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Rupert Property of Archimedean Solids
Ying Chai, Liping Yuan, and Tudor Zamfirescu

Abstract.We say that a polytopeP has the Rupert property if we can make a hole large enough
in P to permit another copy of P to pass through. In this article, we show that among the 13
Archimedean solids, 8 have this property, namely, the cuboctahedron, the truncated octahedron,
the truncated cube, the rhombicuboctahedron, the icosidodecahedron, the truncated cubocta-
hedron, the truncated icosahedron, and the truncated dodecahedron.

1. INTRODUCTION. An Archimedean solid is a highly symmetric, semi-regular
convex polyhedron with two or more types of regular polygons as faces and locally
congruent at vertices. There are 13 types in all; see Figure 1. Archimedean solids, by
virtue of their high degree of symmetry, are widely applied in educational toys, archi-
tecture and art, and so forth. And they also have close connections with astronomy,
biology, and chemistry. Recently, other properties of Archimedean solids have been
investigated, for example dense packings of Archimedean solids [7, 8], and acute tri-
angulations of their surfaces [1, 2].

More than three hundred years ago, Prince Rupert (Prinz Ruprecht von der Pfalz)
won a wager whether a hole large enough can be cut in one of two congruent cubes
to permit the second to pass through the first. About one hundred years later, Pieter
Nieuwland proved that, taking the first cube to have edge-length 1, the largest second
cube that can pass through the first has edge-length 3

√
2

4 . In 1950, Schreck [5] gave a
detailed review of Rupert’s problem and Nieuwland’s proof. In 1968, Scriba [6] found
out that the tetrahedron and the octahedron have the same property. In 2016, Jerrard,
Wetzel, and Yuan [4] added that the dodecahedron and the icosahedron also have that
property, i.e., we can find through any Platonic solid a hole large enough to permit a
congruent copy to pass through; what “passing through” exactlymeanswill be revealed
in the next section. We call this property the Rupert property. So, all five Platonic solids
have the Rupert property. Suppose that a polytope P has the Rupert property. It is
natural to ask how large a polytope P ′ similar to P can be to pass through a hole in P ,
i.e., how large can a positive scalar ν be, such that the polytope νP passes through a
suitable hole in P? We call this Nieuwland’s question after P. Nieuwland (1764–1794),
who asked and answered this question for the cube. Define the Nieuwland constant
ν(P ) of the polytope P by

ν(P ) = sup {ν > 0 : νPcan pass through a suitable hole in P}.
Many convex bodies, such as all universal stoppers (see [3]), enjoy the Rupert prop-

erty, but it is easy to see that the unit ball in R
3 does not.

In this article, we discuss the Rupert property of Archimedean solids, claim that the
cuboctahedron, the truncated octahedron, the truncated cube, the rhombicuboctahe-
dron, the icosidodecahedron, the truncated cuboctahedron, the truncated icosahedron,
and the truncated dodecahedron have the Rupert property, and provide a lower bound
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Figure 1. Archimedean solids.

of the Nieuwland constant for each of them. In Section 3, we will prove the case of the
cuboctahedron in detail. The results for the remaining seven Archimedean solids will
be listed in Section 4, and the details of the proofs can be seen in the online supplement.

2. PRELIMINARIES. The set C ⊂ R
d is called a convex set if for all x1, x2 ∈ C,

λ1x1 + λ2x2 ∈ C for any λ1, λ2 ∈ [0, 1] with λ1 + λ2 = 1. If V is a subset of Rd , the
convex hull convV of V is the intersection of all convex sets that contain V , and intV ,
bdV denote its relative interior and boundary, respectively. If V is a finite set of points,
then convV is called a polytope. Let πn be a plane in R

3 with normal vector n, and Pn
the orthogonal projection of R3 onto πn. Let τ be a simple closed curve that lies in the
plane πn, and Iτ be the domain in πn interior to τ . A hole [4] Hτ with directrix τ and
direction n, see Figure 2, is the set

{y+ tn ∈ R
3 : y ∈ Iτ , t ∈ R}.

Figure 2. Hτ .
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That a polytope P has the Rupert property means that there are vectors n, m and an
isometry μ of πn onto πm such that

μ(Pn(P )) ⊂ intPm(P ).

We say that P passes through the hole Hτ with directrix τ = bdPm(P ) and direction
m. Pn(P ) is the inner projection of P , denoted by Pi, and Pm(P ) is the outer projection
of P , denoted by Po.

For distinct a, b ∈ R
d , let ab denote the line segment from a to b and lab the line

through a, b. The vector
−→
ab is the direction vector of lab from a to b. ‖ · ‖ is the Euclidean

norm.
Now let ex = (1, 0, 0), ey = (0, 1, 0), ez = (0, 0, 1) be the standard basis for R3.

And let �xy be the plane spanned by ex, ey, the original x-axis be the new x-axis, and
the original y-axis be the new y-axis. Thus, Pez denotes the orthogonal projection of R

3

onto �xy.
Suppose a polytope P in R

3 has vertex set {a1, a2, . . . , ak} (k ∈ Z
+), where

ai = (xi, yi, zi) (i = 1, 2, . . . , k). Denote Pez (ai) by iz. For the sake of convenience,
we express iz in the form of (xi, yi). And then Pez (P ) = conv{iz : i = 1, 2, . . . , k}.
Let Tx, Ty, Tz denote the rotational transformations of R3 around the x, y, z-axis by
an angle α, β, γ , respectively. The rotation angle is positive if and only if the rotation
obeys the right-hand rule. Then for all p = (x, y, z) ∈ R

3,

Tx(p) = ( x y z )Ax(α), Ty(p) = ( x y z )Ay(β ),

Tz(p) = ( x y z )Az(γ ),

where

Ax(α) =
⎛
⎝
1 0 0
0 cosα sinα

0 − sinα cosα

⎞
⎠, Ay(β ) =

⎛
⎝
cosβ 0 − sinβ

0 1 0
sinβ 0 cosβ

⎞
⎠,

Az(γ ) =
⎛
⎝

cos γ sin γ 0
− sin γ cos γ 0

0 0 1

⎞
⎠.

P (x(α), y(β ), z(γ )) means thatP is rotated about the x-axis by an angle α, then about
the y-axis by an angle β, and then about the z-axis by an angle γ . Whence the vertex
coordinates of P (x(α), y(β ), z(γ )) are

( xi yi zi )Ax(α)Ay(β )Az(γ ) (i = 1, 2, . . . , k).

By the definition of the Rupert property, we only need to find two P j =
P (x(α j ), y(β j ), z(γ j )) ( j = 1, 2), that satisfyPez (P1) ⊂ Pez (P2).We havePez (P1) = Pi
and Pez (P2) = Po.

3. THECUBOCTAHEDRON. We treat here in detail the case of the cuboctahedron.

Theorem 1. The cuboctahedron C has the Rupert property.

Proof. The cuboctahedron C of edge length
√
2 is shown in Figure 3, and the coordi-

nates of the vertices are given in Table 1.
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Figure 3. Cuboctahedron C.

Figure 4. Position of m.

Table 1. Vertex coordinates
of C.

Vertex Coordinates

a1 = −a12 (1, 0, 1)

a2 = −a11 (0, 1, 1)

a3 = −a10 (−1, 0, 1)

a4 = −a9 (0, −1, 1)

a5 = −a8 (1, 1, 0)

a6 = −a7 (−1, 1, 0)

In Figure 3, m = ( 23 , − 2
3 ,

2
3 ) is the center of the triangular face a1a4a7. Obviously,

the angle α1 between
−→om and the positive z-axis equals arcsin

√
6
3 and the angle between

the projection of −→om on �xy and the positive x-axis is π
4 . See Figure 4.

First, we consider the projection of C along lom.
Now, we rotate C by an angle −π

4 about the z-axis, and then by an angle −α1 about
the x-axis. The cuboctahedron obtained is denoted by C(z(−π

4 ), x(−α1)), and the vertex
ai gets the new label ai (i = 1, 2, . . . , 12). Then

ai =
(
xi yi zi

) = (
xi yi zi

)
Az(− π

4 )
Ax(−α1 ).

After rotation, the vector −→om coincides with the z-axis. −→om is the direction vector of
lom, so the projection of C(z(−π

4 ), x(−α1)) onto �xy is the same as the projection of C
along lom. Take Po to be this projection, shown in Figure 5 by the solid line segments.
The coordinates of the vertices are given in Table 2.

To find the inner projection Pi, we consider the projection of C along loa3 .
Rotate C about y-axis by π

4 ; the new cuboctahedron is denoted by C(y(π
4 )). The

vertices of C(y(π
4 )) have the same names as those of C, i.e., ai (i = 1, 2, . . . , 12). The

new coordinates are (
xi yi zi

)
Ay( π

4 )
.

After rotation, the direction vector of loa3 ,
−→oa3, coincides with the z-axis. Therefore

the projection of C(y(π
4 )) onto �xy is the same as the projection of C along loa3 , shown
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Figure 5. Po and Pez (C(y( π
4 ))).

Table 2. Vertex coordinates in Figure 5.

vertex coordinates vertex coordinates

2z = −11z (
√
2
2 ,

√
6
2 ) 1z = −12z (

√
2, 0)

3z = −10z (−
√
2
2 ,

√
6
2 ) 2z = −8z (

√
2
2 , 1)

5z = −8z (
√
2, 0) 6z = −4z (−

√
2
2 , 1)

in Figure 5 by the dashed lines. The coordinates are given in Table 2.
If C(y(π

4 )) is rotated by an angle β (> 0) about the y-axis, the vertex 2z (see Figure 5)
will move closer to the point p along the line lpq, and the vertex 1zwill move closer to the
point o along the x-axis. Denote the cuboctahedron at the new place by C(y(π

4 ), y(β ));
the vertex ai gets the new label ai′ (i = 1, 2, . . . , 12),

ai′ = (
xi′ yi′ zi′

) = (
xi yi zi

)
Ay( π

4 )
Ay(β ).

Then we choose a suitable β, such that 1′
z, 2

′
z move into the interior of Po and 1′

z2
′
z is

parallel to 2z5z. Because 1
′
z2

′
z is parallel to 2z5z if and only if ‖2′

z − p‖ = ‖1′
z − 5z‖,

we only need to choose a β satisfying ‖2′
z − p‖ = ‖1′

z − 5z‖.
First of all, we consider the change of edge 2z6z when C(y(π

4 )) is rotated to
C(y(π

4 ), y(β )). In Figure 6, o′ is the intersection of the positive y-axis and the face

a2a5a9a6. Clearly, p = (
√
2 −

√
3
3 , 1). So

‖2z − p‖ =
√
2 −

√
3

3
−

√
2

2
=

√
2

2
−

√
3

3
.

The edge-length of C is
√
2; therefore ‖a2 − o′‖ = 1. We have

‖2′
z − 2z‖ = cos

(π

4
− β

)
− cos

(π

4

)
;

see Figure 6. Thus,

‖2′
z − p‖ = ‖2z − p‖ − ‖2′

z − 2z‖ =
√
2

2
−

√
3

3
− cos

(π

4
− β

)
+

√
2

2
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Figure 6. Change of edge 2z6z when C(y( π
4 )) is rotated to C(y( π

4 ), y(β )).

=
√
2 −

√
3

3
− cos

(π

4
− β

)
.

In order to calculate ‖1′
z − 5z‖, we have to think about the changes of the projections

of a1, a12; see Figure 7.

Figure 7. Changes of the projections of a1, a12 when C(y( π
4 )) is rotated to C(y( π

4 ), y(β )).

Obviously, ‖a1‖ = √
2, which implies that

‖1′
z − 5z‖ =

√
2 −

√
2 cosβ.

From ‖2′
z − p‖ = ‖1′

z − 5z‖, we get

β = arccos

√
6 + 2

√
3

6
≈ 9.73561◦.
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In this way, we then find the projection Pi of C(y(π
4 ), y(arccos

√
6+2

√
3

6 )) onto�xy. Thus,
C has the Rupert property. �

Theorem 2. The Nieuwland constant of the cuboctahedron C satisfies the inequality
ν(C) > 1.01461.

Proof. Inspect Figure 5. The intersection of the lines

lo2z : y =
√
2x,

l2z5z : y = −
√
3x+

√
6

is p = (3
√
2 − 2

√
3, 6 − 2

√
6). Because

√
2
2 < 3

√
2 − 2

√
3 <

√
2, we have p ∈ 2z5z,

whence the intersection c2 of lo2′
z
and l2z5z belongs to 2z5z. Thus,

ν(C) � ‖c2‖
‖2′

z‖
= ‖5z‖

‖1′
z‖

=
√
2√

2 cosβ
=

√
2

2
√
3+2

√
6

6

= 2
√
3 −

√
6 > 1.01461. �

4. FURTHER RESULTS. Using methods similar to those in Section 3 we can prove
that seven other Archimedean solids also enjoy the Rupert property. We only list the
results here; for details of the proofs, please see the online supplement.

Theorem 3. The truncated octahedron, the truncated cube, the rhombicuboctahedron,
the icosidodecahedron, the truncated cuboctahedron, the truncated icosahedron, and
the truncated dodecahedron have the Rupert property.

Theorem 4. For the Niewland constant of the

(i) truncated octahedron O, we have ν(O) > 1.00815.
(ii) truncated cube T , we have ν(T ) > 1.02036.
(iii) rhombicuboctahedronR, we have ν(R) > 1.00609.
(iv) icosidodecahedron I, we have ν(I ) > 1.00015.
(v) truncated cuboctahedron U , we have ν(U ) > 1.00370.
(vi) truncated icosahedron J , we have ν(J ) > 1.00004.
(vii) truncated dodecahedron D, we have ν(D) > 1.00014.

The treatment of the remaining five cases appears to be quite hard, harder than those
solved by us in this article.

Open problems. Prove that the truncated tetrahedron, the snub cube, the rhombicosi-
dodecahedron, the truncated icosidodecahedron and the snub dodecahedron, all enjoy
the Rupert property. Also, provide estimates of their Nieuwland constants.

Conjecture. Every convex polytope has the Rupert property.
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