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Abstract

This paper is about cages for compact convex sets. A cage is the 1-skeleton of a convex
polytope in R3. A cage is said to hold a set if the set cannot be continuously moved to a
distant location, remaining congruent to itself and disjoint from the cage.

In how many “truly different” positions can (compact 2-dimensional) discs be held
by a cage? We completely answer this question for all tetrahedra. Moreover, we present
pentahedral cages holding discs in a large number (57) of positions.
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1 Introduction
A cage is the 1-skeleton of a (convex) polytope in R3. If P is the polytope, the cage is
denoted by cage(P ). A cage G is said to hold a compact set K with G ∩ intK = ∅, if no
rigid continuous motion can bring K in a position far away without intK meeting G on
its way. (Here, intK means the interior of K in its affine hull.) A compact 2-dimensional
ball in R3 will be called a disc.
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Not that long ago, the subject of holding (3-dimensional) balls in cages has been treated
by Coxeter [6], Besicovitch [4], Aberth [1] and Valette [12].

In this paper we hold discs instead of balls. The question we ask is about the number
of positions of the discs held.

We investigate the capability of the 1-skeleton of the regular tetrahedron as a cage to
hold discs. Then, we consider the capability of the 1-skeleton of an arbitrary tetrahedron
to hold discs, and discuss in detail the dependence on the shape of the tetrahedron. Finally,
we also consider the two combinatorial types of pentahedral cages.

The related phenomenon of holding a convex body using a circle was investigated in
[2, 3, 13]. For other related results, see [9, 10, 14, 15].

For distinct x, y ∈ R3, let xy be the line through x, y and xy the line-segment from
x to y. We denote by Πxy the plane through x orthogonal to xy, and by Π+

xy the closed
half-space not containing y, determined by Πxy .

For M ⊂ R3, M denotes its affine hull, intM and bdM denote its interior and bound-
ary in the topology of M , and diamM = supx,y∈M ‖x − y‖. A line-segment xy with
{x, y} ⊂M and ‖x− y‖ = diamM is called a diameter of M . Also, convM denotes the
intersection of all convex sets including M .

For x1, x2, . . . , xk ∈ R3, x1x2 · · ·xk means conv{x1, x2, . . . , xk}. For non-collinear
elements x, y, z ∈ R3, let C(xyz) ⊂ xyz be the circle passing through x, y, z, and let oxyz
be its centre. Put D(xyz) = convC(xyz). We denote by x̂yz the angle of xyz at y, and
by ∠xyz its measure.

A face of a cage G is a 2-dimensional face of the polytope convG.
The d-dimensional compact unit ball (centred at 0) is Bd, and bdBd = Sd−1 (d ≥ 2).
Also, we denote by λ the 1-dimensional Hausdorff measure (length).

Problem 1.1. Let G(K) be the space of all cages in R3 holding the compact set K. Deter-
mine

L(K) = inf
G∈G(K)

λG,

for various sets K.

This problem, in line with the work of Coxeter, Besicovitch, Aberth and Valette, will
not be addressed in this paper, but in [8].

For any cage G, let D(G) be the space of all discs held by G, endowed with the
Pompeiu-Hausdorff metric.

Let Dr(G) be the set of all discs in D(G) of radius at least r. (Notice that the term
“radius” is used for both the distance and the line-segment from the centre to a point of the
relative boundary.) Assume that, for some component E of Dr(G) and any number s > r,
Ds(G)∩E is connected or empty. We call such a component E an end-component ofD(G).
If n is the maximal number of pairwise disjoint end-components of D(G), we say that G
holds n discs.

In fact, intuitively, G does not hold n pairwise disjoint discs simultaneously; merely
there are n different positions at which, separately, a disc can be held.

Let the component E of Dr(G) be an end-component of D(G). Put σ(E) = sup{s :
Ds(G) ∩ E 6= ∅}. Choose an increasing sequence {sn}∞n=1 of real numbers satisfying
sn > r and limn→∞ sn = σ(E). Consider a disc Dn ∈ Dsn(G) for each n.

If {Dn}∞n=1 converges to some disc D(E) independent of the choice of the numbers
sn and discs Dn, we call D(E) the limit disc of E . Several end-components may have the
same limit disc.
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If the limit disc of an end-component E lies in the plane of a face F of convG, we say
that G holds a disc at the face F . For each end-component, we have a disc held, even if the
limit discs coincide. So, a cage may hold several discs at the same face. Also, if a face F
is not triangular, several distinct limit discs can be coplanar with F .

Inspired by an earlier version of the present paper, Montejano and Zamfirescu [11]
raised the following questions.

Problem 1.2. Does a cage holding 7 discs exist?

Problem 1.3. How many discs can be held by a pentahedral cage?

We give here an affirmative answer to Problem 1.2, establish the precise minimum and
find a lower bound for the maximum number of discs that a pentahedral cage can hold.

For a cage which is not tetrahedral it is possible that a disc is held, but not at a face. Such
a case we shall meet for a pentahedral cage admitting a limit disc (of some end-component)
circumscribed to a triangle which is not a face of the pentahedron, but has vertices among
those of the cage. For arbitrary polyhedral cages even the following is possible.

Proposition 1.4. There exist cages G admitting a limit disc not coplanar with any vertex
of convG.

Proof. Consider a regular icosagon ∆ = a1a2 · · · a20 ⊂ H inscribed in S1, where H =
{(x, y, z) : z = 0} and S1 is the unit circle in H . Let ε > 0 and τ = (0, 0, ε). Let ν > 0.

Put

bi =

{
(1 + ν)ai + τ for i 6≡ 3 (mod 4)

(1− ν)ai + τ for i ≡ 3 (mod 4)

and

ci =

{
(1 + ν)ai − τ for i 6≡ 1 (mod 4)

(1− ν)ai − τ for i ≡ 1 (mod 4).

For ν small enough, ∆b = b1b2 · · · b20 and ∆c = c1c2 · · · c20 are convex icosagons.
The polytope P = conv(∆b ∪∆c) has 42 faces including ∆b and ∆c. We claim that B2 is
a limit disc of cage(P ).

Indeed, note that the circle S1 meets cage(P ) at the vertices a1, a3, . . . , a19 of ∆ only.
Assume that some unit disc D distinct from B2 but close to it satisfies cage(P )∩ intD =
∅. Let the ellipse E be the orthogonal projection of D onto H and let xy be the long axis
of E (or any diameter if E is a circle). Since ‖x − y‖ = 2, one of these end-points, say
x, is on S1 or outside B2. Let x′, y′ be the points of D with projections x, y, respectively.
Since x′y′ is parallel to H , it is included in (at least) one of the half-spaces

H+ = {(x, y, z) : z ≥ 0}, H− = {(x, y, z) : z ≤ 0}.

Suppose without loss of generality that x′y′ ⊂ H−. Then, at least one of the half-discs of
D determined by x′y′, say D′, entirely lies in H−.

The intersection {x∗} = 0x ∩ S1 lies on S1 between two consecutive vertices of the
regular pentagon a1a5a9a13a17, or coincides with one of them, say x∗ ∈ â1a5. Therefore,
since D 6= B2, D′ cuts either a1c1 or a5c5, which yields intD ∩ cage(P ) 6= ∅, and this
contradicts our assumption.
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2 Tetrahedral cages
Consider a regular tetrahedron. If its edge-length is 1, then the circle circumscribed to a face
has radius 1/

√
3. So, a slightly enlarged tetrahedral cage T will hold the disc (1/

√
3)B2.

Clearly, at each face there is such a disc.
In fact there are many discs close to (1/

√
3)B2, held by T, lying in the same component

of D(1/
√
3)(T ). The space D(1/

√
3)(T ) has 4 components analogous to the component of

(1/
√

3)B2, one corresponding to each face of T . The limit disc of each component is the
disc circumscribed to the respective face.

The following lemma is easily verified by the reader.

Lemma 2.1. If a polytopal cage holds a disc at some triangular face, then that triangle is
acute.

A face being an acute triangle is, however, no guarantee that the disc described above
(lying over the face) is held there. Whether it can move away from that face or not, obvi-
ously depends on the angle between the edges of the polytope adjacent but not belonging
to that face and the corresponding radii of the circumscribed circle of the face.

Lemma 2.2. If a face of a tetrahedral cage is an acute triangle, then at least one disc is
held at that face.

Proof. Let abc be the given acute face, and o the centre ofC(abc). Consider the half-spaces
Π+
ao, Π+

bo, Π+
co. As the intersection of these half-spaces is void, there is no point x ∈ R3

for which all angles x̂ao, x̂bo, x̂co are non-acute. Assume ∠dao < π/2. Now take a disc
(slightly smaller thanD(abc)) over ab and ac, but below bc (see Figure 1). This disc is held
by the cage.

�

�

�

�

�

Figure 1: Cage holding a disc.

Lemma 2.3. If a tetrahedral cage has an acute face, then it has one, two, or four discs
held at that face.

Proof. Keep the notation of the preceding proof. The kind of disc held by the cage in the
previous proof requires an angle like d̂ao to be acute. The existence of a second such angle,
say d̂bo, provides a second such disc. If at least one such angle, say d̂co, is not acute, then
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any disc lying over the face abc can move away from the face. If all three angles d̂ao,
d̂bo, d̂co are acute, then not only the three discs partly lying below some edge of abc are
held, but also the disc lying completely over the face abc, whence the conclusion of the
lemma.

Theorem 2.4. The regular tetrahedral cage holds 16 discs.

Proof. The last case of the proof of Lemma 2.3 applies at all faces. By Proposition 2.5
below, there is no other disc held by the cage.

Tetrahedral cages cannot display the situation in Proposition 1.4.

Proposition 2.5 (Fruchard [7]). In any tetrahedral cage, each limit disc is at some face.

With the author’s permission, we reproduce here his proof, for the reader’s convenience.

Proof. Let abcd be a non-degenerate tetrahedron, G = cage(abcd), and assume D is a
limit disc which is not at a face. To fix ideas, we assume that D is the unit disc B2 in the
horizontal plane H = {(x, y, z) : z = 0} of R3.

It is an easy task to exclude that some vertex of G lies in the plane of D. Furthermore,
it is easily seen that D meets four edges of G, say ab, bc, cd, and da, with a and c above
D, and b and d below D. Two of these edges have to pass above D and two below, and
they must alternate, say ab and cd above, bc and da below. Let e ∈ ab ∩D, f ∈ bc ∩D,
g ∈ cd ∩D, and h ∈ da ∩D, see Figure 2.
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Figure 2: Proof of Proposition 2.5.

Let a′, b′, c′ and d′ be the orthogonal projections of a, b, c, d on H . Then, we have

‖a′ − e‖
‖b′ − e‖

=
‖a− e‖
‖b− e‖

=
za
|zb|

,

where za is the third coordinate of a. Using the analogous formulae for the other three
sides of the quadrilateral a′b′c′d′, we obtain

‖a′ − e‖
‖b′ − e‖

‖b′ − f‖
‖c′ − f‖

‖c′ − g‖
‖d′ − g‖

‖d′ − h‖
‖a′ − h‖

=
za
|zb|
|zb|
zc

zc
|zd|
|zd|
za

= 1. (2.1)
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As we show below, this is impossible. From a′, draw the two tangent lines to D, T
toward b and T ′ toward d. Let e′ ∈ T ∩D (hence on the same side as e) and h′ ∈ T ′ ∩D.
Because ab is above D, we have ‖a− e‖ > ‖a′ − e′‖; in the same manner, da is below D,
hence ‖a′ − h‖ < ‖a′ − h′‖. Then, ‖a′ − e′‖ = ‖a′ − h′‖ implies ‖a

′−e‖
‖a′−h‖ > 1. Similarly,

one has ‖b
′−f‖
‖b′−e‖ , ‖c

′−g‖
‖c′−f‖ and ‖d

′−h‖
‖d′−g‖ all larger than 1, contradicting equation (2.1).

Lemma 2.6. If, for a, b, c, x, o ∈ R3, ∠axb ≤ π/2, ∠cxa < π/2 and o lies in the relative
interior of bxc, then ∠axo < π/2.

The proof (using for example the basic properties of the scalar product) is left to the
reader.

Theorem 2.7. There are tetrahedral cages holding exactly n discs, for every n ≤ 16 except
for n ∈ {7, 9, 11, 13, 14, 15}, and there is no such cage for any other n.

Proof. Separately, every number n of held discs can be realized at a face, if n ∈ {0, 1, 2, 4},
by Lemma 2.3. We have to show that a global realization is possible, for each of the n’s
from the statement. Moreover, we must show the impossibility of a realization in all other
cases.

We keep in mind that limit discs can only be at faces, by Proposition 2.5.
Throughout this proof, o will denote the centre of C(abc).

Case n = 0: Take the face abc to have an obtuse angle at a, take a point d′ in the relative
interior of its height at a, and consider a point d close to d′ and having d′ as orthogonal
projection on abc. Then the tetrahedral cage cage(abcd) has all faces obtuse. Now use
Lemma 2.1.

Case n = 1: Take now the face abc to be an acute triangle and consider o. For any point

d ∈ Π+
ao ∩Π+

ba \ abc,

the triangles abd, bcd, cad are obtuse or right. See Figure 3.

Figure 3: Case n = 1.

Moreover, only one of the angles ôad, ôbd, ôcd is acute, namely the latter. Thus,
cage(abcd) holds exactly one disc (at the face abc), as described in the proof of Lemma 2.2.

Case n = 2: Let again abc be acute, and choose

d ∈ Π+
ac ∩Π+

ba \ (Π+
ao ∪ abc).
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In this way abd, bcd, cad are still non-acute, but now precisely two of the angles ôad, ôbd,
ôcd are acute, namely the first and the last (see Figure 4). Thus, two discs are held, both at
the face abc.

Figure 4: Case n = 2.

Case n = 3: Take abc acute, as before. Choose

d ∈ Π+
ac ∩Π+

bo \ (Π+
ba ∪Π+

ao ∪ abc).

Now, the triangles bcd and cad are non-acute, while the triangles abc and abd are acute.
See Figure 5.

Figure 5: Case n = 3.

Regarding abc, ∠oad < π/2, ∠obd ≥ π/2, ∠ocd < π/2, whence two discs are held
at abc.

Regarding abd, let {d′} = Πao ∩ Πba ∩ abc, and denote by m the midpoint of ad′.
Then ∠oam = ∠obm = π/2. Hence, ∠cam > π/2 and ∠cbm > π/2. If d is chosen close
to d′ (and in the already assigned region), then the centre o′ of C(abd) is close to m, and
we also have ∠cao′ > π/2 and ∠cbo′ > π/2. Doubtlessly ∠cdo′ < π/2, whence there is
precisely one disc held by cage(abcd) at abd.

Case n = 4: Let the face abc be an equilateral triangle of centre o. Choose d /∈ abc close
to o. Thus, the triangles dab, dbc and dca are obtuse. See Figure 6. By Lemma 2.1, no disc
is held at any of the faces dab, dbc, dca.

Since ∠oad, ∠obd and ∠ocd are close to 0, cage(abcd) holds exactly 4 discs at abc (see
the proof of Lemma 2.3).
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cb

o

a

Figure 6: Case n = 4.

Case n = 5: Let a′bec be a square. Choose a, d′ ∈ a′e such that a, a′, e, d′ lie in this
order on their line, with ‖a− a′‖ small and ‖e− d′‖ = ‖b− e‖. See Figure 7. Then

∠abe = ∠ace > π/2 and ∠obd′ = ∠ocd′ < π/2.

d'

a'

e

cb

a

o

Figure 7: Case n = 5.

Rotate slightly d′ about bc up to a new position d. Then still

∠abo′ = ∠aco′ > π/2 and ∠obd = ∠ocd < π/2,

where o′ is the centre of C(bcd).
Also, notice that ∠ado′ and ∠oad are small.
The triangles abc and bcd are acute, abd and acd obtuse. The inequalities above imply

that one disc is held by cage(abcd) at bcd, and four discs at abc.

Case n = 6: Take an equilateral triangle abc, and choose a′ ∈ ao such that ∠ba′c < π/2.
Let d ∈ R3 \ abc be close to a′, such that a′ is its orthogonal projection on abc. Then 4
discs are held at abc and 2 discs at bcd (see the proof of Lemma 2.3).

Case n ∈ {7, 9, 11, 13}: By Lemma 2.3, in order to obtain exactly 7 discs held by
cage(abcd), there are 3 possibilities for the number of discs held at each face: 2, 2, 2, 1,
or 4, 1, 1, 1, or 4, 2, 1, 0.
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To obtain exactly 9 discs held by cage(abcd), there are 2 possibilities for the number
of discs held at each face: 4, 2, 2, 1, or 4, 4, 1, 0.

To obtain exactly 11 discs held, there is just one possibility for the number of discs held
at each face: 4, 4, 2, 1.

Similarly for 13 discs held: 4, 4, 4, 1.
In each of these 7 scenarios, there exists a face at which exactly one disc is held and at

most one face at which no disc is held. We prove this to be impossible to realize.
Suppose it is realized. Then at most one of the 12 angles (of the 4 triangles), say âcd, is

non-acute. Consequently, the triangles abc, bcd and abd are acute, and all angles at a, b, d
are acute, too.

By Lemma 2.6, ∠oad < π/2 and ∠obd < π/2; thus, at least two discs are held at abc.
Similarly, at least two discs are held at bcd. At abd exactly four discs are held, as all cage
angles at a, b, d are acute.

Now, if acd is not acute, no disc is held there. If acd is acute, then each face behaves
like abd, i.e. 4 discs are held at each face. Hence, at no face exactly one disc is held.

Case n = 8: Take two coplanar equilateral triangles abc and bcd′, and then slightly rotate
the latter about bc to reach a new position bcd. Then the angles oad, obd and ocd are acute,
whence cage(abcd) holds 4 discs at abc. By symmetry, it also holds 4 discs at bcd. As abd
and acd are obtuse triangles, there are no further discs held by cage(abcd).

Case n = 10: Let the triangle abc be equilateral, and d′ be close to a, such that ‖a− c‖ =
‖c − d′‖ and ac ∩ od′ 6= ∅. Let o′ be the centre of C(bcd′), and o′′ the centre of C(acd′).
(See Figure 8.)

��

��
�

���

��
�

Figure 8: Case n = 10.

Clearly,

∠d′ao > π/2, ∠d′bo < π/2, ∠d′co < π/2.

Also,

∠ad′o′ < π/2, ∠abo′ < π/2, ∠aco′ < π/2

and

∠bao′′ < π/2, ∠bco′′ < π/2, ∠bd′o′′ < π/2.

By rotating a little d′ about ac, the above angles don’t change much, and the inequalities
remain valid. Let d be the new position of d′. So, there are 4 discs held at bcd, 4 at acd,
just 2 at abc, and none at abd, as ∠bad > π/2.
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Case n = 12: Let cage(abcd) have three acute triangular faces and a right triangle abc as
fourth face, with ∠bac = π/2. By Lemma 2.6,

∠bao < π/2, ∠bco < π/2, ∠bdo < π/2,

whence 4 discs are held at cda. Analogously, abcd holds 4 discs at each of the faces dab,
bcd. Of course, no disc is held at abc.

Case n = 14: Suppose cage(abcd) holds 4, 4, 4, 2 discs at the four faces, which is the only
possibility of reaching the total number of 14. Then all triangles are acute. By Lemma 2.6,
∠oad < π/2, ∠obd < π/2, ∠ocd < π/2, whence there are 4 discs held at abc. This
applies to every face. Hence, at no face the number of discs held is 2.

Case n = 15: Impossible as sum of four integers from {0, 1, 2, 4}.

Case n = 16: The regular tetrahedron realizes this, see Theorem 2.4.

If we briefly say that the cage G holds n unit discs, this means that G holds n discs, i.e.
the maximal number of pairwise disjoint end-components is n, and σ(E) does not depend
on the chosen end-component E .

One may ask the question: how many unit discs can a tetrahedral cage hold? We shall
not deepen this question here, only make some remarks.

Trivially, by Theorem 2.7, there is a cage holding 1 unit disc.
In the proof for n = 2, both discs held by the cage were at the same face, so they had

the same size. Similarly, Theorem 2.4 shows that the regular tetrahedral cage holds 16 unit
discs.

The proof for n = 3 provides two discs of same size, and a third disc of a possibly
different size. A more concrete construction is needed. We do this here, using the notation
from the proof of Theorem 2.7, case n = 3.

The acute triangle abc will be taken such that ∠acb = π
4 , which implies ∠oab =

∠oba = π/4. Now, the two circles C(abc) and C(abd′) are congruent.
Let Θ be the torus obtained by rotating C(abd′) about ab. By choosing d ∈ Θ \ (Π+

ba ∪
Π+
ao ∪ abc), still close to d′, we get C(abd) and C(abc) congruent.

For the regular tetrahedral cage T of unit side-length, any disc held has radius at
least 1/2.

Altogether T holds 16 discs, by Theorem 2.7. In fact, for any r ∈ [3
√

2/8,
√

3/3],
Dr(T ) has 16 components. What happens for smaller r?

Theorem 2.8. Let T be the regular tetrahedral cage of unit side-length. For any r ∈
[1/2, 3

√
2/8], Dr(T ) has 4 components.

Proof. A disc D in Dr(T ) above abc can be rotated about an axis parallel and close to ab
without meeting cd until it reaches a position close to abd, above ad and bd, but below ab
(seeing now abd as horizontal, with T above it).

The rotation of the discD can also be performed about an axis close to bc, or bd, and so
we obtain a third and a fourth disc in the same component as D. This means that a group
of 4 discs held by T among the 16 analogous to those mentioned in Theorem 2.4 belong to
the same component of Dr(T ). As we have 4 such groups, the conclusion of the theorem
follows.

Theorem 2.8 provides illuminating examples of components which are not end-compo-
nents of D(T ).
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3 Pentahedral cages
The convex pentahedra are of two combinatorial types: the pyramid over a quadrilateral
and the triangular prism. We do not aim at finding all possible numbers of discs which can
be held by pentahedral cages, as we did for tetrahedra. We restrict the otherwise lengthy
analysis to the most interesting problem about the maximal number of discs which can be
held.

We start with the question: How many discs can a pentahedral cage hold at a face? We
know the answer if the face is triangular by adapting the analysis from the tetrahedral case
to this new situation: 0, 1, 2, or 4. This is seen like in Lemma 2.3, with the difference that
the case of 0 discs may now occur, even if the triangle is acute. For our pentahedra we need
the answer for quadrilateral faces, too.

Let Q = abcd be a quadrilateral (bottom) face of a polytope P , and assume that each
vertex of Q has degree 3 in P . (This is so in pentahedra.) Each diagonal of Q divides it
into two triangles. These four triangles cannot all be acute, at least one must be non-acute.
Let a′ be the vertex of P , neighbour of a, different from b, d. Also, consider the analogous
vertices b′, c′, d′. (Some of these vertices may coincide.)

An exhaustive investigation would have to consider several cases. But this is not our
intention. As an example, we treat the case when a, b, c, d are cocyclic. Assume abc and
abd are acute. Obviously, both d ∈ D(abc), c ∈ D(abd). Moreover, the inequalities
∠daoabc < π/2, ∠dboabc < π/2 and ∠dcoabc < π/2 are satisfied. Thus, if all inequalities
∠a′aoabc < π/2, ∠b′boabc < π/2, ∠c′coabc < π/2 are valid, then a disc can be held over
ab, bc, cd, and da, or over 3 of them and under the fourth, or over ab, bc and under cd, da,
or over da, ab and under bc, cd, which gives 7 possibilities in total.

In case a, b, c, d are not cocyclic, more discs can be held at Q.

Lemma 3.1. If the triangles abc, abd, bcd and the angles

âdobcd, ĉdoabd, â′aoabd, â′aoabc, b̂′boabd,

b̂′bobcd, ĉ′coabc, ĉ′cobcd, d̂′doabd, d̂′dobcd,

are all acute, then 13 discs are held at Q = abcd.

Proof. First of all, by Lemma 2.6, ∠b′boabd < π/2 and ∠b′bobcd < π/2 imply
∠b′boabc < π/2.

Now, considering abd, a disc is held above all four edges, another one is held under
ab and above the other three, yet another disc under ad and above all others, a fourth disc
under bc and cd and above ab and da, a fifth under bc and above all others, and a sixth
under cd and above the remaining edges.

Analogously, considering bcd, we find other six discs held.
Moreover, considering abc, one more disc is held, namely under cd and da and above

ab and bc.

Lemma 3.2. There are maximally 13 discs held at abcd.

Proof. It is quickly seen that, in all other cases concerning the angles mentioned at Lem-
ma 3.1, the number of discs held is smaller than 13.

In conclusion, at any quadrilateral face of a polytopal cage, at most 13 discs can be
held, and this only if several angle inequalities are satisfied. If the polytope is a prism, the
following holds.
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Lemma 3.3. Let abca∗b∗c∗ be a prism. If abb∗a∗ has three acute angles close to π/2,
and if, moreover, the angles ̂caoaba∗ , ĉboaba∗ , ̂c∗a∗oaba∗ , regarding aba∗, are acute, and
all analogous angles regarding bb∗a∗, aa∗b∗, abb∗, are also acute, then the prism holds 13
discs at abb∗a∗.

Proof. Indeed, all angle conditions required in Lemma 3.1 are satisfied. The condition that
the angles of abb∗a∗ be close to π/2 is needed since it implies that abb∗a∗ is close to a
rectangle, from which ∠b∗boabb∗ < π/2 and all other analogous inequalities follow.

A pentahedral cage, in contrast to a tetrahedral one, can hold discs not only at faces.
Consider the pyramid P = abcde with apex e and a quadrilateral face abcd. If the

triangle ace is acute, the capability of cage(P ) to hold a disc there depends on the angles
∠baoace, ∠daoace, ∠bcoace, ∠dcoace, ∠beoace, ∠deoace. If all of them are smaller than
π/2, then the pyramid holds 4 discs at ace, one on each side of ace, and two crossing ace.
Here, holding a disc at ace means, in analogy to holding a disc at a face, that a certain limit
disc lies in ace (and is, in fact, circumscribed to ace). If ace is not acute, cage(P ) cannot
hold any disc there.

Adding the at most 4 discs held at bde, we obtain a maximum of 8 held discs, which
traverse the pyramid.

A (combinatorial) prism abca∗b∗c∗ with faces abc, a∗b∗c∗, abb∗a∗, bcc∗b∗, caa∗c∗,
may also hold discs at abc∗ and at the other 5 analogous triangles. In order to hold any disc
at abc∗, we must have ∠cc∗oabc∗ < π/2 and at least one of the inequalities ∠a∗coab∗ <
π/2, ∠b∗coabc∗ < π/2. Now, if this happens, we have a held disc “separating” ab from c if
∠caoabc∗ < π/2 and ∠cboabc∗ < π/2, and a similar held disc “separating” ab from a∗b∗

if ∠a∗aoabc∗ < π/2 and ∠b∗boabc∗ < π/2. This amounts to a maximum of 2 discs held
at abc∗.

In particular, the following holds.

Lemma 3.4. If the prism P is close to a long right regular one, then cage(P ) holds 2 discs
at abc∗ and at each of the other 5 analogous places.

Moreover, Proposition 1.4 warns that there might exist limit discs not coplanar with any
three vertices of the cage. Consequently, let us say that a cage G holds n standard discs if
all corresponding end-components have limit discs coplanar with at least three vertices of
convG.

Thus, if P is a pyramid, the total number of standard discs held by cage(P ) would
become at most 37, and if it is a prism at most 59. Can these numbers be realized? Is it 59
the true maximum for all pentahedra?

But, first, let us solve Problem 1.2.

Theorem 3.5. There exists a pentahedral cage holding exactly 7 discs.

Proof. Let Q = abcd be a rectangle, of centre o, such that the triangles abo and cdo be
equilateral. Let m be the centre of abo. Close to m choose a point e /∈ abc, whose
orthogonal projection on abc is m. Put o′ = ocde. See Figure 9.

We show that, for the pyramid P = eabcd, cage(P ) holds 7 discs.
Indeed, notice that the triangles abm, bcm, and dam are obtuse. So, besides the rect-

angle Q, P has four triangular faces, of which only cde is acute. Since ∠aeo′ > π/2,
∠beo′ > π/2, ∠bco′ < π/2, ∠ado′ < π/2, P holds 2 discs at cde.
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Figure 9: Cage holding 7 discs.

For the face Q, the relevant angles satisfy ∠eao = ∠ebo < π/2 and ∠eco = ∠edo <
π/2. Hence, above all edges of Q our cage holds 1 disc, while above any three of its edges
and under the fourth it also holds a disc. Above any two consecutive edges of Q, but under
the remaining two, cage(P ) holds no disc. Hence, it holds 5 discs at Q.

The two triangles eac and ebd traversing P are both obtuse, so no disc can be held at
any of them. Clearly, there are no non-standard discs held.

In conclusion, altogether cage(P ) holds 7 discs, as stated.

We now establish the exact minimum for the number of discs and the exact maximum
for the number of standard discs that a pentahedral cage can hold.

Three parallel lines in R3 determine an unbounded closed prism P having 3 strips as
sides. If a triangle ∆ ⊂ R3 has its vertices on the sides of P , we say that P is associated
with ∆.

We shall make use of the following simple, but powerful, result.

Proposition 3.6 (Chevallier, Fruchard [5]). For any (bounded) combinatorial prism with
triangular faces ∆ and ∆′, it is impossible that ∆ lies in the interior of a prism associated
with ∆′, and ∆′ lies in the interior of a prism associated with ∆.

For the reader’s convenience, we give here a short proof.

Proof. Assume that ∆ = abc lies in the interior of a prism P associated with ∆′ = a′b′c′.
As ∆∩∆′ = ∅, the triangle ∆ entirely lies in one component P+ of P \ a′b′c′. Thus, aa′,
bb′, cc′ meet in some point z ∈ P+. This determines the order z, a, a′ on aa′. Analogously,
the assumption that ∆′ lies in the interior of a prism associated with ∆ implies the order
z, a′, a on aa′. But both orders cannot coexist.

Lemma 3.7. For no prism P , cage(P ) can hold more than 6 discs at its triangular faces
together.

Proof. Take the prism P = abca∗b∗c∗. We use Lemma 2.3 and its proof. We have
∠a∗aoabc < π/2 if and only if a∗ /∈ H+

aoabc
, Hence, â∗aoabc, b̂∗boabc, ĉ∗coabc are all

acute if and only if a∗ belongs to the complement of H+
aoabc

∪ H+
boabc

∪ H+
coabc

, which is
the interior of a certain prism associated with abc. In order for cage(abca∗b∗c∗) to hold 4
discs at each of its two triangular faces, all vertices of each of them must lie in the inte-
rior of a prism associated with the other. But this is forbidden by Proposition 3.6. So, by
Lemma 2.3 (adapted to our needs), cage(P ) cannot hold more than 6 discs at its triangular
faces together.
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Theorem 3.8. A pentahedral cage can hold at least 0 and at most 57 standard discs. Both
bounds are attained.

Proof. To prove that a pentahedral cage may hold no standard disc, take a trapezoid having
all four triangles determined by their diagonals obtuse. A prism with such trapezoids as
quadrilateral faces and with two obtuse triangles as remaining faces holds no disc, see
Figure 10.

Figure 10: Cage holding no discs.

We now build a prism the cage of which holds 57 standard discs. Consider a long right
regular prism abca∗b∗c∗ (with aa∗, bb∗, cc∗ parallel).

Choose a1 ∈ aa∗ close to a and c1 ∈ cc∗ close to c, satisfying

2‖a− a1‖ < ‖c− c1‖.

Choose a∗1 close to a∗, b∗1 close to b∗ and c∗1 close to c∗, such that a∗ ∈ a∗1oa∗b∗c∗ ,
b∗ ∈ b∗1oa∗b∗c∗ , c∗ ∈ c∗1oa∗b∗c∗ , and

‖a∗ − a∗1‖ = ‖b∗ − b∗1‖ = ‖c∗ − c∗1‖ = ε.

See Figure 11. Also, put {a′} = aa∗1 ∩ a1bc1 and {c′} = cc∗1 ∩ a1bc1.
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Figure 11: Cage holding 57 discs.
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If ε is small enough, then the three quadrilateral faces a′bb∗1a
∗
1, bc′c∗1b

∗
1, c′a′a∗1c

∗
1, have

obtuse angles at a′, c′, c′, respectively, and acute angles at all other vertices.
All angles analogous to ̂abobb∗c∗ are acute, so they remain acute after the small changes

done to abca∗b∗c∗. Thus, by Lemma 3.3, there are 13 discs held at each quadrilateral face.
Passing now to the two triangular faces, we immediately see that all angles ̂a′a∗1oa∗1b∗1c∗1 ,

̂bb∗1oa∗1b∗1c∗1 , ̂c′c∗1oa∗1b∗1c∗1 , are acute.
Concerning a′bc′, ∠b∗ba1 < π/2 and ∠b∗bc1 < π/2 imply ∠b∗boa1bc1 < π/2. There-

fore, the next moves being gentle enough, ∠b∗1boa′bc′ < π/2 too.
The inequality 2‖a − a1‖ < ‖c − c1‖ yields ∠a∗a1oa1bc1 < π/2. Again, this can be

preserved, and ∠a∗1a
′oa′bc′ < π/2. Now, adapting part of the proof of Lemma 2.3, we

see that at least two discs are held at a′bc′. Hence, by Lemma 2.3 (see its proof) and by
Lemma 3.7, our cage holds 13 discs at each of its quadrilateral faces, 4 discs at a∗1b

∗
1c
∗
1, and

2 discs at a′bc′.
Concerning the discs traversing the prism, the maximum number (of 12) is reached, by

Lemma 3.4.
Thus, our cage holds 57 standard discs. By Lemmas 3.2 and 3.7, it cannot hold more

than these 57. The proof is finished.

Theorem 3.8 does not prove that 57 is the maximal number of discs that a pentahedral
cage can hold. We miss an analogue of Proposition 2.5 for pentahedra. Examples that the
referee kindly provided suggest that such an analogue may not exist. Thus, we remain with
the following.

Problem 3.9. What is the maximal number of discs that a pentahedral cage can hold?
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[2] I. Bárány and T. Zamfirescu, Circles holding typical convex bodies, Libertas Math. 33 (2013),
21–25, doi:10.14510/lm-ns.v33i1.47.
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