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1. Introduction and results

Let E be the Euclidean space of dimension d + 1, with d ≥ 1, and let K be the set of 
all convex bodies (i.e., compact convex sets with non-empty interior) in E. For K ∈ K, 
a chord is a line-segment xy joining boundary points x and y of K. A chord xy is called 
a normal of K if it is orthogonal to some supporting hyperplane at the point x called 
foot. An affine diameter is a chord with parallel supporting hyperplanes at its endpoints, 
while a double normal is an affine diameter orthogonal to those supporting hyperplanes. 
Thus, a double normal is a normal with two feet. In this paper, N (K) stands for the set 
of (oriented) double normals of K, �(c) denotes the length of an oriented chord c, and 
L(K) = {�(b)|b ∈ N (K)}.

It is well known that every normal to a convex body K is a double normal if and only 
if K has constant width. On the other hand, the shortest and the longest affine diameter 
are double normals, but are there others?

Answering a question proposed by V. Klee [15], N. H. Kuiper proved in 1964 that 
every convex body in E has at least d + 1 non-oriented double normals [19]. Moreover, 
for any C2−-function f : P

d → R (Pd is the projective space seen as the set of line 
directions of E) there exists a symmetric convex body K in E with centre 0, for which 
the set of directions of double normals coincides with the critical set z ∈ P

d|(df)z = 0
of f . Conversely, for any convex body K in E there exists a centrally symmetric convex 
body K ′ with C2−-boundary and a C2−-function f : Pd → R whose critical set coincides 
with the set of double normal directions of K, and of K ′. Here C2− stands for a class of 
regularity between C1 and C2. More important for our paper, he also proved the following 
result.

Theorem A. ([19]) If d ≤ 2, L(K) has measure 0, while for d ≥ 3 there exists a C2−

centrally symmetric strictly convex body K� in E and a (non-rectifiable) arc γ : [0, 1] →
N (K�) such that L(K�) = {�(γ (t))|t ∈ [0, 1]} is a non-degenerate interval.

Two years later, A. S. Besicovitch and T. Zamfirescu [4] proved the existence of a 
planar convex body K with an interior point x such that L (K) and the set of ratios in 
which x divides affine diameters through it are uncountable. Their construction provides 
convex curves whose set of double normals is homeomorphic to any chosen compact 
subset of R.

Recently, J. P. Moreno and A. Seeger devoted Sections 4 and 5 in [22] to the study 
of double normals. They prove, among other results, that L(K) is finite for any full-
dimensional polytope K in E (compare to our Lemma 8).

Kuiper’s results are closely related to billiards. Indeed, on a convex billiard table, 
2-periodic trajectories correspond to double normals. A classical result of G. Birkhoff [5]
states that in any planar convex billiard table K there always exist trajectories of period 
n, for any integer n ≥ 2.
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The set B of strictly convex planar sets, having a Cr boundary (for some r ≥ 2) with 
positive curvature everywhere, endowed with a suitable metric, is a Baire space.

M. J. Dias Carneiro, S. Oliffson Kamphorst and S. Pinto de Carvalho [9] proved that 
for most billiard tables K ∈ B, for every integer n ≥ 2, there are at most finitely many 
n-periodic trajectories; in particular, N (K) and thus L(K) are finite. For results in 
similar directions, see [6], [8], [9], [16], [17], [18], [23], [27].

The problem of counting double normals extends beyond convexity, to the framework 
of Riemannian manifolds, see for instance [13], [24], [26].

In this paper we study double normals from the point of view of Baire categories. Our 
results strongly contrast the abovementioned ones on the finiteness of the sets of double 
normals.

The next fundamental fact, independently discovered by V. Klee [14] and P. Gruber 
[11], is essential for our topic.

Theorem B. ([11], [14]) The boundary of most K ∈ K is of differentiability class C1 \ C2

and strictly convex.

Our work is also related to the articles [3], [30], [31], [32], which focus on intersections 
of infinitely many affine diameters or normals for typical convex bodies. Let us mention 
here that, for d ≥ 2, double normals of a typical convex body are pairwise disjoint [25]. 
For other Baire category results about convex bodies, see e.g. the survey [34].

We prove in this paper the following results.
For most K ∈ K, the set of feet of double normals is a Cantor set (i.e., a set homeo-

morphic to the standard Cantor set) having lower box-counting dimension 0 and packing 
dimension d (Theorem 1 in Section 3, and Theorems 2–3 in Section 4). Recall that the 
lower box-counting dimension is greater than or equal to the Hausdorff dimension and 
the upper box-counting dimension is greater than or equal to the packing dimension, so 
these results provide the typical Hausdorff and upper box-counting dimension as well. 
Note that Theorems 1–2 are a little stronger, for they are stated for the sets of double 
normals rather than the sets of their feet (see Remark 3).

Let �K be the map which associates to an oriented chord of K its length. Obviously, 
�K is Lipschitz continuous with respect to any standard metric of E2 (we shall choose one 
after Lemma 1). Double normals are related to the critical points of �K , see Lemmas 3
and 4.

The set of non-oriented double normals of K is denoted by Ñ (K), and �̃K stands for 
the corresponding length map.

For most K ∈ K, �̃K is injective. It will follow that L(K) is a Cantor set and has 
lower box-counting dimension 0. In particular, its Lebesgue measure vanishes, though 
the function �K does not satisfy the hypotheses of regularity of Sard’s theorem. For most 
K ∈ K, the packing dimension of L(K) is equal to 1

2 if d = 1, is at least 3
4 if d = 2, and 

equals 1 if d ≥ 3 (Theorems 4–5 and Corollary 3 in Section 5).
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Again for most K ∈ K, the set of maximizing chords (local maxima of the length 
function) is countable and dense in N (K) (Propositions 2–3 in Section 6).

The last author considered in [28], [29], [33] the lower and upper curvatures γτ
i and 

γτ
s and proved, among other results, the following.

Theorem C. For most K ∈ K, at each point x ∈ ∂K, γτ
i (x) = 0 or γτ

s (x) = ∞ for any 
tangent direction τ at x, and both equalities hold at most points.

The curvature of a convex body is deeply related to double normals, see [2], [35] and 
Remark 6.

We continue this investigation by considering the lower and upper curvatures at feet of 
double normals. We prove that at any foot x of a maximizing chord c of a typical convex 
body and in any tangent direction τ , γτ

s (x) = ∞ and γτ
i (x) ≥ �(c)−1, with equality if 

c is a metric diameter (a chord of globally maximal length); this improves [36, Th. 11]. 
Moreover, at both feet of a typical double normal, γτ

s (x) = ∞ in any direction τ . Finally, 
given a fixed line-segment c = xy, for most convex bodies admitting c as double normal, 
γτ
s (x) = ∞ and γτ

i (x) = 0 in any direction τ (Theorems 6–9 in Section 7).
Statements similar to our theorems, but involving only centrally-symmetric convex 

bodies in E, can also be proven. In this case, due to a variant of Theorem B for these 
bodies, see also [19, Theorem 2], all double normals intersect at the symmetry centre. 
The formal statements and the proofs are left to the interested reader. This paper also 
leaves open several questions, see Remarks 4, 5 and 7.

2. Preliminaries

The space K, endowed with the Pompeiu–Hausdorff metric dPH , is a Baire space. 
This allows us to state that most convex bodies, or typical convex bodies enjoy a given 
property, meaning that the set of those bodies that do not enjoy it is meagre, i.e. of first 
Baire category. (Recall that a subset of a topological space is said to be of first Baire 
category, if it is included in a countable union of closed sets of empty interior. Otherwise, 
it is called of second category.) Of course, it is also equivalent to state that the set of 
bodies that do enjoy the considered property is residual, meaning that it contains a 
dense countable intersection of open sets (a dense Gδ-set). A Baire space is a topological 
space in which every open set is of second category. We shall need the following (almost 
obvious) lemma.

Lemma 1. ([1]) If Z is a space of second Baire category (in itself), Y is residual in Z, 
and X is residual in Y , then X is residual in Z.

In this article, we shall apply the lemma when Z is a Baire space.
By oriented chord (respectively metric diameter, double normal) we mean an ordered 

pair of points corresponding to the endpoints of the non-oriented chord. It follows that �
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is nothing but the Euclidean metric on E, and not, strictly speaking, a length function. 
Moreover N (K) and the set C(K) def= ∂K × ∂K of (possibly degenerate) oriented chords 
are subsets of E2 = E × E and inherit its metric. The distance we choose on E2 is given 
by

d ((x, y) , (x′, y′)) = max (‖x− x′‖ , ‖y − y′‖) ;

thus, the ball centred at c ∈ E
2 of radius r coincides with the Cartesian product of the 

balls of radii r centred at the entries of c.
An oriented chord which is a local maximum (a strict local maximum) of �K is said 

to be maximizing (respectively strictly maximizing). We define M(K) (resp. MS(K)) 
as the set of maximizing chords (respectively strictly maximizing chords).

From now on, unless otherwise specified, the words double normal will refer to an 
oriented double normal. The set of feet of double normals is denoted by F (K). The set 
of oriented affine diameters of K is denoted by D (K).

Some more general notation follows. As usual, N stands for the set of positive integers. 
We denote by Nn the set of positive integers smaller than or equal to n and by N0

n the 
set of non-negative integers smaller than n. Given an n-tuple x = (x1, . . . , xn) ∈ E

n and 
a subset I of Nn, xI denotes the set {xi|i ∈ I}.

For any subset A of E, ∂A stands for the boundary of A, conv(A) for the convex 
hull of A (i.e., the intersection of all convex sets containing A), 〈A〉 for the affine space 
spanned by A and 

−→
A for the direction of 〈A〉, that is, the linear space of differences of 

vectors in 〈A〉.
For distinct x, y ∈ E, xy stands for the line-segment joining x to y and xy for the 

whole line. The open ball, closed ball and sphere centred at x of radius r are denoted by 
B (x, r), B̄ (x, r) and S (x, r) respectively. We shall also use this notation when x belongs 
to E2.

Given a metric space X, for A ⊂ X, Å stands for the interior of A in X. The 
set of non-empty compact subsets of X is denoted by H(X). It is endowed with the 
Pompeiu–Hausdorff distance induced by the distance on X. Since line-segments are com-
pact subsets of E, this metric also induces a distance on Ñ (K) for any K ∈ K, with 
respect to which, the canonical map φK : N (K) → Ñ (K) is 1-Lipschitz.

The next Lemma is obvious and left to the reader.

Lemma 2. Let Kn ∈ K tend to K ∈ K.

(1) Let (xn, yn) ∈ N (Kn) converge to (x, y) ∈ E
2. Then (x, y) is a double normal of K.

(2) Let Cn ⊂ N (Kn) converge in H(E2) to some limit C. Then C ⊂ N (K).

Applying Lemma 2 with Kn = K, we get that N (K) is compact. Hence, N can be seen 
as a map from K to H(E2). Note that Lemma 2 easily implies the upper semi-continuity 
of this map, in the sense of [20, p. 173].



250 A. Rivière et al. / Advances in Mathematics 343 (2019) 245–272
Double normals are related to the critical points of �K . More precisely, we have the 
following two lemmas.

Lemma 3. If b = (x, y) is a local maximum of �K , then b is a double normal.

Proof. Assume that b is not a double normal. Then the hyperplane H normal to xy
through one extremity of b, say x, is not a supporting hyperplane. It follows that there 
exists xn ∈ ∂K tending to x and separated from y by H. Thus, ‖y − xn‖ > ‖x− y‖ and 
(x, y) is not a local maximum of �K . �

The next lemma is Proposition 1 in [18]; see also Proposition 2 in [8].

Lemma 4. If ∂K is C1 then b ∈ C (K) is a double normal if and only if � (b) > 0 and 
(d�K)b = 0.

The following lemma is central to this paper.

Lemma 5. Let b ∈ MS (K). Then, for any ε > 0, there exists a neighbourhood U of K
in K such that for any K ′ ∈ U there exists a maximizing chord b′ ∈ M (K ′) satisfying 
d (b, b′) < ε.

Proof. Since b is a strict local maximum of �K , there exists r ∈ ]0,min (ε, � (b))[ such 
that

� (b) > max
c∈S(b,r)∩C(K)

� (c) .

Hence, there is a neighbourhood U of K such that for any K ′ ∈ U there exists c′ ∈
C (K ′) ∩ B (b, r) verifying

� (c′) > max
c∈S(b,r)∩C(K′)

� (c) .

It follows that the global maximum b′ of �K′ on B̄ (b, r) ∩ C (K ′) is not achieved on 
the boundary of the ball, and thus, it is a maximizing chord. �

We will often use implicitly the following criterion in order to prove that a chord is 
strictly maximizing.

Lemma 6. Let (x, y) ∈ N (K), K ∈ K. If there exists η > 0 and α < π/2 such that for 
any (x′, y′) ∈ B((x, y), η) ∩ C(K) the angles �yxx′ and �xyy′ are smaller than α, then 
(x, y) ∈ MS(K).

The proof is elementary and left to the reader.
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Corollary 1. For any polytope K ∈ K, MS(K) = M(K).

The next lemma will be invoked in the proof of Theorem 5. It seems to be interesting 
by itself.

Lemma 7. For all K ∈ K, the map �K is 2-Hölder continuous. More precisely, for any 
b0, b1 ∈ N (K), |�K(b0) − �K(b1)| ≤ HKd(b0, b1)2, where HK = 2/ minL (K).

Proof. Assume that �(b0) ≤ �(b1) and set ε def= d (b0, b1). Let x, x′ be the feet of b0 and 
x +u, x′+u′ be the feet of b1, where max(‖u‖ , ‖u′‖) = ε. Since b1 is included in the strip 
of E between the hyperplanes normal to b0 through x and x′, we have 〈x′ − x, u〉 ≥ 0
and 〈x′ − x, u′〉 ≤ 0. It follows that

�(b1)2 = ‖x′ − x + u′ − u‖2

= �(b0)2 + ‖u‖2 + ‖u′‖2 − 2 〈x′ − x, u〉 + 2 〈x′ − x, u′〉 − 2 〈u, u′〉
≤ �(b0)2 + 4ε2,

whence

�(b1) − �(b0) ≤
4

�(b1) + �(b0)
ε2 ≤ HKε2. �

Remark 1. 2-Hölder maps defined on a space connected by Lipschitz continuous arcs are 
constant.

Remark 2. It is a classical result that the restriction of a map of class C2 to a compact 
set of critical points is always 2-Hölder, but in our case �K is not so regular.

3. A Cantor set

In this section, we prove the following theorem.

Theorem 1. For most K ∈ K, N (K) is a Cantor set.

Proof. Recall that a famous theorem of Brouwer assures that a compact metric space 
is a Cantor set if and only if it is non-empty, totally disconnected, and perfect. The 
compactness is clear from Lemma 2. The non-emptiness follows from the fact that any 
metric diameter (i.e., longest chord) is, by Lemma 3, a double normal. Thus, it remains 
to prove the last two properties, to which Lemmas 10 and 11 below are devoted. �
Remark 3. When K ∈ K is of differentiability class C1 (the typical case, by Theorem B), 
the projection N (K) → F(K) that maps a double normal to its first foot is a bijection. 
Since N (K) is compact, it is a homeomorphism. Similarly, any small enough compact 
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subset of N (K) is homeomorphic to its image by the canonical map N (K) → Ñ (K). It 
follows that Theorem 1 holds for F(K) and Ñ (K), too.

A finite set X ⊂ E is said to be standard if for any two disjoint subsets X1, X2 with 
cardinality at most d + 1, we have

dim
(−→
X1 ∩

−→
X2

)
= max

(
0, dim

(−→
X1

)
+ dim

(−→
X2

)
− d− 1

)
.

A polytope is said to be standard if for any two faces F , G that do not have a common 
vertex, we have

dim
(−→
F ∩ −→

G
)

= max
(
0, dim

(−→
F
)

+ dim
(−→
G
)
− d− 1

)
.

Clearly, a polytope with a standard set of vertices is standard.

Lemma 8. If K ∈ K is a standard polytope then N (K) is finite.

Proof. Let (x, y) ∈ N (K) and Fx, Fy be the minimal-dimensional faces containing x and 
y respectively. Clearly Fx and Fy are included in two parallel supporting hyperplanes Hx

and Hy, whence they cannot have a common vertex. On the one hand, K is standard, 
whence

dim
(−→
Fx ∩ −→

Fy

)
= max

(
0, dim

(−→
Fx

)
+ dim

(−→
Fy

)
− d− 1

)
.

On the other hand, −→Fx and 
−→
Fy are subspaces of −→Hx = −→

Hy, whence

dim
(−→
Fx ∩ −→

Fy

)
≥ max

(
0, dim

(−→
Fx

)
+ dim

(−→
Fy

)
− d

)
.

It follows that dim
(−→
Fx

)
+ dim

(−→
Fy

)
≤ d and dim

(−→
Fx ∩ −→

Fy

)
= 0. Hence (x, y) is the 

only double normal whose extremities lie in minimal faces Fx and Fy. We proved that 
the cardinal of N (K) is not greater then the number of ordered pairs of facets of K. �
Lemma 9. The set of n-tuples x ∈ E

n such that xNn
is standard contains an open and 

dense set in En.

Proof. First notice that the set U ⊂ E
n of all n-tuples x such that for any I ⊂ Nn, 

dim−→xI = min (#I − 1, d + 1) (points in generic position) is open and dense. We have to 
prove that, for any non-empty disjoint subsets I, J with cardinality at most d + 1, the 
set

UI,J
def= {x ∈ U | dim (−→xI ∩ −→xJ) = max (0,#I + #J − 3 − d)}
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is open and dense. Put k def= max (0,#I + #J − d− 3). Note that dim−→xI ∩−→xJ is always 
greater than or equal to k, and that rank (MI,J) = #I + #J − 2 − dim (−→xI ∩ −→xJ), 
where MI,J is a (d + 1)× (#I + #J − 2) matrix, whose columns are vectors xi − xmin I

(i ∈ I, i �= min I) and yj − ymin J (j ∈ J , j �= min J). So x /∈ UI,J if and only if 
rank (MI,J) < #I + #J − 2 − k, that is, if all minors of MI,J of order greater than or 
equal to #I + #J − 2 − k vanish. Such minors are polynomials on En, whence UI,J is 
open, and dense if and only if it is not empty. The latter fact being obvious, the proof is 
finished. �
Lemma 10. For most K ∈ K, N (K) is totally disconnected.

Proof. We have

A def=
{
K ∈ K

∣∣∣∃C ∈ H(E2), C ⊂ N (K) , C connected, diam (C) > 0
}

=
⋃
n∈N

{
K ∈ K

∣∣∣∣∣∃C ∈ H(E2), C ⊂ N (K) , C connected, diam (C) ≥ 1
n

}
def=

⋃
n∈N

An.

We claim that An is closed. Choose a sequence {Kp}∞p=1 in An converging to K ∈ K. 
By definition of An, there exist compact connected sets Cp ⊂ N (Kp) whose diameter is 
at least 1

n . Let Q be a compact neighbourhood of K ×K in E2. For p large enough, Cp

belongs to H(Q), which is compact. Hence, one can extract from {Cp}∞p=1 a converging 
subsequence; let C be its limit. Clearly, diam(C) ≥ 1

n , and by Lemma 2, C ⊂ N (K). It 
is well known (and easy to check) that a Pompeiu–Hausdorff limit of connected compact 
sets is connected. Hence, C is connected, K belongs to An and thus An is closed.

By virtue of Lemma 9, standard polytopes are dense in K, and by Lemma 8, they 
cannot belong to An. Hence An has empty interior, and thus A is meagre. �
Lemma 11. For most K ∈ K, N (K) is perfect.

Proof. Choose any countable dense set Z in E2. The assumption that N (K) is not 
perfect implies that there exist b ∈ N (K), r > 0, u ∈ Z such that

N (K) ∩ B̄ (u, r) = {b} .

We have

A def= {K ∈ K|N (K) not perfect} ⊂
⋃

(n,u)∈N×Z

An,u

with
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An,u =
{
K ∈ K

∣∣∣∃b ∈ N (K) s.t. N (K) ∩ B̄

(
u,

1
n

)
= {b}

}
=
{
K ∈ K

∣∣∣#(
N (K) ∩ B̄

(
u,

1
n

))
= 1

}
.

We have to prove that the closure of An,u has empty interior, that is, for any K0 ∈ K
and any ε > 0 there exists K3 ∈ K such that dPH (K0,K3) < ε and such that a whole 
neighbourhood of K3 does not intersect An,u.

First, we can find a polytope K1 such that dPH (K0,K1) < ε. If N (K1) ∩ B̄
(
u, 1

n

)
is empty then the set will remain empty for any K in a whole neighbourhood of K1, 
because otherwise the limit of a converging subsequence of double normals of K tending 
to K1 would belong to B̄

(
u, 1

n

)
. Hence we can set K3 = K1 and the proof is finished.

If N (K1) ∩ B̄
(
u, 1

n

)
is not empty then we can move and dilate slightly K1 such that 

the modified polytope K2 satisfies dPH (K0,K2) < ε and N (K2) ∩ B 
(
u, 1

n

)
�= ∅. Let 

b2 belong to N (K2) ∩ B 
(
u, 1

n

)
. Consider a rectangle R = x3x

′
3y3y

′
3 whose centre is 

the midpoint of b2, such that x3y
′
3 is parallel to b2, longer than �(b2). If it is not too 

long nor too wide, then (x3, y3) and (x′
3, y

′
3) belong to B 

(
u, 1

n

)
and the distance from 

K3
def= conv (K2 ∪R) to K0 is less than ε. Still reducing the width x3x

′
3 if necessary, we 

may assume that the hyperplanes normal to the diagonals of R through their extremities 
do not intersect K2, whence those hyperplanes are supporting K3, and (x3, y3) and 
(x′

3, y
′
3) are double normals of K3. Also, one can easily check that any segment between 

x3 (respectively y3) and any point of K3 makes an angle less than π/2 with x3y3, whence 
(x3, y3) ∈ MS(K3). Of course, the same holds for (x′

3, y
′
3). Now, by Lemmas 5 and 6, 

there is a whole neighbourhood U of K3 such that any K ∈ U admits at least two double 
normals in B 

(
u, 1

n

)
, hence U does not intersect An,u. �

4. Dimensions

In this section, we prove that for most convex bodies K the lower box-counting di-
mension of F (K) is 0 and its packing dimension is d. Let us recall their definitions.

If A is a metric space and δ is a positive number, a subset F ⊂ A is called a δ-set if any 
two distinct points of F have a distance at least δ. Let’s denote by Pδ(A) the supremum 
of the cardinals of all δ-sets of A. The lower and upper box-counting dimension of A are 
defined as

dimBA = lim inf
δ→0

lnPδ(A)
− ln δ

dimBA = lim sup
δ→0

lnPδ(A)
− ln δ

.

It is well-known that the lower box-counting dimension is greater than or equal to the 
Hausdorff dimension [10, (3.17)].
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The fact that a compact countable set may have arbitrarily large box-counting di-
mension leads to the definition of the so-called packing dimension:

dimP A = inf
{Ai}∞

i=1

sup
i∈N

dimBAi,

where the infimum is taken over all the coverings {Ai}∞i=1 of A. It is clear that this 
dimension is lower than or equal to the upper box-counting dimension, and vanishes 
for any countable set. There also exists a similar dimension derived from the lower 
box-counting dimension, but we shall not use it in this paper. Note that, classically, the 
packing dimension is defined in a completely different way, involving outer measures. 
See [10, 3.3 and 3.4] or [21, Section 5.9] for the original definition and the equivalence 
between those definitions.

It is easy to see that for any subset A of E, Pδ

(
A
)

= Pδ (A) and thus dimBA = dimBA. 
This fact, together with Baire’s theorem leads to the following lemma.

Lemma 12. Let s be a positive number. If A is a complete metric space in which any open 
set has upper box-counting dimension at least s, then dimP A ≥ s.

It follows that dimBA = dimP A whenever A is complete and enjoys some kind of 
homogeneity, as can be expected for the set of double normals of a typical convex body.

Theorem 2. For most K ∈ K, the lower box-counting dimension of N (K) is 0.

Using a general result of Gruber [12, p. 20], the proof of the theorem almost completely 
reduces to the upper semi-continuity of the maps K �→ N (K) (Lemma 2) and A �→
Pδ (A) ([12, p. 20]). However, in order to make the paper more self-contained, we choose 
to give a more geometrical, direct proof.

Proof. Define

A def=
{
K ∈ K| lim inf lnPδ (N (K))

− ln δ
> 0

}
=

⋃
n

An,

where

An =
{
K ∈ K|∀δ ≤ 1

n
: lnPδ (N (K))

− ln δ
≥ 1

n

}
.

We first prove that An is closed. Let Kp ∈ An tend to K ∈ K. Let us fix δ ≤ 1/n; we 
want to prove that

Pδ (N (K)) ≥ δ−1/n.
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Since Kp ∈ An we have Pδ (N (Kp)) ≥ δ−1/n. So there are N
def=

⌈
δ−1/n⌉ double 

normals b1p, . . . , bNp in Kp forming a δ-set. By extraction, one can assume the convergence 
of each sequence 

{
bip
}
p

(i ∈ NN ) to some limit bi ∈ N (K) (by Lemma 2). Obviously {
bi|i ∈ NN

}
is a δ-set of double normals. So Pδ (N (K)) ≥ δ−1/n, and K ∈ An.

Clearly, if N (K ′) is finite for some K ′ ∈ K then K ′ does not belong to An. Hence, 
by Lemmas 7 and 8, An has empty interior and A is meagre. �
Lemma 13. For any K ∈ K, any (x, y) ∈ N (K) and any ε > 0 there exist K ′ ∈ K, 
o ∈ E, R > 0 such that dPH (K,K ′) < ε and S(o, R) ∩ ∂K ′ contains two spherical caps 
symmetrical to each other with respect to o, one of them included in B (x, ε).

Proof. Let o be the midpoint of xy and Δ the open subset of E bounded by the two 
hyperplanes through x and y, normal to x − y.

We choose R > ‖x − y‖/2 small enough to ensure that

K ′ def= conv(K ∪ (B̄(o,R) \ Δ))

satisfies dPH(K0, K1) < ε. It remains to prove that a whole neighbourhood of the poles 
p+ def= o + R

‖o−x‖ (x− o) and p−
def= 2o − p in ∂K ′ is included in S(o, R). Let B± be 

the connected component of B̄(o, R) \ Δ that contains p±. Assume that there exist 
pn ∈ S(o, R), tending to p+, and interior to some line-segments anbn with an ∈ B+

and bn ∈ conv (K ∪B−). Passing if necessary to a subsequence, we may assume that bn
converges to b ∈ conv (K ∪B−). The hyperplane Hn through pn and normal to (x− y)
separates an and bn, and the connected component of B+ \Hn containing p+ tends to 
{p+}, whence an → p+. Since ‖pn − an‖ → 0, �bnano → π/2. It follows that b should 
belong to the hyperplane through p+ normal to x − y, and we get a contradiction.

Of course, the same proof holds for p−. �
Lemma 14. Let K be a convex body in E and b1, . . . , bn ∈ N (K) be n double normals. 
Assume that each foot of bi (i ∈ Nn) admits a neighbourhood in ∂K which does not 
contain any line-segment. Then there exists a sequence Kp ∈ K tending to K when p
tends to ∞, such that b1, . . . , bn belong to MS(Kp) for any p.

Proof. Let ui, vi be the feet of bi (i = 1, . . . , n), and consider the convex cone of rev-
olution C+

i,p (respectively C−
i,p) with apex ui (respectively vi), axis uivi, angle π

2 − 1
p

between the axis and the generatrices, and containing vi (respectively ui). Since K is 
locally strictly convex near ui and vi, the intersection Kp of K and all these cones tends 
to K when p tends to ∞ and clearly bi ∈ MS(Kp). �
Theorem 3. For most K ∈ K, we have dimP F (K) = d.
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Proof. Let U be a countable base of open sets of E. For N ≥ 1 and V ∈ U , we define

ΩV,N =

⎧⎪⎨⎪⎩K ∈ K
∣∣∣∣∣
F (K) ∩ V = ∅
or
∃δ ∈

]
0, 1

N

[
s.t. ln Pδ(F(K)∩V )

− ln δ > d− 1
N

⎫⎪⎬⎪⎭ .

If for a given V ∈ U , K lies in the intersection of all these ΩV,N , it satisfies dimPF (K)∩
V = d whenever F (K)∩V �= ∅, and it follows that dimP F (K) = d by Lemma 12. Thus 
we just have to check the density in K of Ω̊V,N .

Let V ∈ U , N ≥ 1, K0 ∈ K and ε > 0; we look for some K3 ∈ Ω̊V,N such that 
dPH(K0, K3) < ε. If K0 belongs to Ω̊V,N then the proof is over, otherwise there exists 
K1 ∈ K such that dPH(K0, K1) < ε and F (K1) ∩ V contains at least one element x1; 
let y1 be the other foot of a double normal issued from x1.

By Lemma 13, there exist K2 ∈ K, R > 0, o ∈ K2 such that dPH (K0,K2) < ε

and ∂K2 contains two open subsets U± of S def= S(o, R), image one to the other by the 
symmetry σ : p �→ 2o − p, and such that U+ ⊂ V . Choose x ∈ U+ and let r > 0 be small 
enough to ensure that C+ def= B̄(x, r) ∩ S ⊂ U+.

Since dimC+ = d, we can choose 0 < δ < 1/N such that

lnPδ(C+)
ln 2 − ln δ

> d− 1
N

and a δ-set F ⊂ C+ with cardinality Pδ(C+). Clearly (x, σ (x)) ∈ N (K1) for x ∈ F . By 
Lemma 14, there exists K3 ∈ K such that dPH (K0,K3) < ε and (x, σ (x)) ∈ MS(K3)
for any x ∈ F .

By virtue of Lemma 5, there is a neighbourhood V of K3 in K such that for any K ∈ V , 
and any x ∈ F , there exists a double normal (x̃, ỹ) ∈ N (K) verifying x̃ ∈ B(x, δ/4) ∩ V . 
From this we get that Pδ/2(F (K)∩V ) ≥ Pδ(C+) and thus K ∈ ΩV,N . Hence K3 ∈ Ω̊V,N

and the proof is complete. �
Remark 4. The reader may ask why this theorem is stated for F instead of N . As a 
matter of fact, obviously,

dimP F (K) ≤ dimP N (K) ≤ dimP D (K) .

Since this set is canonically one to one mapped (for a C1 strictly convex body K) on the 
unit sphere of E, one may think that dimPD (K) = d, in which case Theorem 3 would 
hold for N as well. However, this bijection is not (known to be) regular enough to get 
any conclusion on the dimension of D(K).

For a smooth strictly convex body, there is a diametral map ΔK : ∂K → ∂K which as-
sociates to a point x the only point x′ such that (x, x′) ∈ D (K). Hence D (K) ⊂ ∂K×∂K

is the graph of this map. However, this map is not necessarily Lipschitz continuous, or 
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regular enough to carry any dimensional information. Indeed, K. Adiprasito and T. Zam-
firescu proved that it behaves rather badly in the typical case, for it maps a set of full 
measure on a set of measure zero [1].

Nevertheless, if d = 1, an elementary argument of monotony of ΔK shows that 
dimD (K) = 1 for any reasonable notion of dimension. See Lemma 16.

5. Critical values

This section focuses on the set of lengths of double normals. As seen earlier, double 
normals can be seen as critical points of the length function, so their lengths are critical 
values.

We first show that for typical x ∈ E
n, positive distances d(〈xI〉 , 〈xJ〉) are pairwise 

distinct (I, J ⊂ Nn).

Lemma 15. There is an open and dense set U ⊂ E
n such that for any x ∈ U and for 

any four pairwise disjoint non-empty sets of indices I, J , I ′, J ′ ⊂ Nn of cardinality at 
most d, the distance between 〈xI〉 and 〈xJ〉 and the distance between 〈xI′〉 and 〈xJ ′〉 are 
either distinct or both equal to 0.

Proof. There is an open and dense set V0 ⊂ E
n such that for any non-empty set of indices 

I ⊂ Nn, dim 〈xI〉 = #I − 1. If #I + #J > d + 3 then d (〈xI〉 , 〈xJ〉) = 0 for any x ∈ V0. 
So, from now on, we assume implicitly that #I + #J ≤ d + 3 and #I ′ + #J ′ ≤ d + 3. 
Now, by Lemma 9, there is an open and dense set V1 ⊂ V0 such that for any disjoint 
sets of indices I, J ⊂ Nn, −→xI ∩ −→xJ = {0}. Moreover, there exists a real valued rational 
function PIJ on En whose restriction to V1 satisfies d (〈xI〉 , 〈xJ〉)2 = PIJ (x). We have 
to prove that, given four pairwise disjoint sets of indices I, J , I ′, J ′, the open set 
UII′JJ ′ = {x ∈ V1|PIJ (x) �= PI′J ′ (x)} is dense in V1. Since it is defined by polynomial 
inequalities, it is sufficient to prove that it is not empty. This latter fact is obvious 
because the sets of indices are disjoint. �
Theorem 4. For most K ∈ K, �̃K : Ñ (K) → R is injective.

Proof. A set K has a non-injective function �̃K if and only if there exist an integer n and 
two non-oriented double normals b1, b2 such that dPH (b1, b2) ≥ 1

n and � (b1) = � (b2). For 
fixed n, the set An of such bodies is obviously closed in K. Since a double normal realizes 
the distance between the affine spaces spanned by two disjoint faces (disjoint, because 
they lie in two parallel hyperplanes), by Lemma 15, there is a dense set of polytopes that 
does not intersect An and the proof is finished. �
Corollary 2. For most K ∈ K, M(K) = MS(K).

Corollary 3. For most K ∈ K, L(K) is homeomorphic to the Cantor set and has lower 
box-counting dimension 0.
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Proof. By Theorem 1 and Remark 3, Ñ (K) is a Cantor set. Since, by Theorem 4, 
�̃ : Ñ (K) → R is injective, L(K) = �̃(Ñ (K)) = �(N (K)) is also a Cantor set. Moreover, 
� is Lipschitz continuous, whence, by Theorem 2,

dimPL(K) ≤ dimPN (K) = 0. �
Concerning the upper dimension, we get the following result.

Theorem 5. For most K ∈ K,

• if d = 1, dimP L (K) = 1
2 ,

• if d = 2, dimP L (K) ≥ 3
4 ,

• if d ≥ 3, dimP L (K) = 1.

Remark 5. We conjecture that, in the case d = 2, dimP L (K) cannot exceed 3/4 for any 
K ∈ K. Obviously the conjecture implies the equality in Theorem 5.

The rest of the section is devoted to the proof and will be divided in several lemmas; 
the final compilation is postponed to the end of the section.

Lemma 16. If d = 1 and K ∈ K is C1 and strictly convex then dimBD (K) = 1.

Proof. Let ΔK : ∂K → ∂K be the function which associates to each point x the other 
extremity of the affine diameter starting at x. Thus D (K) is the graph of ΔK .

It is easy to see that two distinct affine diameters of K always intersect inside K.
Thus ΔK is locally monotone, in the following sense: for any homeomorphisms φ :

[0, 1] → U ⊂ ∂K, ψ : [0, 1] → V ⊂ ∂K such that x ∈ U and ΔK (x) ∈ V , ψ−1 ◦ ΔK ◦ φ
is monotone. It follows that the dimension of the graph of ΔK cannot exceed 1. �

Let V be a basis of open sets of R. For V ∈ V, κ > 0 and N ∈ N, define

Uκ
V,N

def=
{
K ∈ K|∃δ ∈

]
0, 1

N

[
s.t. lnPδ(�(MS(K)) ∩ V )

− ln(δ/2) > κ− 1
N

}
,

WV
def= {K ∈ K|L(K) ∩ V = ∅}.

Lemma 17. For d = 1, for all V ∈ V and N > 0, U1/2
V,N is dense in K \WV .

Proof. Fix K0 ∈ K \ WV , (x0, y0) ∈ N (K) such that ‖x0 − y0‖ ∈ V , and ε > 0. By 
Lemma 13, there exists K1 ∈ K such that dPH (K0,K1) < ε and ∂K1 contains two 
circle arcs C± sharing the same centre o, symmetrical to each other with respect to o, 
and such that the line x0y0 intersects ∂K1 in two points x ∈ C+ and y ∈ C−. We may 

also assume that 2R def= ‖x− y‖ ∈ V . By considering even smaller arcs, one can assume 
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without loss of generality that x is the midpoint of C+; let a, b be its extremities. Put 
Θ = �xoa. Making if necessary C+ even smaller, we may also assume without loss of 
generality that

cos θ ≤ 1 − θ2/3

for any θ ∈ [0,Θ]. The lines tangent to C+ at a and b intersect at some point c collinear 
with o and x. Note that the union K2 of the triangle abc and K1 is convex. Making if nec-
essary C+ even smaller, we may assume without loss of generality that dPH (K0,K2) < ε. 
Let u (θ) be a unit vector such that � (u (θ) , a− o) = θ and Ru (θ) ∈ C+. Now choose a 
positive integer n and define for i = 0, . . . , n

δ = RΘ2/4n2,

Ri = R + iδ,

vi = o + Riu (iΘ/n) .

Note that, for i > 0,

Ri cos iΘ
n

< R

(
1 − Θ2

12n2

)
< R,

whence all the vi belong to the triangle abc. Let K3 be the convex hull of K2, the points 
vi and their symmetrical points v′i with respect to o. Since K1 ⊂ K3 ⊂ K2 we have 
dPH (K0,K3) < ε.

We claim that any triangle ovivj with 1 ≤ i < j ≤ n is acute. Since Rj > Ri, it is 
clear that �ovjvi < π/2. Moreover �ovivj is acute if and only if Ri

Rj
> cos (j−i)Θ

n . Now

Ri

Rj
= Rj − (j − i) δ

Rj
= 1 − (j − i) Θ2

4n2
R

Rj
≥ 1 − Θ2 (j − i)

4n2 .

On the other hand

cos (j − i) Θ
n

≤ 1 − (j − i)2 Θ2

3n2 ≤ 1 − (j − i) Θ2

3n2 ,

and the claim is proven. Moreover, �ovnb < π/2 because rn > R. It follows that vi ∈ ∂K3

and (vi, v′i) ∈ MS(K3), 1 ≤ i ≤ n. Obviously the set {�(vi)|i ∈ Nn} is a δ-set; for n large 
enough, it is included in V . It follows that Pδ(�(MS(K3)) ∩V ) ≥ n. Since lim ln n

− ln δ = 1
2 , 

for n large enough, K3 ∈ U
1/2
V,N . �

Lemma 18. For d ≥ 3, for all V ∈ V, U1
V,N is dense in K \WV .



A. Rivière et al. / Advances in Mathematics 343 (2019) 245–272 261
Proof. Choose K0 ∈ K \WV , b ∈ N (K0) such that �K0 (b) ∈ V , and ε > 0. We have to 
prove that there exists K ∈ U1

V,N such that dPH(K0, K) < ε.
By “combination” of K0 and the convex bodies K� provided by Theorem A, one can 

find K1 such that dPH(K0, K1) < ε and L (K1) ∩ V contains an interval [a, a + 2Δ], 
with 0 < Δ < 1. Here, the convex bodies are combined using the same construction as 
in the proof of Lemma 13 at a neighbourhood of b, replacing the sphere by a rescaled 
and displaced copy of K�.

Put δ0
def= 2Δ

M , where M is chosen large enough to ensure that δ0 < 1
N and

ln Δ
ln Δ − lnM

<
1
N

.

Let bi ∈ N (K1) (i = 0, . . . , M) be a double normal of length a + iδ0. By Lemma 14, one 
can find K2 ∈ K such that dPH(K0, K2) < ε and bi ∈ MS(K2). Now,

Pδ0(�(MS(K2)) ∩ V ) ≥ M = Δ
δ0/2

,

whence

ln(Pδ0(�(MS(K2)) ∩ V ))
− ln(δ0/2) ≥ 1 − ln Δ

ln Δ − lnM
> 1 − 1

N

by the choice of M . Hence K2 belongs to U1
V,N and the proof is complete. �

The next technical lemma is needed for the case d = 2.

Lemma 19. Consider the classical parametrization of the unit sphere

φ : (λ, θ) �→ (cosλ cos θ, cosλ sin θ, sinλ),

choose R > 0, A > 0, T ∈
]
0, π

4
[

and define for any natural integer m and any (i, j) ∈
N0

m2 × N
0
m

δ = RT 2

16m4 ,

rij = R + A−
(
jm2 + i

)
δ,

vij = rijφ

(
iT

m2 ,
jT

m

)
.

Then, for m large enough, for any (i, j) �= (i′, j′) ∈ N
0
m2 × N

0
m,

〈vi′j′ , vi′j′ − vij〉 > 0.
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Proof. Put

D = 〈vi′j′ , vi′j′ − vij〉 .

Since for i + m2j ≤ i′ + m2j′, ‖vi′j′‖ ≤ ‖vi,j‖, it is sufficient to check the sign of D for 
i′ + m2j′ > i + m2j. A straightforward computation shows that

D = r′(r′ − Pr),

with

r = rij ,

r′ = ri′j′ ,

P = cos Ti

m2 cos Ti
′

m2 cos T (j′ − j)
m

+ sin Ti

m2 sin Ti′

m2 .

Thus D > 0 if and only if

P <
r′

r
.

We claim that these inequalities hold for m large enough, for any (i, j) �= (i′, j′) ∈
N

0
m2 × N

0
m. Assume, on the contrary, that there exist sequences mp, ip, jp, i′p and j′p

such that mp → ∞, i/m2
p, i′p/m2

p, jp/mp, j′p/mp ∈ [0, 1] and the corresponding value of 
D is non-positive. Extracting if necessary subsequences, one may assume without loss 
of generality that the four ratios are converging in [0, 1]; denote by α, α′, β and β′ the 
respective limits of Tip/m2

p, Ti′p/m2
p, Tjp/mp and Tj′p/mp. Then P converges to

cosα cosα′ cos (β′ − β) + sinα sinα′ ≤ 1,

with equality if and only if α′ = α and β′ = β. On the other hand, r′/r tends to 1. It 
follows that, if α �= α′ or β �= β′, a contradiction is found. From now on, we assume 
α′ = α and β′ = β. We now discuss two cases.

Case 1. There exist arbitrarily large indices p such that jp = j′p. By extracting suitable 
subsequences, we may assume without loss of generality that jp = j′p (and so i′p > ip) 

for all p. Then, since 
T
(
i′p−ip

)
m2

p
→ α′ − α = 0, for m large enough,

P = cos
T
(
i′p − ip

)
m2

p

< 1 −
T 2 (i′p − ip

)2
4m4

p

≤ 1 − T 2

4m4
p

(
i′p − ip

)
.

On the other hand,

r′

r
=

r −
(
i′p − ip

)
δ

r
> 1 − T 2

16m4

(
i′p − ip

)

p
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and we get a contradiction.
Case 2. For p large enough, ĵp

def= j′p − jp > 0. By extracting suitable subsequences, 
we may assume without loss of generality that this inequality holds for all p. Define αp, 
α̂p and β̂p by ip = αpm

2
p/T , i′p = (αp + α̂p)m2

p/T and ĵp = mpβ̂p; then limp→∞ α̂p =
limp→∞ β̂p = 0 and by straightforward computations

P = sin 2αp sin α̂p sin2 β̂p

2 + Q cos α̂p ≤
β̂2
p

4 |α̂p| + Q,

Q = 1
2

(
(cos 2αp + 1) cos β̂p − cos 2αp + 1

)
.

Since β̂p → 0, for p large enough cos β̂p < 1 − β̂2
p/3 whence

Q < 1 −
β̂2
p

6 .

For p large enough, |α̂p| < 2
21 , whence

P < 1 −
β̂2
p

7 = 1 −
ĵ2pT

2

7m2
p

≤ 1 − ĵpT
2

7m2
p

.

On the other hand

r′

r
=

r −
(
ĵpm

2
p + i′p − ip

)
δ

r

≥ 1 − (ĵp + 1) T 2

16m2
p

≥ 1 − ĵpT
2

8m2
p

,

and we get another contradiction. This completes the proof. �
Lemma 20. For d = 2, for all V ∈ V, U3/4

N is dense in K \WV .

Proof. Choose K0 ∈ K, (x0, y0) ∈ N (K0) such that ‖x0 − y0‖ ∈ V , and ε > 0; we have 
to prove that there exists K ∈ U

3/4
V,N such that dPH(K0, K) < ε. By Lemma 13, one 

can find a convex body K1 whose distance from K0 is less than ε and whose boundary 
contains two spherical caps, symmetrical to each other with respect to some point o. 
Let R be the radius of that sphere; we may assume that 2R ∈ V . One can also assume, 
without loss of generality, that o = (0, 0, 0) and that those caps are centered at equatorial 
points ±e = (±R, 0, 0). Denote by C the cap centered at e, and, for A > 0, by Ĉ the 

convex hull of C ∪ {(R + 2A, 0, 0)}. For A sufficiently small, K2 = K1 ∪ Ĉ ∪
(
−Ĉ

)
is 

convex and dPH (K0,K2) < ε. Let φ be a classical parametrization of the unit sphere:

φ(λ, θ) = (cosλ cos θ, cosλ sin θ, sinλ).
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Let T > 0 be small enough to ensure that (R + A)φ ([0, T ] × [0, T ]) is included in the 
interior of Ĉ \K1. For any positive integer m, and any (i, j) ∈ N

0
m2 × N

0
m, define

δ = RT 2

16m4 ,

rij = R + A−
(
jm2 + i

)
δ,

vij = rijφ

(
iT

m2 ,
jT

m

)
.

For m large enough, all the vij lie in Ĉ and V
def= {vi,j |i ∈ N

0
m2 , j ∈ N

0
m} is included in the 

interior of Ĉ \K1. Let K3 be the closed convex hull of V and K1. Since K1 ⊂ K3 ⊂ K2, 
dPH (K0,K3) < ε. By Lemma 19, for m large enough

〈vij , vij − vi′j′〉 > 0.

Moreover, for c ∈ C

〈vij , vij − c〉 > 0

because ‖vij‖ = rij > R = ‖c‖. Thus for any point p �= vij in

G
def= Ĉ ∩K3 = conv (C ∪ V ) ,

the angle �ovijp is less than π/2. It follows that vij ∈ ∂K3 and that (vij ,−vij) are 
maximizing chords of K3.

For m large enough, all the lengths of those chords belong to V , whence

Pδ(�(MS(K) ∩ V ) ≥ m3

and

lnPδ(�(MS(K) ∩ V )
− ln(δ/2) ≥ 3 lnm

4 lnm− ln RT 2

32
→

m→∞
3
4 ,

whence K3 belongs to U3/4
V,N if m is large enough. This ends the proof. �

Proof of Theorem 5. By Theorem B, Lemma 16 and Lemma 7, dimB (K) ≤ 1/2 for 
d = 1. Clearly this dimension is bounded from above by 1 in any case. So we just have 

to prove that dimP (L(K)) ≥ d∗
def= min

(
1, 1+d

4
)
.

For N ≥ 1 and V ∈ V, define

ΩV,N
def=

⎧⎪⎨⎪⎩K ∈ K
∣∣∣∣∣
∃δ ∈

]
0, 1

N

[
s.t. ln Pδ(L(K)∩V )

− ln δ > d∗ − 1
N

or
L(K) ∩ V = ∅

⎫⎪⎬⎪⎭ .
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If, for a fixed V ∈ V, K lies in infinitely many ΩV,N then dimB (K ∩ V ) ≥ d∗ whenever 
L(K) ∩ V is not empty. It follows by Lemma 12 that dimP F (K) = d∗, for any K lying 
in the intersection of all ΩV,N with V ∈ V, N > 1. Thus, we just have to check the 
density of the interior of ΩV,N in K.

If K0 ∈ Ud∗

V,N , then there exist δ < 1
N and M

def= 1 +
⌈(

δ
2
)−d∗+1/N⌉

double normals 
b1, . . . , bM whose lengths form a δ-set. Hence, by Lemma 5, for K close enough to K0, 
there exist M double normals of K whose lengths form a δ/2-set, thus Pδ/2 (K) ≥ M

and K ∈ ΩV,N . It follows that Ud∗

V,N is included in the interior of ΩV,N .
By Lemmas 17, 20 and 18, Ud∗

V,N is dense in K \WV , whence, Ud∗

V,N ∪ W̊V is dense in 
K and included in ΩV,N . �
6. Critical points

As Gruber showed in [11], a typical convex body K is not C2. It follows that the usual 
classification of critical points of �K according to the Hessian does not work. However, 
one can distinguish local maxima, local minima, and other critical points. Since the 
curvature (and so the Hessian) is typically undefined, it is unclear whether those other 
critical points look like saddles.

The first proposition is almost obvious.

Proposition 1. For a strictly convex body K ∈ K, �K has no other local minima than the 
degenerate chords (x, x), x ∈ ∂K.

Proof. Let c = (x1, x2) be a non-degenerate chord of K and Hi (i = 1, 2) be a supporting 
hyperplane through xi. There are unit vectors ui ∈

−→
Hi (i = 1, 2) such that the map

f : t �→ ‖(x1 + tu1) − (x2 + tu2)‖

is non-increasing on [0, ε] for some positive number ε. If ε is small enough, for any 
t ∈ [0, ε], the line-segment joining x1 + tu1 and x2 + tu2 intersects K. By choosing the 
right orientation, this intersection determines a chord c (t) which tends to c when t tends 
to 0. Now, due to the strict convexity, for any t ∈ [0, ε],

�K (c (t)) < f (t) ≤ f (0) = �K (c) ,

and c cannot be a local minimum. �
Local maxima are not very numerous either.

Proposition 2. For most convex bodies K ∈ K, the set M(K) is at most countable.

Proof. By Theorem 4, for most K ∈ K, �̃K : Ñ (K) → R is injective. Let WK be a 
countable base of open sets of C (K)\{(x, x)|x ∈ ∂K} such that (x, y) ∈ V ∈ WK implies 
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(y, x) /∈ V . Let W ′
K ⊂ WK be the subset of those V such that �K |V admits a maximum, 

which is necessarily unique by the injectivity of �̃K . Then the map W ′
K → M (K)

mapping V to this maximum is surjective and the proof is complete. �
However, we have the following proposition.

Proposition 3. For most K ∈ K, MS (K) is dense in N (K).

Proof. Let KS be the set of all convex bodies K such that MS(K) = M(K). By Corol-
lary 2, KS is residual in K, so by Lemma 1, it is sufficient to prove the conclusion for 
most K ∈ KS . Let U2 be a countable basis of open sets of E2. For U ∈ U2, define

ΦU
def= {K ∈ KS |N (K) ∩ U = ∅}

ΨU
def= {K ∈ KS |M (K) ∩ U �= ∅}.

Those sets are open in KS by Lemma 2 and Lemma 5 respectively. If K belongs to 
the Gδ-set 

⋂
U∈U2 (ΦU ∪ ΨU ), then M (K) is dense in N (K). Hence, it is sufficient to 

prove that ΨU ∪ ΦU is dense in KS . Choose K0 ∈ KS and a neighbourhood O of K0

in KS . We have to find K3 ∈ (ΦU ∪ ΨU ) ∩ O. First we choose a polytope K1 ∈ O (by 
Corollary 1, all polytopes belong to KS). If K1 ∈ ΦU put K3 = K1 and the proof is 
finished; otherwise there exists a double normal of K1 lying in U . In this case, one can 
sightly dilate and move K1 in order to obtain another polytope K2 ∈ O admitting a 

double normal (x, y) ∈ U . For η > 0, define x′ def= x + η (x− y), y′ def= y + η (y − x) and 

K3
def= conv (K2 ∪ {x′, y′}). By Lemma 6, (x′, y′) ∈ M (K). If η is small enough, then 

K3 still belongs to O and (x′, y′) ∈ U , whence K3 ∈ ΨU ∩ O. �
Remark 6. In the case d = 1, if K is C2 the Hessian of �K at b = (x, y) ∈ N (K) is given 
by

(
1
w − γx

1
w

1
w

1
w − γy

)
,

where γu is the curvature of ∂K at u = x, y and w = ‖x− y‖. Hence the Hessian 
degenerates when

1
γx

+ 1
γy

= w.

So, the index of a double normal seen as a critical point appears to be closely related 
to the curvature of ∂K at its feet. This contributes to the motivation for the following 
section. See also [16], [17], [18].
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7. Curvature at feet of double normals

This section brings some light on the curvature aspect of most convex surfaces, at the 
endpoints of their double normals.

Consider a smooth, strictly convex body K and a point x on its boundary ∂K; the 
outer normal unit vector of ∂K at x is denoted by νx. If τ is a vector that is not collinear 
to νx, Hτ

x stands for the 2-dimensional open half-plane whose boundary line is x + Rνx
and which contains x + τ . For any point z ∈ ∂K \ {x}, there is exactly one circle with 
its centre on x +Rνx and containing both x and z. Let rx(z) be the radius of this circle. 
Then, if τ is a unit vector tangent to ∂K at x,

ρτi (x) = lim inf
z→x

z∈Hτ
x∩∂K

rx(z)

is called the lower curvature radius at x in direction τ . Analogously is defined the upper 
curvature radius ρτs (x). Also, γτ

i (x) = ρτs (x)−1 and γτ
s (x) = ρτi (x)−1 are the lower and 

upper curvature at x in direction τ . (See [7], p. 14.)
For distinct x, y ∈ E, let Cxy = S (x, ‖x− y‖) be the sphere of centre x passing 

through y.

Lemma 21. For any maximizing chord c of a convex body, we have

γτ
i (x) ≥ �(c)−1

at each foot x of c, and in each tangent direction τ at x.

Proof. Let c = xx∗, and assume

γτ
i (x) < �(c)−1;

then there exists a sequence of points {xn}∞n=1 in ∂K converging to x, such that

‖xn − x∗‖ > �(c).

But this obviously contradicts the hypothesis asking for c to be maximizing. �
Theorem 6. For most convex bodies K and any maximizing chord c of K,

γτ
i (x) ≥ �(c)−1 and γτ

s (x) = ∞

at each foot x of c, and in each tangent direction τ at x.

Proof. By Theorem B, most convex bodies are smooth; so, one can speak of tangent 
directions at boundary points. By Theorem C, for most convex bodies K and any point 
x ∈ ∂K, we have
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γτ
i (x) = 0 or γτ

s (x) = ∞

in each tangent direction τ .
Since, by Lemma 21, we have

γτ
i (x) �= 0

for every foot x of a maximizing chord, and every tangent direction τ , the theorem 
follows. �

A chord c which is longest among all chords of C ∈ K is called a metric diameter of C. 
The next result strengthens Theorem 6 in the case of the metric diameter and improves 
Theorem 11 in [36].

Theorem 7. Most convex bodies admit a single metric diameter c,

γτ
i (x) = �(c)−1 and γτ

s (x) = ∞

at each foot x of c, and in each tangent direction τ at x.

Proof. A direction or a line-segment or a hyperplane will be called horizontal, respec-
tively vertical, if it is parallel, respectively orthogonal, to a fixed hyperplane.

By Theorem 11 in [36], most convex bodies have a single metric diameter. As the set 
of all convex bodies having a horizontal diameter is obviously nowhere dense, the space 
K′ of all convex bodies with a single non-horizontal diameter is residual in K, and we 
apply Lemma 1 to obtain generic results in K, working in K′.

Let xx∗ be the metric diameter of C ∈ K′, such that x is above and x∗ below any 
horizontal hyperplane cutting xx∗, and let the direction τ be orthogonal to xx∗. Take 
the points x∗

n ∈ xx∗ such that ‖x∗ − x∗
n‖ = 1/n (n ∈ N, n > �1/d(x, x∗)�), and consider 

the half-plane Π with xx∗ on its relative boundary and x + τ ∈ Π.
Let An(τ) ⊂ Π be the arc starting at x, of length 1/n, of the circle Cx∗

nx
of centre x∗

n

passing through x. The radius is diam(C) − 1/n.
Let us say that C ∈ K′ has the (n)-property if for its metric diameter xx∗ and for 

some direction τ orthogonal to xx∗, An(τ) does not meet C̊.
We prove that the set K′

n of those C ∈ K′ which enjoy the (n)-property is nowhere 
dense in K′.

First, it is easily seen that each K′
n is closed in K′. Then, let C ∈ K′. Approximate 

it by a polytope P having as metric diameter xx∗. Choose ε > 0 very small (compared 
with 1/n). Consider the (d − 1)-sphere S with 〈S〉 orthogonal to xx∗, having its centre 
on xx∗, lying between Cx∗

nx
and Cx∗x, and satisfying diam(S) = ε. Let the polytope P ′′

approximate conv(S) in 〈S〉, with dPH (P ′′, S) much smaller than ε.
Then, P ′ = conv(P ∪ P ′′) has not the (n)-property, whence K′

n is nowhere dense. In 
conclusion, most C ∈ K′ have the (n)-property for no natural number n. This means 
that, for every tangent direction τ at x,
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ρτs (x) > diam(C) − 1/n

for infinitely many n’s, yielding ρτs (x) = diam(C).
Analogously, ρτs (x∗) = diam(C).
By Theorem 1 in [28], for most C ∈ K, at every point z ∈ ∂C and for every direction 

τ at z, ρτi (z) = 0 or ρτs (z) = ∞. It follows that, at the endpoints x, x∗ of the unique 
metric diameter and for any direction τ , ρτi (x) = ρτi (x∗) = 0. �

The above theorems describe the curvature at the feet of maximizing chords. How-
ever, as shown by Proposition 2, maximizing chords are rare among double normals. 
Concerning typical double normals we have the following result.

Theorem 8. For most K ∈ K and most x ∈ F(K), in any tangent direction τ , γτ
s (x) = ∞.

Proof. Rephrasing the second point of Theorem C, we get that for most K ∈ K the set

I = {x ∈ ∂K|γτ
s (x) = ∞ in any tangent direction τ}

contains a dense Gδ set in ∂K. Indeed, this set is a Gδ set, as a thorough examination of 
the proof in the original paper [29] would show. For the reader’s convenience we reprove 
this fact. Assume that K is of class C1 and strictly convex. Let Tx be the set of unit 
vectors τ normal to νx.

∂K \ I =
{
x ∈ ∂K

∣∣∣∣∣∃τ ∈ Tx, lim inf
z→x

z∈∂K∩Hτ
x

rx (z) > 0
}

=
⋃
n∈N

{
x ∈ ∂K

∣∣∣∣∣∃τ ∈ Tx, ∀z ∈ ∂K ∩Hτ
x ∩ B̄

(
x,

1
n

)
: rx (z) ≥ 1

n

}
def=

⋃
n∈N

Fn.

Now, we prove that Fn is closed for n large enough. We assume that 1
n <

min{d(x, y)|x, y ∈ ∂K, νx ∈ Ty}. Let xp ∈ Fn converge to x ∈ ∂K. By the defini-
tion of Fn, there exists τp ∈ Txp

such that for any z ∈ ∂K ∩H
τp
xp ∩ B̄

(
xp,

1
n

)
, rxp

(z) ≥ 1
n . 

Passing if necessary to a subsequence, one may assume that τp is converging to a unit 
vector τ . Since K is C1, τ ∈ Tx. Choose z ∈ B̄

(
x, 1

n

)
∩∂K∩Hτ

x . It is easy to see that, for 
p large enough, there exists a unique point zp in Hτp

xp ∩ S (xp, ‖z − x‖) ∩ ∂K, and more-
over, zp converges to z. By the choice of τp and by the definition of Fn, rxp

(zp) ≥ 1
n , 

thus, since r is continuous with respect to x and z, rx (z) ≥ 1
n . This holds for any 

z ∈ ∂K ∩Hτ
x ∩ B̄

(
x, 1

n

)
, so x ∈ Fn.

It follows that I∩F(K) is a Gδ set in F(K), which contains, by Theorem 6, all feet of 
maximizing chords of K. Now, by Proposition 3, the set of those feet is dense in F(K), 
whence the conclusion. �
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Remark 7. We still ignore, for typical convex bodies, the behaviour of the lower curvature 
at the feet of (most) double normals. The existence of double normals with finite upper 
curvature at a foot is also unknown; however, these curvatures cannot be finite at both 
feet of the same double normal (see Theorem 4.1 in [1]).

Let us consider a typical convex body among those that admit a given line-segment 
as double normal.

Theorem 9. For most convex bodies admitting the double normal c,

γτ
i (x) = 0 and γτ

s (x) = ∞

at each foot x of c, and in each tangent direction τ at x.

Theorem 9 shows that the curvature behaviour at the endpoints of c coincides with 
the curvature behaviour at most points. (See [29] for the latter result in K; the result is 
also valid in the space K′′ defined below, and the proof parallels that for K.)

Proof. Let K′′ be the Baire space of all convex bodies admitting c as a double normal. 
We may assume that c = xx∗ is vertical, with x above x∗.

Following the same steps as in the proofs of Klee [14] or Gruber [11], one can show 
that most C ∈ K′′ are smooth (boundary of class C1). This justifies the use of “tangent 
directions” at x.

Let the direction τ be orthogonal to xx∗. Consider the points xn ∈ xx∗, x′
n ∈ xx∗, 

such that x /∈ x∗xn and ‖x − xn‖ = ‖x − x′
n‖−1 = n. Take the half-plane Π with xx∗ on 

its boundary and x + τ ∈ Π.
Let An(τ) ⊂ Π, A′

n(τ) ⊂ Π be the arcs starting in x, of length 1/n, of the circle Cxnx, 
respectively Cx′

nx. The radii are n and 1/n, respectively.
We now say that C ∈ K′′ has the (n)-property if, for some horizontal direction τ , 

An(τ) ∩ C̊intC = ∅ or A′
n(τ) ⊂ C.

We prove that the set K′′
n of those C ∈ K′′ which enjoy the (n)-property is nowhere 

dense in K′′.
Again, it is easily checked that each K′′

n is closed in K′′. Approximate C ∈ K′′ by a 
polytope P with vertices x, x∗ such that ∂P has no horizontal direction at x or x∗. We 
now use the polytope P ′ constructed in the proof of Theorem 7. This polytope has not the 
(n)-property, whence K′′

n is nowhere dense. Hence, most C ∈ K′′ have the (n)-property 
for no natural number n. Thus, for every tangent direction τ at x,

ρτs (x) > n and ρτi (x) < 1/n

for infinitely many n’s, i.e. ρτs (x) = ∞ and ρτi (x) = 0.
Analogously, ρτs (x∗) = ∞ and ρτi (x∗) = 0. �
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