) ∩ U◦(c1), as desired. �

Corollary 2. For w ∈ [̟, 1.67), n ≥ 5, there is no center in S∗ to the
left of the line x = γ and no center in S∗ to the right of the line x = β.

Corollaries 1 and 2 imply Theorem 5 for w ∈ [̟, 1.67).

3.2. Proof of Theorem 5 for w ∈ (wv(Rn(0)),̟). In this part,
the inequality β ≤ |γ| is not assumed. Rotate the x-axis around 0 by angles
τ and −τ , and obtain the lines λl and λr, respectively, where τ is the same
as in (∗).

Let H be the convex hull of all centers of F , and the vertices of H la-
belled by a0, a1, a2, . . . in anticlockwise order from the center a. Clearly,
a0 = (0, α). Then we have y0 = −w and yi ≥ −w for i ≥ 1. For each ai, the

lines λl
i, λ

l−
i , λsl

i , λ
cl
i and λdl

i parallel to λl support Un(ai), Rn(ai), U
◦(ai),

U(ai) and D◦(ai) from above, respectively. Similarly, the lines λr
i , λ

r−
i , λsr

i ,

λcr
i and λdr

i parallel to λr support Un(ai), Rn(ai), U
◦(ai), U(ai) and D◦(ai)

from above, respectively.

Proposition 8. For any i ≥ 0, the intersection point of λdl
i and λdr

i

lies on or above the x-axis.

Proof. For i > 0, the intersection point of λdl
i and λdr

i lies above the in-
tersection point of λdl0 and λdr

0 . So we only need to show that the conclusion
holds for i = 0.

Acta Mathematica Hungarica

THE KATCHALSKI–LEWIS TRANSVERSAL PROBLEM FOR REGULAR POLYGONS 13



Acta Mathematica Hungarica

14 Q. DU, L. YUAN and T. ZAMFIRESCU

Let p be the intersection of the line

λdl
0 : y − α−

1

2
cos

π

2n
cos τ − tan τ

(

x+
1

2
sin τ cos

π

2n

)

= 0

and the line

λdr0 : y − α−
1

2
cos

π

2n
cos τ + tan τ

(

x−
1

2
sin τ cos

π

2n

)

= 0.

If 5 ≤ n ≤ 34, we have yp = −1.2 + 1
2 tan τ sin τ cos

π
2n + 1

2 cos τ cos
π
2n ≥ 0; if

n ≥ 35, then yp = −1.17 + 1
2 tan τ sin τ cos

π
2n + 1

2 cos τ cos
π
2n ≥ 0. �

By Proposition 8, the intersection point of λl
i and λr

i also lies above the
x-axis for any i ≥ 0. Consider a lower supporting line λ(δ) of H passing
through vertices ai and aj (j = i or j = i+ 1), where δ denotes the angle
from the x-axis to λ(δ). (By our assumption (i), there are at most two
centers on one supporting line.) Then the lines λ+(δ), λ++(δ), λ−(δ) par-
allel to λ(δ) are the upper supporting lines of Rn(ai), Un(ai), and U◦(ai),
respectively.

Now we consider the intersection of the closed half-plane y ≤ 0 and the
above open half-plane bounded by λ++(δ). It is cut into (at most) three
parts by the lines λli and λr

j (see Fig. 9). The part strictly to the left of λl
i,

the part strictly to the right of λr
j are denoted by L(δ), R(δ), respectively;

the remaining part is denoted by Q(δ), as shown in Fig. 9. Denote by nℓ(δ)
and nr(δ) the number of centers lying in L(δ) and R(δ), respectively.











  



    









Fig. 9: Q(δ) for j = i and for j = i+ 1

Here, we need the following simple (and well-known) fact.

Lemma 2. The disjoint sets K1, K2 and K3 have no common transversal
if and only if each of them can be strictly separated from the union of the
other two sets.
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The next result and its corollary are essentially due to Kaiser [9].

Proposition 9. For every δ, either nℓ(δ) = 0 or nr(δ) = 0.

Proof. Suppose, on the contrary, that there exists δ such that a cen-
ter g belongs to L(δ) and a center g′ belongs to R(δ). Then Rn(ai) is weakly
separated from Rn(g) ∪Rn(g

′) by λ+(δ), Rn(g) is weakly separated from

Rn(ai) ∪Rn(g
′) by λl−

i , and Rn(g
′) is weakly separated from Rn(ai) ∪Rn(g)

by λr−
j . Evidently, a sufficiently small upward translate of λ+(δ) provides

strict separation of Rn(ai) from the other two 2n-gons. By assumption (iii),

no 2n-gon apart from Rn(ai) touches λl−
i , thus a sufficiently small transla-

tion of λl−
i to the left results in a line strictly separating Rn(g) from the

other two 2n-gons. The case of Rn(g
′) is analogous. Then, by Lemma 2,

the 2n-gons Rn(ai), Rn(g) and Rn(g
′) do not enjoy the property T (3), a

contradiction. �

Clearly, nℓ(−τ) = 0 and nℓ(δ) is a left-continuous increasing function
of δ; nr(τ) = 0 and nr(δ) is right-continuous and decreasing.

Corollary 3. There exists δ∗ ∈ [−τ, τ ] such that

nℓ(δ
∗) = nr(δ

∗) = 0.

From now on, λ+(δ∗) will be the candidate transversal line, and the num-
ber of exceptional centers will be denoted again by nex. By Corollary 3, all
exceptional centers lie in the domain Q(δ∗). The supporting line λ(δ∗) is
called a balanced supporting line of H .

Proposition 10. There exists a balanced supporting line of H passing

through a.

Proof. Suppose that none of the supporting lines through a is bal-
anced. Then the angle δ∗ between a balanced supporting line and the x-axis
must be greater than δ0,1, the angle between a0a1 and x-axis. This balanced
supporting line supportsH at ai for some i ≥ 1. So, nℓ(δ

∗) = 0. The domain
lying above λ++(δ∗) and to the left of λl

1 has no center, and nℓ(δ0,1) = 0 also
holds. Since λ(δ0,1) is not a balanced supporting line, nr(δ0,1) ≥ 1.

Let p be the intersection point of λsr
0 with the line y = ̟ + α, δ1 the

angle formed by the x-axis and the other supporting line of U◦(a0) at the
point m passing through p (see Fig. 10).

The coordinates of the point p are

(xp, yp) =
(cos π

2n cos τ −̟

tan τ
+ sin τ cos

π

2n
, ̟ + α

)

.
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Fig. 10: Balance supporting line through a0

The coordinates of the point m are

xm =
xp cos

2 π
2n − cos π

2n

√

(yp − α)4 + x2p(yp − α)2 − (yp − α)2 cos2 π
2n

(yp − α)2 + x2p
,

ym = α+
cos2 π

2n − xmxp

yp − α
.

Hence, δ1 = arctan ym−yp

xm−xp
. (Observe that δ1 does not depend on α and is a

decreasing function of n.)
Thus, δ1 = 0.348 . . . < 0.35 for 5 ≤ n ≤ 34; δ1 = 0.247 . . . < 0.25 for

n ≥ 35.
Furthermore, if δ0,1 > δ1, then the domain R(δ0,1) would be empty, which

contradicts nr(δ0,1) ≥ 1. Hence δ0,1 ≤ δ1. We have x1 > cos π
2n cos δ1. Some

calculation shows that the origin 0 lies strictly above the line λcl
1 , and there-

fore above the line λl
1. Consequently, the domain lying above λ++(δ∗) and

to the left of λl
1 contains a center c, which contradicts nℓ(δ

∗) = 0. �

By Proposition 10, the balance supporting line λ(δ∗) of H through a0
either only passes through a0 or passes through a0 and a1. In the following,
we will prove that λ+(δ∗) is a candidate transversal line for both cases.

Case 1: The line λ(δ∗) only passes through a0. First we present the
following lemma.

Lemma 3. (1) For 5 ≤ n ≤ 34, the domain Q(δ∗) contains at most three
centers of F , i.e. nex ≤ 3;
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(2) For n ≥ 35, the domain Q(δ∗) contains at most two centers of F , i.e.
nex ≤ 2.

Proof. Let kλl
0
= n(2π−τ−θ)

π
. If kλl

0
− ⌊kλl

0
⌋ ≥ 0.5, then k = ⌈kλl

0
⌉; oth-

erwise k = ⌊kλl
0
⌋.

Let jλr
0
= n(τ−θ)

π
. If jλr

0
−⌊jλr

0
⌋ ≥ 0.5, then j = ⌈jλr

0
⌉; otherwise j = ⌊jλr

0
⌋.




















Fig. 11: Q(δ∗) contains at most three centers

(1) For 5 ≤ n ≤ 74 and w = ̟, let p1 = (xp1
, 0), p2 = (xp2

, 0) be the in-

tersection points of the x-axis with λl
0, λ

r
0 respectively; p3 the intersection

point of the line y = y0 + wv(Rn(0)) and λr
0; p4 the point where the line

y = y0 + wv(Rn(0)) touches Un(a0); p5 the intersection point of Un(a0) and
λl
0 (see Fig. 11). We have

xp1
=

−y0 − cos(θ + πk
n
)

tan τ
+ sin

(

θ +
πk

n

)

,

xp2
=

y0 + cos(θ + πj
n
)

tan τ
+ sin

(

θ +
πj

n

)

,

xp3
=

cos(θ + πj
n
)− wv(Rn(0))

tan τ
+ sin

(

θ +
πj

n

)

,

yp3
= yp4

= y0 + wv(Rn(0)),

xp4
= sin θ, for θ ∈

[

0,
π

2n

]

, xp4
= sin

(

θ −
π

n

)

, for θ ∈
( π

2n
,
π

n

)

,

xp5
= sin

(

θ +
πk

n

)

, yp5
= y0 + cos

(

θ +
πk

n

)

.
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Clearly, Q(δ∗) ⊂ p1p2p3p4p5.
For 5 ≤ n ≤ 34, let p6 be the intersection of p4p5 and the line x = −0.25,

p7 be the orthogonal projection of p1 on p4p5. Elementary computations
show that, for n = 5, 6, 12, the lines p1p7 and x = −0.25 cut the domain
Q(α∗) into three parts with diameter less than cos π

2n ; for n ≥ 7 and n �= 12,
the lines p1p7 and x = −0.25 cut the pentagon p1p2p3p4p5 into three parts
with diameter less than cos π

2n , too.
Similarly, for 35 ≤ n ≤ 74, the line x = −0.31 cuts this pentagon into

two parts with diameter less than cos π
2n .

If w < ̟, then Q(δ∗) is included in Q(δ∗) obtained for w = ̟. Thus,
the claim of the lemma holds in this case as well.

(2) For n ≥ 75 and w = ̟, let p1 = (xp1
,0), p2 = (xp2

,0) be intersection
points of the x-axis and λcl

0 , λ
cr
0 respectively; p3 the intersection point of

the line y = y0 + wv(Rn(0)) and λcr
0 ; p4 the point where the line y = y0 +

wv(Rn(0)) touches Un(a0); p5 the intersection point of pp4 and λcl
0 . Let

p = (sin(2π − τ − π
n
), y0 + cos(2π − τ − π

n
)), see Fig. 12.






















Fig. 12: Q(δ∗) contains at most two centers

We have

xp1
=

−y0 − cos τ

tan τ
− sin τ, xp2

=
y0 + cos τ

tan τ
+ sin τ,

xp3
=

−wv(Rn(0)) + cos τ

tan τ
+ sin τ, yp3

= yp4
= y0 + wv(Rn(0)),

xp4
= sin θ, for θ ∈

[

0,
π

2n

]

; xp4
= sin

(

θ −
π

n

)

, for θ ∈
( π

2n
,
π

n

)

.
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It is obvious that Q(δ∗) ⊂ p1p2p3p4p5. Let p6 be the intersection point
of p4p5 and the line x = −0.31. This pentagon p1p2p3p4p5 is divided by
x = −0.31 into two parts with diameter less than cos π

2n . If w < ̟, then
Q(δ∗) ⊂ p1p2p3p4p5. Thus, the conclusion also holds. �

Case 2: The line λ(δ∗) passes through a0 and a1. So δ∗ = δ0,1.

Proposition 11. If δ0,1 ≥ 0.35, then
(1) nex ≤ 3 for 5 ≤ n ≤ 34;
(2) nex ≤ 2 for n ≥ 35.

Proof. For δ0,1 ≥ 0.35, there is no center in the domain above the line
λ++(δ0,1), below the x-axis and to the right of λr

0. Hence, by Lemma 3, the
statements hold. �

Consequently, it will be assumed that δ0,1 < 0.35. In the following, we
show that Theorem 5 holds for all regular 2n-gons (n ≥ 5) when w < 1.2.
Firstly, we prove the following proposition.

Proposition 12. The point c is the single exceptional center in the half

plane x ≤ 0.

Proof. First, we show that the diameter of the intersection of the
half plane x ≤ 0 and Q(δ0,1) is less than cos π

2n for any δ0,1 < 0.35 =: η,
w ∈ (wv(Rn(0)), 1.2) and n ≥ 5.

Let l be the upper tangent line of U◦(a0), where the angle between the
x-axis and l is η. So the equation of l is

y − α− cos
π

2n
cos η − tan η ·

(

x+ sin η cos
π

2n

)

= 0.

For w = 1.2, let p1, p2 be the intersection points of λcl
0 with the x-axis,

l, respectively, p3 the intersection point of the line y = y0 + cos π
2n and the

y-axis (see Fig. 13). Therefore, for any δ0,1 < η, w ∈ (wv(Rn(0)), 1.2), the
part of Q(δ0,1) lying on or below the x-axis is included in the quadrilateral
0p1p2p3.

The coordinates of p2 are

xp2
=

cos π
2n cos η − cos τ + tan η sin η cos π

2n − tan τ sin τ

tan τ − tan η
,

yp2
= cos η − 1.2 + tan η · (xp2

+ sin η) .

By computing, we establish that the diameter of the quadrilateral 0p1p2p3
is less than cos π

2n . �

Next, we show that the x > 0 part of Q(δ0,1) contains at most two excep-
tional centers for 5 ≤ n ≤ 34, and at most one exceptional center for n ≥ 35.
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Fig. 13: Single exceptional center c

Suppose, on the contrary, that, for 5 ≤ n ≤ 34, Q(δ0,1) contains three excep-
tional centers in the half plane x > 0, namely, f1 = (µ1, ν1), f2 = (µ2, ν2),
f3 = (µ3, ν3), where 0 < µ1 < µ2 < µ3; for n ≥ 35, Q(δ0,1) contains two ex-
ceptional centers in the half plane x > 0, say, g1 = (µ′

1, ν
′
1), g2 = (µ′

2, ν
′
2),

where 0 < µ′
1 < µ′

2.

For θ ∈ [0, π
2n ], µ1 ≤ sin θ and µ′

1 ≤ sin θ, we have ν1 > y0 +
cos π

2n

cos( π

2n
−θ) =:

−κ, ν ′1 > y0 +
cos π

2n

cos( π

2n
−θ) = −κ; for θ ∈ [0, π

2n ], µ1 > sin θ and µ′
1 > sin θ, or

θ ∈ ( π
2n ,

π
n
), let κ = −y0 −wv(Rn(0)). Hence, the disjointness hypothesis on

2n-gons and Proposition 12 imply that

µ1 − γ ≥ ξmin, µ2 − µ1 ≥ ξmin, µ3 − µ2 ≥ ξmin,

where ξmin = minw∈(wv(Rn(0)),1.2),n∈[5,34]
√

cos2 π
2n − κ2 > 0.9178,

µ′
1 − γ ≥ ξ′min, µ′

2 − µ′
1 ≥ ξ′min,

where ξ′min = minw∈(wv(Rn(0)),1.2),n≥35

√

cos2 π
2n − κ2 > 0.9785.

Proposition 13. The inequalities γ > −0.31, µ1 > 0.6078, µ2 > 1.5256,
µ3 > 2.4434, µ′

1 > 0.6685, µ′
2 > 1.647 hold.

Proof. Since the family F has property T (3), f1, f2, f3, g1, g2 must
lie in Σc

Rn
(a, c) ⊂ Σc

D(a, c). As a result, they must lie on or to the left of
the lines λr(a,Un(c)), λ

r(Un(a), Un(c)), λr(Un(a), c). Let m1, m′
1 be the

intersection points of the x-axis and λr(a,Un(c)), λ
r(a,U(c)) respectively;

let m2, m
′
2 be the intersection points of λr(Un(a), Un(c)), λ

r(U(a), U(c)) and
the line y = y0 + wv(Rn(0)), respectively.
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We have

xm′

1
=

−α
(

α− γ
√

α2 + γ2 − 1
)

α
√

α2 + γ2 − 1 + γ
,

xm′

2
= −

γ

α

(

α+ wv(Rn(0))
)

+ γ −

√

α2 + γ2

α
.

Let

iλr(a,Rn(c)) =

π
2 − arctan α−γ

√
α2+γ2−1

−γ−α
√
α2+γ2−1

− θ
π
n

.

If

γ + sin
(

θ + π
n
⌊iλr(a,Rn(c))⌋

)

cos
(

θ + π
n
⌊iλr(a,Rn(c))⌋

)

− α
−

γ + sin
(

θ + π
n
⌈iλr(a,Rn(c))⌉

)

cos
(

θ + π
n
⌈iλr(a,Rn(c))⌉

)

− α
≥ 0,

then i = ⌊iλr(a,Rn(c))⌋; otherwise i = ⌈iλr(a,Rn(c))⌉. Hence,

xm1
=

−α
(

γ + sin(θ + π
n
i)
)

cos(θ + π
n
i) − α

.

Let

jλr(Rn(a),Rn(c)) =
π
2 − arctan γ

α
− θ

π
n

.

If jλr(Rn(a),Rn(c)) − ⌊jλr(Rn(a),Rn(c))⌋ ≥ 0.5, then j = ⌈jλr(Rn(a),Rn(c))⌉; other-
wise j = ⌊jλr(Rn(a),Rn(c))⌋. So,

xm2
= −

γ

α

(

wv(Rn(0))− cos
(

θ +
π

n
j
))

+ sin
(

θ +
π

n
j
)

.

For −1.2 < α < −wv(Rn(0)), if γ ≤ −0.31, we have the following results.
(a) For n = 5, we have xm1

, xm2
< 2ξmin. Then µ3 < 2ξmin, a contradic-

tion.
(b) For 6 ≤ n ≤ 34, we have xm′

2
< 0.9, xm′

1
− γ < 2.7. Then µ3 − γ <

2.7 < 3ξmin, a contradiction.
(c) For n ≥ 35, we have xm′

2
< 0.9, xm′

1
−γ < 1.83. Then µ′

2−γ < 1.83 <
2ξ′min, a contradiction.

Hence, γ > −0.31, and the proof is complete. �

Since µ1 > sin θ, µ′
1 > sin θ, the centers f1, f2, f3, g1, g2 are all above the

line y = y0+wv(Rn(0)). Of course, they are all above the line y = y0+ ι, the
upper horizontal supporting line of U◦(a0). On the other hand, the lower
boundary line λ++(δ0,1) of Q(δ0,1) runs below f3, g2, and so does the line
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λ−(δ0,1). Hence, the inequality arctan −y0−ι
µ3

< 0.102 holds for 5 ≤ n ≤ 34;

the inequality arctan −y0−ι
µ′

2
< 0.122 holds for n ≥ 35.

Corollary 4. Let δ0,1 be the angle formed by the x-axis and the candi-
date transversal line λ+(δ0,1).

(1) If 5 ≤ n ≤ 34, then δ0,1 ∈ [0, 0.102), and the angle ϑ formed by the

x-axis and cf3 satisfies ϑ ∈ (−0.102, 0];
(2) If n ≥ 35, then δ0,1 ∈ [0,0.122), and the angle ϑ′ formed by the x-axis

and cg2 satisfies ϑ′ ∈ (−0.122, 0].

Proof. We only prove the first part of this corollary; the second part
can be obtained in a similar way.

For 5 ≤ n ≤ 34, evidently, the angle of the x-axis and λ−(δ0,1) is also δ0,1.
Denote by p1 = (xp1

, 0), p2 = (0, yp2
) the intersection points of λ−(δ0,1) and

the x-axis, y-axis, respectively. We have xp1
≥ µ3, yp2

≥ y0 + ι, so δ0,1 =

arctan
|yp2 |
xp1

≤ arctan −y0−ι
µ3

< 0.102.

Because f3, g2 are above the line y = y0 + ι,

ϑ = − arctan
|ν3|

µ3 − γ
> − arctan

−y0 − ι

µ3
> −0.102. �

In order to prove Proposition 14, we need some preparation first.
Let v1, v2 be the intersection points of λl(U◦(c),U◦(f3)) with λl(U(c), f3),

λl(c, U(f3)), respectively (see Fig. 14). Let u1 be the touching point of
λl(Un(c), f3) with Un(c); u2 the touching point of λl(c, Un(f3)) with Un(f3).
The lines λl(Un(c), f3) and λl(c, Un(f3)) intersect λl(Un(c), Un(f3)) at s1,
s2, respectively. Let s3, s4 be the orthogonal projections of c, f3 on
λl(Un(c), Un(f3)) (see Fig. 15). Denote by m1, m2 the touching points
of λl(U◦(c), U◦(f3)) with U◦(c) and U◦(f3), respectively.

For 5 ≤ n ≤ 34, we have the following statements.
When the point f3 moves along any line l1, the label i of u1 on Un(c) is

determined by

i =

π
2 − arctan

ν3
µ3−γ

−(µ3−γ)
√

( ν3
µ3−γ

)2+1− 1

(µ3−γ)2

1+ ν3
µ3−γ

(µ3−γ)
√

( ν3
µ3−γ

)2+1− 1

(µ3−γ)2

− θ

π
n

.

By Corollary 4, i is an increasing function of (µ3 − γ). Therefore, it remains
constant or increases, while f3 moves to the right along the line l1.

The label j of u2 on Un(f3) is

j =

3π
2 − arctan

− ν3
µ3−γ

−(µ3−γ)
√

( ν3
µ3−γ

)2+1− 1

(µ3−γ)2

−1+ ν3
µ3−γ

(µ3−γ)
√

( ν3
µ3−γ

)2+1− 1

(µ3−γ)2

− θ

π
n

.
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Fig. 14: Regular 2n-gons replaced by circumcircles and incircles

 




 







Fig. 15: Regular 2n-gons

By Corollary 4, j is a decreasing function of µ3 − γ. Therefore, it remains
constant or decreases while f3 moves to the right along the line l1.

Moreover, the labels of the touching points of λl(Un(c), Un(f3)) with
Un(c), Un(f3) remain invariant. Hence, when f3 moves to the right along
the line l1, d(s1, s3) and d(s2, s4) are decreasing, while d(s1, s2) is increas-
ing. So when µ3 − γ attains the minimum value, d(s1, s3), d(s2, s4) reach
the maximum values and d(s1, s2) attains the minimum value. In addition,
d(s1, s2) > d(v1, v2), d(s1, s3) < d(v1,m1), d(s2, s4) < d(v2,m2),

d(v1, v2) = 2φ(t) = 2
(

cos
π

2n

√

4t2 − 1− t
)

,

d(v1,m1) = d(v2,m2) = ψ(t) = 2t− cos
π

2n

√

4t2 − 1 ,

where d(c, f3) = 2t.
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For n ≥ 35, we can obtain analogous conclusions if we replace f3 by g2.
Based on the above discussion, we have the following.

Proposition 14. (1) For 5 ≤ n ≤ 34, d(a0, a1) > 2.124, µ3−x1 < 0.416;
(2) For n ≥ 35, d(a0, a1) > 1.404, µ′

2 − x1 < 0.399.

Proof. We only prove the first part of this proposition; the second can
be proved similarly.

For 5 ≤ n ≤ 34, let d(c, f3) = 2t, and v′2 be the orthogonal projection
of v2 on cf3. Due to the above discussion, when t = 3

2ξmin, d(a0, a1) attains
the minimum value and µ3 − x1 reaches the maximum value. Since the fam-
ily F has property T (3), a0, a1 must lie in the two components which contain
the points v1 and v2. On the other hand, because d(a0, c) < d(a0, f3), both
a0 and v1 are in the same connected component.

We have xv1 < ψ(32ξmin) < 0.314. For x1 > cos π
2n · cos 0.102 > 0.946,

a1 and v2 are in the same connected component. Moreover, the angle of
v2v′2 and y-axis is less than 0.102, so xv′

2
− xv2 < sin(0.102) < 0.102.

Hence, d(a0, a1) ≥ d(v1, v2) = 2φ(t) > 2.124, µ3 − x1 < ψ(t) + 0.102 <
0.416. �

  









Fig. 16: Regular 2n-gons replaced by circumcircles and incircles

To obtain Proposition 15, we first present the following facts.
For n ≥ 5, let v3, v4 be the intersection points of λl(U◦(a0), U◦(a1)) with

λl(U(a0), a1), λ
l(a0, U(a1)), respectively (see Fig. 16). Denote the touch-

ing point of λl(Un(a0), a1) with Un(a0) by u′1, and the touching point of
λl(a0, Un(a1)) with Un(a1) by u′2. The lines λ

l(Un(a0), a1) and λl(a0, Un(a1))
intersect λl(Un(a0), Un(a1)) at s′1, s

′
2. Let s′3, s

′
4 be the orthogonal projec-

tions of a0, a1 on λl(Un(a0), Un(a1)) (see Fig. 17). Let the touching points
of λl(U◦(a0), U◦(a1)) with U◦(a0), U◦(a1) be m′

1, m
′
2, respectively.
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Fig. 17: Regular 2n-gons

When the point a1 moves along any line l2, the label i′ of u′1 on Un(a0)
is determined by

i′ =

π
2 − arctan

y1−y0
x1

+x1

√

( y1−y0
x1

)2+1− 1

x2
1

1− y1−y0
x1

x1

√

( y1−y0
x1

)2+1− 1

x2
1

− θ

π
n

.

By Corollary 4, i′ is a decreasing function of x1. Therefore, it remains con-
stant or decreases, while a1 moves to the right along the line l2.

The label j′ of u′2 on Un(a1) is

j′ =

3π
2 − arctan

− y1−y0
x1

+x1

√

( y1−y0
x1

)2+1− 1

x2
1

−1− y1−y0
x1

x1

√

( y1−y0
x1

)2+1− 1

x2
1

− θ

π
n

.

By Corollary 4, j′ is an increasing function of x1. Therefore, it does not
decrease while a1 moves to the right along the line l2.

Moreover, the labels of the touching points of λl(Un(a0), Un(a1)) with
Un(a0), Un(a1) remain invariant. Hence, when a1 moves on the line l2 to the
right, d(s′1, s

′
3) and d(s′2, s

′
4) are decreasing, and d(s′1, s

′
2) is increasing. So

when x1 attains the minimum value, d(s′1, s
′
3), d(s

′
2, s

′
4) reach the maximum

values, and d(s′1, s
′
2) attains the minimum value. In addition, d(s′1, s

′
2) >

d(v3, v4), d(s
′
1, s

′
3) < d(v3,m

′
1), d(s

′
2, s

′
4) < d(v4,m

′
2),

d(v3, v4) = 2φ(t) = 2
(

cos
π

2n

√

4t2 − 1− t
)

,

d(v3,m
′
1) = d(v4,m

′
2) = ψ(t) = 2t− cos

π

2n

√

4t2 − 1 ,
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where d(a0, a1) = 2t.
Now, we have the following proposition.

Proposition 15. (1) For 5 ≤ n ≤ 34, x1 − µ1 < 0.444.
(2) For n ≥ 35, x1 − µ′

1 < 0.542.

Proof. In this proposition we also only prove the first part.
For 5 ≤ n ≤ 34, c, f1, f2, f3 must lie above the line λl(U◦(a0), U◦(a1))

and in the connected components which contain v3, v4. As d(a0, a1) > 2.124,
xv3 < ψ(1.062) < 0.342, by Proposition 13, f1, f2, f3 are in the same con-
nected component as v4. Let v

′
4 be the orthogonal projection of v4 on a0a1.

The angle of v4v
′
4 and the y-axis is less than 0.102, so xv′

4
−xv4 < sin(0.102) <

0.102. Because of the previous knowledge, x1 − µ1 < ψ(1.062) + 0.102 <
0.444. �

Proposition 14 and Proposition 15 imply that
(a) µ3 − µ1 < 0.86 for 5 ≤ n ≤ 34;
(b) µ′

2 − µ′
1 < 0.941 for n ≥ 35.

But (a) and (b) contradict the previous fact. Therefore, in the x > 0 part
of Q(δ0,1), there exist at most two exceptional centers for 5 ≤ n ≤ 34, and
at most one exceptional center for n ≥ 35. Hence, for w ∈ (wv(Rn(0)), 1.2),
Theorem 5 holds.
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