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Abstract
A cage G, defined as the 1-skeleton of a convex polytope in 3-space, holds a compact
set K if G cannot move away without meeting the relative interior of K . The main
results of this paper establish the infimum of the lengths of cages holding various
compact convex sets. First, planar graphs and Steiner trees are investigated. Then the
notion of points almost fixing a convex body in the plane is introduced and studied. The
last two sections treat cages holding 2-dimensional compact convex sets, respectively
the regular tetrahedron.

Keywords Immobilisation · Skeleton · Steiner tree · Convex body

Mathematics Subject Classification 52A15 · 52A40 · 52B10

1 Introduction

A cage is the 1-dimensional skeleton of a 3-dimensional convex polytope in R
3.

A compact set G is said to hold another compact set K if G is disjoint from the
relative interior of K and if G cannot be rigidly moved to a position far away without
intersecting the relative interior of K on its way. Here, a move means a continuous
path starting from the identity in the space of isometries of R

3. “Far away” means that
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the convex hulls of K and of the moved G are disjoint. Already in 1959, Coxeter [5]
raised the problem of finding the infimum of the total lengths of cages holding the
ball of radius 1 in R

3. In the following years, Besicovitch [2] and Aberth [1] solved
Coxeter’s problem. In the present paper, we extend the investigation to other compact
convex sets replacing the ball.

The space R
3 is endowed with its Euclidean norm ‖x‖ = √〈x | x〉, where 〈 · | · 〉 is

the usual scalar product. For distinct x, y ∈ R
3, let xy be the line through x, y and xy

the line-segment from x to y. The open line-segment xy \ {x, y} is denoted by ]xy[.
Given a line xy oriented from x to y, (xy)+ denotes the openhalf-plane on the left of xy.

Themeasure of an angle x̂ yz is denoted by∠xyz. Themeasure of the angle between
two lines or planes X and Y is denoted by ∠(X ,Y ). These angles will be oriented if
the context is in the plane, and unoriented if the context is in 3-space.

As usual, for M ⊂ R
d with d ≥ 2, the convex hull convM of M is the intersection

of all convex subsets of R
d containing M , and its affine hull aff M is the intersection

of all affine subspaces of R
d containing M . Also, int M and bd M denote its interior

and boundary, while rel int M and rel bd M denote its relative interior and relative
boundary, that is in the topology of aff M ; moreover, diam M = supx,y∈M ‖x − y‖ ∈
R ∪ {+∞}.

For any closed convex subset M of R
3, let πM : R

3 → M denote the (metric)
projection, i.e., πM (x) is the unique point ofM such that ‖x−πM (x)‖ = inf y∈M ‖x−
y‖. It is known (and easy to prove) that 〈x − πM (x)| y − πM (x)〉 ≤ 0 for all y ∈ M
and that πM is 1-Lipschitz.

Here, a 2- or 3-dimensional compact convex set in R
3 is called a convex body. Let

K be the space of all convex bodies in R
3. Equipped with the Pompeiu–Hausdorff

distance,K becomes a metric space. For K ∈ K, the width of K , denoted by wid K , is
the smallest distance between two parallel (dim K − 1)-dimensional affine subspaces
H , H ′ of aff K such that K ⊂ conv (H ∪ H ′).

The d-dimensional unit ball (centred at 0) is denoted by Bd , and rel bdBd = Sd−1
(d ≥ 2). The d-dimensional regular simplex of edge length 1 is denoted byTd (d ≥ 2).
The d-dimensional cube of unit edge length is denoted by Cd (d ≥ 2).

The group of orientation preserving isometries of R
d is denoted by Isom+

R
d .

We shall denote by λ the 1-dimensional Hausdorff measure (length).
For n ≥ 2 and x1, x2, . . . , xn ∈ R

d , we put x1x2 . . . xn = conv {x1, x2, . . . , xn}
and, for d = 2, |x1x2 . . . xn| = λbd x1x2 . . . xn . In particular, |xy| = ‖x − y‖.

Given x1, . . . , xn ∈ R
3, the perimeter function is p(x1, . . . , xn) = ∑n

i=1 |xi xi+1|,
with xn+1 = x1. If n ≥ 3 and x1 . . . xn is a non-degenerate planar convex n-gon with
consecutive vertices x1, . . . , xn , then p(x1, . . . , xn) = |x1 . . . xn|, but p(x1, x2) =
2|x1x2|.

Let G(K ) be the space of all cages in R
3 holding the compact set K and set

L(K ) = inf
G∈G(K )

λG.

We are looking for L(K ) for various sets K . Apart from general results, we estimate
L(K ) for the most common convex bodies. For the unit balls we find L(B2) = 6,
while Besicovitch in [2] proves that L(B3) ≤ 8π

3 + 2
√
3 and Aberth in [1] proves the
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equality. For the regular simplices of unit edge length, we obtain L(T2) = 3+√
3

2 and
L(T3) = 3. For the cubes of unit edge length, we establish L(C2) = 3

√
2 and we

conjecture L(C3) = 4 + 3
√
2.

The structure of the article is as follows. In Sect. 2 we relate the length of a cage
with the perimeter and the length of the Steiner tree joining the projections of the
vertices of the cage on some plane; this will yield lower bounds for L(K ) for several
sets K . Section 3 deals with the notion of almost fixing points, yielding upper bounds
for L(K ). Planar convex bodies are studied in Sect. 4 and non-planar ones in Sect. 5.

We end this introductory section with the following remark: The function L is not
continuous. Indeed, take the square S = C2 = abcd. For 0 < η < 1, let x ∈ ab
satisfy |xa| = η and choose Sη = xbcd. Then Sη → S if η → 0, but we have
L(Sη) = 3 for all η, as Theorem 4.3 shows, while L(S) = 3

√
2, by Theorem 4.7(ii).

2 Geometric Graphs and Steiner Trees

By a geometric graph, we mean a pair (G, η), where G is a graph with vertex set
V (G) and edge set E(G), and η is an embedding of G in a plane �, which acts as
follows. For any vertex v ∈ V (G), η(v) is a point in �; for any edge (v,w) ∈ E(G),
η((v,w)) is the line-segment η(v)η(w) ⊂ �, reduced to {η(v)} if η(v) = η(w). The
set

⋃

e∈E(G) η(e)will be denoted byη(G). Observe thatwemayhaveη(v) ∈ η((u, w))

for distinct v, u, w ∈ V (G), and η((u, v)) ∩ η((u′, v′)) may be non-void, even a line-
segment, for distinct u, v, u′, v′ ∈ V (G). A vertex v ∈ V (G) is called external if
η(v) ∈ bd conv η(G), and an edge e ∈ E(G) is called external ifη(e) ⊂ bd conv η(G).

If

(1) η(G) is not a line-segment,
(2) for any point x ∈ �, card

(

η|V (G)

)−1
({x}) ≤ 2,

(3) for any side s = ab of the convex polygon conv η(G), there is at least one path
(v1, . . . , vn) in G such that η(v1) = a, η(vn) = b, and η((v1, . . . , vn)) = ab,

then (G, η) is called convex.
We denote by Ps one of the paths (v1, . . . , vn) satisfying condition (3). Notice that

condition (3) implies that the union ofη(e) for all external edges e equals bd conv η(G).
Now, for every side s of conv η(G), choose a path Ps and delete from G the edges

of Ps , to obtain a graph ∇G.
We call a geometric graph (G, η) strongly connected if G has at least three edges

and the graph G \ {e1, e2} is connected, for any pair of external edges e1, e2 ∈ E(G).

Lemma 2.1 If the geometric graph (G, η) is convex and strongly connected, then ∇G
is connected.

Proof Let v ∈ V (G) be external, let C be the connected component of v in ∇G, and
assume that C �= ∇G.
Case 1. All external vertices belong to C .

Choosew ∈ V (G)\C . Delete any two external edges; the resulting graph contains
a path from w to some external vertex, which therefore does not belong to C , contrary
to the present assumption.
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Case 2. Some external vertex u does not belong to C .
In this case, at least two external edges e1, e2 do not belong to C . Since (G, η) is

strongly connected, G \ {e1, e2} is connected, which yields u ∈ C , and a contradiction
is obtained again. ��

For the geometric graph (G, η), we define its length μ(G, η) as follows:

μ(G, η) = λη(∇G) + λbd conv η(G).

Consider n points v1, . . . , vn ∈ R
3. Let S(v1, . . . , vn) denote the length of the shortest

connected rectifiable set containing all n points, called their Steiner tree.
Moreover, let

f (v1, . . . , vn) = p(v1, . . . , vn) + S(v1, . . . , vn), (1)

where p is the perimeter function. Remember that f (v1, . . . , vn) = |v1 . . . vn| +
S(v1, . . . , vn) if n ≥ 3 and v1, . . . , vn are the consecutive vertices of a non-degenerate
planar convex polygon, but f (v1, v2) = 3|v1v2|. The function f will play a central
role in this article.

An immediate consequence of Lemma 2.1 is the following.

Corollary 2.2 Let (G, η) be a convex strongly connected geometric graph, with exter-
nal vertices v1, . . . , vn such that η(v1), . . . , η(vn) lie in this order on bd conv η(G).
Then

μ(G, η) ≥ f
(

η(v1), . . . , η(vn)
)

.

Proof Indeed,

μ(G, η) = λη(∇G) + λbd conv η(G) ≥ S
(

η(v1), . . . , η(vn)
) + p

(

η(v1), . . . , η(vn)
)

= f
(

η(v1), . . . , η(vn)
)

. ��
We shall use the following obvious fact.

Lemma 2.3 If ϕ : R
3 → R

3 is 1-Lipschitz, then

p
(

ϕ(v1), . . . , ϕ(vn)
) ≤ p(v1, . . . , vn),

S
(

ϕ(v1), . . . , ϕ(vn)
) ≤ S(v1, . . . , vn), and therefore

f
(

ϕ(v1), . . . , ϕ(vn)
) ≤ f (v1, . . . , vn).

Theorem 2.4 Let G be a cage and P some plane in R
3. If v1, . . . vn are the external

vertices of (G, πP ) such that πP (v1), . . . , πP (vn) lie in this order on bd conv η(G),
then

λG ≥ f
(

πP (v1), . . . , πP (vn)
)

.
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Fig. 1 The locusO(a, b, k). Left: k ≥ 2√
3
|ab|, right: k < 2√

3
|ab|

Proof As a graph, the 1-dimensional skeleton of a polytope is 3-connected (i.e., every
pair of vertices can be joined by three paths in the graph having only their endpoints
in common), and therefore 3-edge connected (i.e., the graph minus any pair of edges
is graph-theoretically connected). Then the geometric graph (G, πP ) is strongly con-
nected. Also, it is easily verified that (G, πP ) is convex. We have G = ∇G∪ (⋃

s Ps
)

and λG ≥ λ∇G + ∑

s λPs . By successively using Lemma 2.3 and Corollary 2.2, we
obtain

λG ≥ λπP (∇G) +
∑

s

λπP (Ps) ≥ μ(G, πP ) ≥ f
(

πP (v1), . . . , πP (vn)
)

. ��
Given a, b, c ∈ R

2, let t(a, b, c) be the Fermat–Torricelli point, i.e., the unique
point s ∈ R

2 such that S(a, b, c) = |as| + |bs| + |cs|. If one of the three angles of the
triangle abc is greater than 2π

3 , then t(a, b, c) is one of the points a, b, or c.
Now fix a, b ∈ R

2 and k > |ab|, and consider the locus

O(a, b, k) = {

x ∈ R
2 ; S(a, b, x) = k

}

.

Proposition 2.5 (i) For any a, b ∈ R
2 and any k > |ab|, O(a, b, k) is a convex C1

curve.
(ii) For all x ∈ R

2 there exists a half-plane Hx (a, b) containing x on its boundary
such that, for all d ∈ Hx (a, b) we have S(a, b, d) ≥ S(a, b, x).

Proof (i) Let c ∈ R
2 be such that abc is an equilateral triangle, labelled clockwise. Let

C be the circle circumscribed to abc. Recall that (ab)+ denotes the open half-plane
on the left of the line ab oriented from a to b, i.e., here not containing c. We describe
O+(a, b, k) = O(a, b, k) ∩ (ab)+.

Let x ∈ O+(a, b, k). If x ∈ (ca)+, then ∠xab > 2π
3 , hence the Steiner tree

connecting a, b, x is the union of the line-segments xa and ab, andO+(a, b, k)∩(ca)+
is an arc of circle of radius k − |ab| centred in a. If x ∈ (ac)+ ∩ (cb)+ \ convC , then
the Fermat–Torricelli point s = t(a, b, x) is on C , and the Ptolemy theorem shows
that |sa| + |sb| = |sc|, whence O+(a, b, k) ∩ (ac)+ ∩ (cb)+ is an arc of circle of
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centre c and radius k if k ≥ 2√
3
|ab|. The curveO+(a, b, k) is differentiable at its point

on ac, with a tangent line orthogonal to ac. See Fig. 1 left.
If k < 2√

3
|ab|, then O+(a, b, k) crosses C at some points d, d ′. If x ∈ (ac)+ ∩

(cb)+ ∩ convC , then the Steiner tree connecting a, b, x is the union of the line-
segments ax and xb, henceO+(a, b, k) ∩ (ac)+ ∩ (cb)+ ∩ convC is an arc of ellipse
of foci a and b. At d, d ′ too, O+(a, b, k) is differentiable. Indeed, on the one hand,
the normal to the ellipse at d must bisect the angle âdb, on the other hand, denoting
by ω the centre of C , we have ∠adc = 1

2∠aωc = π
3 = ∠cdb. It follows that both

normals to the ellipse and to the circle of centre c coincide at d. See Fig. 1 right.
Now, the convex curveO+(a, b, k) is fully described via the symmetry with respect

to the bisector of ab, and further O(a, b, k) via the symmetry with respect to ab.

(ii) Put k = S(a, b, x), let Dx be the tangent ofO(a, b, k) at x , and choose for Hx (a, b)
the half-plane bounded by Dx and not containing ab. ��
Remark One can prove that, for all integers n ≥ 3, all a1, . . . , an ∈ R

2, and all
k > S(a1, . . . , an), the locus {x ∈ R

2 ; S(a1, . . . , an, x) = k} is a concatenation of
convex C1 curves, themselves concatenations of arcs of circles and/or ellipses, with
possible angular points b1, . . . , br . These points b j are those for which the Steiner tree
of a1, . . . , an, b j is not unique, and where this Steiner tree combinatorially changes.

Corollary 2.6 If v1, . . . , vn ∈ R
2 and a, b, c ∈ v1 . . . vn, then S(a, b, c) ≤

S(v1, . . . , vn) and f (a, b, c) ≤ f (v1, . . . , vn).

Proof Since c (resp. b, a) is in the convex hull of v1, . . . , vn , every half-plane bounded
by a straight line passing through c (resp. b, a) contains at least one point vi (resp.
v j , vk). Choose c′ = vi in the half-plane Hc(a, b) given by Proposition 2.5(ii). Simi-
larly, choose b′ = v j in the half-plane Hb(a, c′), then choose a′ = vk in the half-plane
Ha(b′, c′). Then we have

S(a, b, c) ≤ S(a, b, c′) ≤ S(a, b′, c′) ≤ S(a′, b′, c′)
= S(vk, v j , vi ) ≤ S(v1, . . . , vn).

Since |abc| ≤ |v1 . . . vn|, the inequality for f follows. ��

Remark One could expect that, for a1, . . . , am ∈ v1 . . . vn, we have S(a1, . . . , am) ≤
S(v1, . . . , vn) as soon as m < n. This is however false, already for m = 4.

Indeed, given an equilateral triangle T2 = abc of unit edge length, choose n points
v1, . . . , vn , some of them close to a, some close to b, and others close to c, such that
abc is in their convex hull. Then S(v1, . . . , vn) is close to S(a, b, c) = √

3, while
for a1 = a, a2 = b, a3 = c, a4 = 1

2 (a + b), one can check that one of the Steiner
trees connecting a1, . . . , a4 is obtained by joining a1 to a4, then taking the Steiner
tree of a2, a3 and a4, cf. Fig. 2; the other Steiner tree is symmetric with respect to
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a1 =a b=a2

c=a3

a4

d

t

Fig. 2 In bold, a Steiner tree connecting a1, . . . , a4

the line a3a4. If d is not on a2a3 but such that a2a4d is equilateral, and if t is the
Fermat–Torricelli point associated to a2, a3, a4, from |ta4|+ |ta2| = |td| one obtains

S(a1, . . . , a4) = |a1a4| + |a3d| = 1

2

(

1 + √
7
)

> S(v1, . . . , vn).

Theorem 2.7 Let K be a planar convex body, x, y, z ∈ bd K, and x ′, y′, z′ ∈ R
2, such

that xx ′, yy′, zz′, are supporting lines of K and the vectors x ′ − x, y′ − y, z′ − z point
toward the direct sense on bd K. Assume that the order of x, y, z is also in the direct
sense on bd K and that the Steiner tree determined by x, y, z has a vertex v inside
int K . Put αx = ∠x ′xy, βx = ∠x ′xv, γx = ∠x ′xz, and, analogously, αy, βy, γy and
αz, βz, γz .

If f attains a local minimum at x, y, z, then

cosαx + cosβx + cos γx = 0,

cosαy + cosβy + cos γy = 0,

cosαz + cosβz + cos γz = 0.

Moreover, bd K is differentiable at x, y, z, and the normals at x, y, z are concurrent.

Proof Consider for a moment v = (v1, v2), y = (y1, y2) and z = (z1, z2) fixed, and
x variable on T = xx ′. Put g(x) = |xy| + |xv| + |xz|. Again for a moment, consider
T to be the real line R × {0}, with the real number x corresponding to the point x as
its abscissa. We have

g(x) =
√

(x − y1)2 + y22 +
√

(x − v1)2 + v22 +
√

(x − z1)2 + z22,
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z

y

x

v

x

z
y

αx βx
γ x

bd K

T = xx

Fig. 3 The law of cosines

whence

g′(x) = x − y1
√

(x − y1)2 + y22

+ x − v1
√

(x − v1)2 + v22

+ x − z1
√

(x − z1)2 + z22

= cosαx + cosβx + cos γx .

Now, assume

cosαx + cosβx + cos γx �= 0.

Then, for some x̃ ∈ T close to x , g(̃x) < g(x). This implies |zπK (̃x)| + |vπK (̃x)| +
|yπK (̃x)| < g(x), which yields f (̃x, y, z) < f (x, y, z), impossible, see Fig. 3.

To prove the second part, suppose that some normals at x, y, z form a non-
degenerate triangle. Then suitably and slightly turning the set {v, x, y, z} about an
interior point of that triangle brings all three points x, y, z in positions x ′′, y′′, z′′
outside K . But then

f (πK (x ′′), πK (y′′), πK (z′′)) < f (x, y, z),

which is again impossible. ��
In the rest of this section, we compute the infimum of f on some sets; this will be

useful in Sect. 4.

Lemma 2.8 We have inf{ f (x, y, z) ; x, y, z ∈ S1, 0 ∈ xyz} = 6.

Proof Recall the perimeter function p; we have p(x, y, z) = |xyz| if int xyz �= ∅, and
p(x, y, z) = 2|xy| if z ∈ xy. It is easily seen that both p and S have no local
minimum with distinct x, y, z. It follows that the global minimum of both func-
tions is attained when two of the points x, y, z collapse, i.e., when xyz is a diameter
of S1. ��
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Lemma 2.9 If abc is an equilateral triangle of sides I1 = bc, I2 = ca, I3 = ab and

side length δ, then inf{ f (u1, u2, u3) ; uk ∈ Ik} = 3+√
3

2 δ. This infimum is reached
precisely at (a′, b′, c′), where a′, b′, c′ are themidpoints of bc, ca, and ab respectively.

Proof We prove that both functions p and S have a global minimum on I1 × I2 × I3
at (a′, b′, c′), and that this minimum is uniquely reached for p.

The minimality of p implies the so-called incidence/reflection law: ∠cu1u2 =
∠u3u1b, denoted by α, and similarly ∠au2u3 = ∠u1u2c = β and ∠bu3u1 =
∠u2u3a = γ . Since the measures of angles in a triangle sum to π , we have
α + β = β + γ = γ + α = 2π

3 , yielding α = β = γ = π
3 . It follows that the

minimum of p is reached only at (a′, b′, c′).
For S, however, there is a 2-dimensional subset of I1 × I2 × I3 where S attains

its global minimum: choose arbitrarily t ∈ abc and consider u1 = πbc(t), u2 =
πca(t), and u3 = πab(t). Then t is the Fermat–Torricelli point t(u1, u2, u3) and

S(u1, u2, u3) =
√
3
2 δ. ��

Lemma 2.10 If abcd is a parallelogram of sides I1 = ab, I2 = bc, I3 = cd, I4 = da,
with δ = |ac| ≤ |bd|, then inf{ f (u1, . . . , u4) ; uk ∈ Ik} = 3δ.

If abcd is not a rectangle, then this infimum is reached precisely at (a, c, c, a). If
abcd is a rectangle, then the infimum is reached at both (a, c, c, a) and (b, b, d, d).

Proof As before, we prove that both functions p and S have a global minimum at the
aforementioned points. Assume that abcd is not a rectangle, and put β = ∠abc. We
have β < π

2 . Firstly, observe that the perimeter function p has no local minimum at a
quadruple (u1, . . . , u4) with ui /∈ {a, b, c, d} for every i . Indeed, at such four points,
the minimality of p implies the incidence/reflection law, which yields 4β = 2π , a
contradiction. Hence the minimum is attained, say, for u1 = a or b. Then one easily
shows that u4 = u1 in the first case and u2 = u1 in the second, and finally that the
global minimum of p is attained at u1 = u4 = a, u2 = u3 = c.

In the Steiner tree connecting u1, . . . , u4, let x1 be the neighbour of u1, and x3 that
of u3, with possibly xi = ui for some of the i’s. Then

S(u1, . . . , u4) = |u4x1| + |u1x1| + |x1x3| + |x3u3| + |x3u2|
≥ |aπab(x1)| + |πab(x1)x1| + |x1x3| + |x3πcd(x3)| + |πcd(x3)c|
≥ |ac|

if x1 is the neighbour of u4 and x3 the neighbour of u2 in the Steiner tree, see Fig. 4
left, and

S(u1, . . . , u4) = |u4x3| + |u3x3| + |x3x1| + |x1u1| + |x1u2|
≥ |πcd(a)πcd(x3)| + |πcd(x3)x3| + |x3x1|
+ |x1πab(x1)| + |πab(x1)πab(c)|
≥ |πcd(a)πab(c)| = |ac|
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ba
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u2
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u4
x1
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πab(x1)

πcd(x3)

ba

cd

u1

u2

u3

u4
x1

x3

πab(c)

πcd(a)

Fig. 4 Left: x1 is the neighbour of u4 in the Steiner tree; right: x1 is the neighbour of u2

in the case x1 is the neighbour of u2 and x3 that of u4, see Fig. 4 right. Hence, both
functions p and S attain their global minimum at u1 = u4 = a, u2 = u3 = c, and this
remains true for their sum. The case of a rectangle is clear. ��

3 Points Almost Fixing Planar Convex Bodies

In the sense of Baire categories, for most convex bodies K ⊂ R
2, the inscribed circle

C is unique and touches bd K in exactly three points a, b, c, with o ∈ int abc [12],
where o is the centre ofC . Then, obviously, the points a, b, c fix K . However, there are
convex bodies which cannot be fixed by any set of three points, e.g. parallelograms.
A set of points on the boundary of K is fixing K if any small move of K brings
some point of the set in int K . More precisely, a1, . . . , an ∈ bd K fix K if there is
a neighbourhood V of the identity id in the group Isom+

R
2 of planar rotations and

translations, such that, for every f ∈ V satisfying f (K ) �= K , at least one of the ai
belongs to int f (K ). This is slightly different from another commonly used definition
of fixing, e.g. in [3,4], where a subset H of bd K is said to fix K if id is isolated in
the set

{

f ∈ Isom+
R
2 ; H ∩ f (int K ) = ∅}

. We consider that a rotation of a disc
around its centre does not move the disc. Observe that both definitions are equivalent
if K is not a disc, since in this case there is a neighbourhood V of id in Isom+

R
2

such that every f ∈ V \ {id } satisfies f (K ) �= K . We now introduce the following
related notion.

The points a1, . . . , an ∈ bd K almost fix the convex body K ⊂ R
2 if, for any i ∈

{1, . . . , n} and any neighbourhood Vi of ai , there is a pair of points a′
i , a

′′
i ∈ Vi ∩bd K ,

such that the points a′
1, a

′′
1 , . . . , a

′
n, a

′′
n fix K .

Theorem 3.1 For any planar convex body K, there are two or three points almost
fixing K.

Proof If K is a disc, then it is obviously almost fixed by two diametrically opposite
boundary points. So, assume from now on that K is not a disc.

Suppose without loss of generality that C = S1 is an inscribed circle of K .
Case 1. There exists no a ∈ C ∩ bd K with −a ∈ C ∩ bd K .
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Let a ∈ C ∩bd K and A be the component of−a inC ∩ int K . The set A is an open
arc ã′a′′ ⊂ C of length less than π . Clearly, the triangle aa′a′′ is acute and a, a′, a′′
fix K .
Case 2. There exists a ∈ C ∩ bd K with −a ∈ C ∩ bd K .

Let ã1a2 ⊂ C be the connected component of a in C ∩ bd K . Then ã1a2 �= C
because K is not a disc. If −a ∈ ã1a2 and λã1a2 > π then K is fixed by a1, a2 and
the midpoint a3 of ã1a2. The case λã1a2 = π (hence a1 = ±a and a2 = ∓a) will be
treated later on.

If −a /∈ ã1a2, let ã∗
1a

∗
2 ⊂ C be the component of −a in C ∩ bd K . Then ã1a2 and

ã∗
1a

∗
2 are disjoint.

Suppose a1, a2 �= a or a∗
1 , a

∗
2 �= −a, say a∗

1 , a
∗
2 �= −a. If λã∗

1a
∗
2 < π , then the

triangle aa∗
1a

∗
2 is acute and a, a∗

1 , a
∗
2 fix K . If λã∗

1a
∗
2 ≥ π , then λã1a2 < π . Let m be

the midpoint of ã1a2. Since m /∈ ã∗
1a

∗
2 and λã∗

1a
∗
2 ≥ π , we have −m ∈ ã∗

1a
∗
2 . Then

the triangle (−m)a1a2 is acute, and its vertices fix K .

If a1 = a, a∗
1 = −a, and ã1a2, ã∗

1a
∗
2 are non-degenerate and do not lie both on the

same half of C , then we are in the already treated case for some point in the relative
interior of ã1a2 instead of a.

It remains the case that at least one of ã1a2, ã∗
1a

∗
2 is degenerate or they lie both on

the same half of C .
Let the lines � � a, −� � −a be orthogonal to −aa. Put bc = � ∩ bd K ,

with b, c perhaps not distinct. Take small arcs b̃′b′′, c̃′c′′, ã′a′′ ⊂ bd K containing
b, c,−a, respectively, in their relative interior. Then a′, a′′, b′, b′′, c′, c′′ fix K , and
consequently −a, b, c almost fix K . This remains valid for bc degenerate (b = c); in
that case a,−a almost fix K . ��

Our next statement presents useful criteria for a finite collection of points to fix K
or almost fix K . The proof can be found in [7]. We first introduce some notation.

Given a planar convexbody K , with bd K oriented counterclockwise, anda ∈ bd K ,
let T(a), Tr (a) be the left, respectively right, tangent line at bd K in a. We orient these
lines as bd K , i.e., so that int K ⊂ T(a)+∩Tr (a)+. Let N(a) and Nr (a) be the left and
right normals at bd K in a, oriented in the directions T(a)+ and Tr (a)+ respectively.
Let L(a) be the open sector, union of the left open half-planes bounded by N(a) and
Nr (a):

L(a) = N(a)+ ∪ Nr (a)+.

Let L(a) be the corresponding closed sector, and let

�L(a) = {x ∈ S1 ; a + x ∈ L(a)}

be the set of directions of L(a); it is a compact subset of S1. Let R(a) and R(a) be the
analogous sectors for the right half-planes. Observe that the set of directions of R(a) is
−�L(a), hence will not be needed. If bd K is differentiable at a, then L(a) = R

2\R(a),
otherwise L(a) ∩ R(a) is the union of two sectors of vertex a. We will also use the
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intersection sectors:

(a) = N(a)+ ∩ Nr (a)+ = R
2 \ R(a),

r(a) = R
2 \ L(a), their corresponding closed sectors (a) and r(a), and the set of

directions of (a): �(a) = {x ∈ S1 ; a + x ∈ (a)}.
Now we present the result from [7] that we are going to use.

Theorem 3.2 [7] Let K be a planar convex body and a1 . . . , an ∈ bd K.

(i) If a1, . . . , an fix K , then both intersections L(a1)∩· · ·∩ L(an) and R(a1)∩· · ·∩
R(an) are empty.

(ii) If the three intersections L(a1) ∩ · · · ∩ L(an), R(a1) ∩ · · · ∩ R(an), and �L(a1) ∩
· · · ∩ �L(an) are empty, then a1, . . . , an fix K .

(iii) If a1, . . . , an almost fix K , then both intersections (a1)∩· · ·∩(an) and r(a1)∩
· · · ∩ r(an) are empty.

(iv) If the three intersections (a1) ∩ · · · ∩ (an), r(a1) ∩ · · · ∩ r(an), and �(a1) ∩
· · · ∩ �(an) are empty, then a1, . . . , an almost fix K.

Remarks The set of directions is needed in items (ii) and (iv): If K = [−2, 2]× [0, 1]
then the three points a = (−1, 0), b = (1, 0), c = (0, 1) do not fix K although the
intersections L(a) ∩ L(b) ∩ L(c) and R(a) ∩ R(b) ∩ R(c) are empty.

Another commonly used definition of fixing points is the following one [6]: The
points a1, . . . , an ∈ bd K weakly fix K if, for any path γ : [0, 1] → Isom+

R
2 , t �→ γt

such that γ0(K ) = K and γ1(K ) �= K , there exist i ∈ {1, . . . , n} and t ∈ [0, 1] such
that ai ∈ int γt (K ). Obviously, if a1, . . . , an fix K in our first sense, then they weakly
fix K . Example 3 of [7] shows that the converse, however, is not true. Nevertherless
Theorem 3.2 remains valid with this notion of weakly fixing.

In [4] a condition of second order, i.e., using the curvature of bd K , is given such
that three points fix a convex body K with a C2 boundary.

The example below shows that, although every planar convex body can be almost
fixed by at most three points, sometimes it may bemore economical to use more points
to fix it, in the following sense: it is possible to have inequality (2) below

inf{ f (a, b, c, d) ; a, b, c, d almost fix K }
< inf{ f (a, b, c) ; a, b, c almost fix K }. (2)

Example With ε > 0 small, let K be the parallelogram a0b0c0d0, with a0 = (−2,−ε),
b0 = (1,−ε), c0 = (2, ε), and d0 = (−1, ε). Its centre is ω = (0, 0), its ratio of side
lengths is almost 3 and its angles are δ = arctan 2ε and π − δ, see Fig. 5.

Using Theorem 3.2(i), it is rather tedious but elementary to prove that

inf{ f (a, b, c, d) ; a, b, c, d almost fix K }

is attained for a′ = (−x,−ε), b′ = b0, c′ = (x, ε), and d ′ = d0, where 0 < x < 1
is such that the angles α = ∠b0c′c0 and β = ∠a′c′d0 satisfy 2 cosα = 1 + cosβ.
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a0

c = d = d0

b0 = b = b

c0

a

c
ω

a
e) δ

) α(β

Fig. 5 An example of convex body satisfying (2)

Using tan α = 2ε
1−x and tan β = ε

x , we obtain 2α2 = β2 + O(ε4), hence x =
(1 + 2

√
2)−1 + O(ε).

Since the Steiner tree of a′, b′, c′, d ′ is the polygonal line d ′a′ ∪ a′c′ ∪ c′b′ as soon
as α +β < π

6 , we have f (a′, b0, c′, d0) = 2|d0a′| + |a′b0|+ 2|b0c′| + |c′d0|+ |a′c′|,
hence

inf{ f (a, b, c, d) ; a, b, c, d almost fix K } = 6 + O(ε2).

Besides, one easily finds that inf{ f (a, b, c) ; a, b, c almost fix K } is attained for
a′′ = (−1,−ε), b′′ = b0, and c′′ = d0, yielding

inf{ f (a, b, c) ; a, b, c almost fix K } = 6 + (
√
3 + 2)ε + O(ε2).

We used here that the length S(a′′, b0, d0) of the Steiner tree joining a′′, b0, and d0 is
|eb0| = 2+√

3ε +O(ε2), where e = (−1−√
3ε, 0) is such that a′′d0e is equilateral.

As a consequence, (2) is satisfied if ε is small enough.

4 Cages for Planar Convex Bodies in R
3

Let r(K ) denote the inradius of the planar convex body K .

Theorem 4.1 For any planar convex body K , L(K ) ≥ 6r(K ).

Proof We may suppose r(K ) = 1, and B2 to be inscribed in K .
Let G be a cage holding K , and set G0 = G ∩ aff K . Denote by v1, . . . , vm the

vertices of G, and write wi = πaff K (vi ). Take the labelling so that w1, . . . , wn are
the external vertices of πaff K (G).

Case 1. 0 ∈ convG0.

By the Carathéodory Theorem, there exist a, b, c ∈ G0 such that 0 ∈ abc. Clearly,

0 ∈ πB2(a)πB2(b)πB2(c),

too. By successively using Theorem 2.4, Corollary 2.6, and Lemmas 2.3 and 2.8, we
obtain

λG ≥ f (w1, . . . , wn) ≥ f (a, b, c) ≥ f (πB2(a), πB2(b), πB2(c)) ≥ 6.

Case 2. 0 /∈ convG0.
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We claim that diamG > 2, yielding the result since G is 3-connected.
Consider the shortest arc of S1 which contains S1 ∩ conv ({0} ∪ G0), and denote

by α, β its endpoints. Take a ∈ 0α ∩ G0, b ∈ 0β ∩ G0, and consider the diameter
c(−c) of S1, parallel to ab. We obtain the trapezoid ab(−c)c. There are two half-lines
starting at a and supporting K , one of which, say La , meets c(−c) at some point a′,
with c ∈ 0a′. Analogously, some supporting half-line Lb of K from b meets c(−c) at
b′, with −c ∈ 0b′. If ‖a − b‖ ≤ 2 then ‖a′ − b′‖ ≥ ‖a − b‖ and K could escape from
the cage via conv (La ∪ Lb ∪ K ), which contradicts the assumption. Hence, indeed,
diamG ≥ diamG0 ≥ ‖a − b‖ > 2. ��

Theorems 4.3 and 4.6 below provide a link between points almost fixing a planar
convex body and cages holding that body. We will use the following refinement of
Kovalyov’s theorem.

Lemma 4.2 Let K be a convex body in R
2 and μ ∈ [0, 1[. If fμ : R

2 → R
2 is defined

by fμ(x, y) = (x, μy), then

(i) a copy of fμ(K ) fits into K , i.e., there exists i ∈ Isom+
R
2 such that i( fμ(K )) ⊂

K, and
(ii) moreover, i can be chosen arbitrarily close to id if μ is close enough to 1, that is:

For any ε > 0 there exists μ0 < 1 such that for all μ ∈ [μ0, 1[ there exists
i ∈ Isom+

R
2 satisfying

i( fμ(K )) ⊂ K and ‖i(x) − x‖ < ε for all x ∈ K .

Proof Item (i) is Kovalyov’s theorem, see [8]. Item (ii) follows directly from the proof
of Kós and Töröcsik in [9]: As μ tends to 1, the points E ′ and F ′ of their proof tend
to E and F , hence the isometry i tends to id . ��
Theorem 4.3 Let K be a planar convex body in R

3 and a, b ∈ rel bd K. If a, b almost
fix K in aff K, then L(K ) ≤ f (a, b).

Proof The plane P0 = aff K is thought to be the horizontal plane.
Case 1. ab �⊂ rel bd K .

Let a′, a′′ be close to a and b′, b′′ close to b such that a′, a′′, b′, b′′ fix K . It does
not matter whether a′ and a′′ are on each side of a or not. These points are labelled
so that the quadrilateral a′b′b′′a′′ is convex, with a′′b′′ ∈ (a′b′)+. Let D0 denote the
bisector of a′b′ and a′′b′′.

With α > 0 small enough, consider the plane P ′ passing through a′b′ such that
∠(P0, P ′) = α, with a′′b′′ below P ′. Similarly, let P ′′ be the plane containing a′′b′′,
with ∠(P0, P ′) = α and a′b′ below P ′′, see Fig. 6 left. Let P be the plane parallel to
P0, below P0, at a distance α2. Set D = P ′ ∩ P ′′, D′ = P ∩ P ′ and D′′ = P ∩ P ′′.
Observe that πP0(D) = D0, that D′ is parallel to a′b′ , and that D′′ is parallel to a′′b′′.

Let δ > 0 be such that the four measures of angles ∠(Tr (a), ab), ∠(ab, T(b)),
∠(Tr (b), ba), and ∠(ba, T(a)) are at least 5δ. By continuity of the left and right
tangent lines, if a′, a′′ are close enough to a and b′, b′′ close enough to b, then all
measures ∠(Tr (a′), D0), ∠(D0, T(b′)), ∠(Tr (b′′),−D0), and ∠(−D0, T(a′′)) are
at least 4δ.
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Fig. 6 A cage holding K in the case 1. Left: front view in the case a′b′ and a′′b′′ are parallel. Right: view
from above

Choose c, d ∈ D, c′, d ′ ∈ D′, and c′′, d ′′ ∈ D′′, c, c′, c′′ close to a and d, d ′, d ′′
close to b, such that their projections c0 = πP0(c), . . . , d

′′
0 = πP0(d

′′) satisfy

∠(c′′
0a

′′, T(a
′′)),∠(Tr (a

′′), a′′c′′
0),∠(c′

0a
′, T(a

′)) and ∠(Tr (a
′), a′c′

0) ≥ 3δ (3)

and similarly at points b′, b′′. We will see later that the eight line-segments a′c, a′c′,
a′′c, a′′c′′, b′d, b′d ′, b′′d, and b′′d ′′ hold K . Therefore, as holding cage, we are led to
consider the 1-skeleton of the polyhedron�0 = a′a′′cc′c′′b′b′′dd ′d ′′ (the convex hull
of {a′, a′′, c, c′, c′′, b′, b′′, d, d ′, d ′′}). Nevertheless we wish to eliminate the edges
a′a′′ and b′b′′, because they might cross rel int K . For this reason, we add to �0
two vertices e ∈ aff (a′a′′c) and f ∈ aff (b′b′′d), say e, f ∈ P , such that πP0(e) and
πP0( f ) belong to D0. The resulting polyhedron� = a′a′′cc′c′′b′b′′dd ′d ′′e f has three
hexagonal faces: a′cdb′d ′c′, a′′cdb′′d ′′c′′, and ec′d ′ f d ′′c′′, two quadrilateral faces:
a′ca′′e and b′db′′ f , and four triangular faces: a′ec′, a′′ec′′, b′ f d ′, and b′′ f d ′′.

Three edges, namely cd, c′d ′, and c′′d ′′, have a length close to |ab| and the other
sixteen have an arbitrarily small length, hence the length of the 1-skeleton of �,
denoted by G in the sequel, is close to 3|ab| = f (a, b).

It remains to prove thatG holds K if α is small enough.We assume in particular that
α ≤ δ. By contradiction, suppose that there exists ϕ : [0, 1] → Isom+

R
3 , t �→ ϕt ,

continuous such that ϕ0 = id , ϕ1(K ) is far away from K , and G ∩ rel int Kt = ∅ for
all t ∈ [0, 1], where Kt = ϕt (K ). We assume without loss of generality that Kt �= K
for all t > 0.

Let us fix t > 0 so small that ∠(�, ϕt (�)) ≤ δ for any line �. In particular, we
have ∠(P0, Pt ) ≤ δ, where Pt = ϕt (P0). If t is small enough, then the plane Pt
cuts at least four of the eight aforementioned edges of G in four points a1, a2, b1, b2
close to a′, a′′, b′, b′′ respectively. More precisely, we have a1 ∈ Pt ∩ (a′c ∪ a′c′),
a2 ∈ Pt ∩ (a′′c ∪ a′′c′′), b1 ∈ Pt ∩ (b′d ∪ b′d ′), and b2 ∈ Pt ∩ (b′′d ∪ b′′d ′′).

Let π : P0 → Pt be the restriction to P0 of the orthogonal projection onto Pt .
The image by π of any point x ∈ P0 will be denoted by x̃ . Since ∠a′a1˜a′ ≤ α ≤ δ

and the tangent lines at Kt in ˜a′ make an angle at most δ with the corresponding

123

Author's personal copy



Discrete & Computational Geometry

tangent lines at K in a′, inequality (3) ensures that, in the plane Pt , the line a1˜a′ points
outwards from Kt = ϕt (K ), making an angle of measure at least δ with the left and

right tangent lines at Kt . The same holds for a2 ˜a′′, b1˜b′ and b2˜b′′. By assumption,
a1, a2, b1, b2 /∈ rel int Kt , whence ˜a′, ˜a′′, ˜b′, ˜b′′ /∈ rel int Kt ; hence there exist four
lines D(̃x), x̃ = ˜a′, ˜a′′, ˜b′, ˜b′′, with x̃ ∈ D(̃x), such that Kt is in each of the four
left half-planes D(̃x)+. Now, by Lemma 4.2, a copy of ˜K = π(K ), arbitrarily close
to ˜K , fits into Kt . Using the inverse map π−1 : Pt → P0, we obtain that a copy of
K , arbitrarily close to K , fits into the intersection of the half-planes D(x)+, with
x = a′, b′, a′′, b′′, where D(x) = π−1(D(̃x)). Since a′, a′′, b′, b′′ fix K , this copy
of K close to K must be K itself, and the points a1, a2, b1, b2 must coincide with
a′, a′′, b′, b′′ respectively, hence Kt = K , a contradiction.
Case 2. ab ⊂ rel bd K .

We orient P0 = aff K so that rel int K ⊂ (ab)+. We first prove that the points
a′, a′′, b′, b′′ fixing K , a′, a′′ close to a and b′, b′′ close to b, can be chosen such that
a′, b′ ∈ ab and a′′, b′′ ∈ (ab)+, i.e., such that a′, a′′ are on each side of a and b′, b′′
on each side of b. Observe that ab is the right tangent line at rel bd K in a and the left
tangent line in b. Denote by A the left tangent line in a and by B the right tangent
line in b, both with the same orientation as rel bd K , i.e., with rel int K ⊂ A+ ∩ B+.
Since a, b almost fix K , using Theorem 3.2(iii) we have that both measures ∠(A, ab)
and ∠(ab, B) are at least π

2 . Moreover, if ∠(A, ab) = ∠(ab, B) = π
2 , we also have

A ∩ rel bd K = {a} or B ∩ rel bd K = {b} (or both).
For short, we say that rel bd K has a right angle at a if ∠(A, ab) = π

2 and A ∩
rel bd K �= {a}.

If rel bd K has no right angle neither at a nor at b, then using Theorem 3.2(ii), we
easily verify that for any a′, b′ ∈ ]ab[ , a′′, b′′ ∈ (ab)+ ∩ rel bd K , a′, a′′ close to a
and b′, b′′ close to b, with dist(a′′, ab) = dist(b′′, ab), the points a′, a′′, b′, b′′ fix K .

If rel bd K has a right angle at a, thenwe first choose a′, b′ ∈ ]ab[ and b′′ ∈ (ab)+∩
rel bd K , a′ close to a and b′, b′′ close to b. Then we choose a′′ ∈ (ab)+ ∩ rel bd K ,
a′′ close to a, such that dist(a′′, ab) < dist(b′′, ab) and a′′ /∈ N(b′′)+ where N(b′′)
is the left normal line at rel bd K in b′′. Then Theorem 3.2(ii) implies that the points
a′, a′′, b′, b′′ fix K , see Fig. 7.

Consider the two planes P, P ′ containing a′b′ andmaking a small angle of measure
α with P0, with a′′b′′ above P and below P ′. Let P ′′ be the plane containing a′′b′′ and
perpendicular to P0. Choose c, d ∈ P ∩ P ′′ and c′, d ′ ∈ P ′ ∩ P ′′, c, c′ close to a and

a

A
b

B

a

e

a

c

c d

d

b

f

b

Fig. 7 Perspective view of a cage holding K in the case 2
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d, d ′ close to b, such that the measures of angles ∠xyz are all small enough, where
xyz = b′a′c, b′a′c′, a′b′d, a′b′d ′, b′′a′′c, b′′a′′c′, a′′b′′d, and a′′b′′d ′ respectively. As
before, we add two vertices e ∈ P ∩ aff (a′a′′c′) and f ∈ P ∩ aff (b′b′′d ′), say with
‖a′ − e‖ = ‖a′′ − e‖ and ‖b′ − f ‖ = ‖b′′ − f ‖, in order to eliminate the edges
a′a′′ and b′b′′. The heptahedron � = a′a′′cc′eb′b′′dd ′ f has two hexagonal faces
a′ecd f b′ and a′′cdb′′d ′c′, three quadrilateral faces a′c′d ′b′, a′c′a′′e and b′d ′b′′ f , and
two triangular faces a′′ec and b′′ f d. We prove similarly as in case 1 that, for α small
enough, the 1-skeleton of � is a cage holding K . ��

We say that the convex body K is weakly strictly convex if it possesses two parallel
supporting hyperplanes H , H ′ at distance wid K from each other, such that H ∩ K is
a single point. Recall that wid K is the width of K .

A consequence of Theorem 4.3 is the following.

Corollary 4.4 For any planar weakly strictly convex body K in R
3, we have L(K ) ≤

3wid K.

Proof Take the two supporting lines H , H ′ given by the definition of weakly strict
convexity, and the point {a} = H ∩ K . Then the orthogonal projection b of a onto H ′
belongs to H ′ ∩ K .

With ε > 0 small, consider the two lines parallel to ab and at distance ε from ab.
These lines cut rel bd K in four points a′, a′′, b′, b′′ which fix K . This proves that a, b
almost fix K and Theorem 4.3 applies. ��

An immediate consequence of Corollary 4.4 and Theorem 4.1 is the following.

Corollary 4.5 Let K be a planar weakly strictly convex body. Assume that K contains
a disc of diameter wid K. Then we have L(K ) = 3wid K.

In particular, for the unit two-dimensional disc B2, we have L(B2) = 6.

Corollary 4.5 also follows from the fact that any cage with S2 as circumscribed sphere
has length more than 6. This was proven by Lillington [10], and generalized to higher
dimensions by Linhart [11].

Theorem 4.6 Let K be a planar convex body in R
3 and a, b, c ∈ rel bd K be three

points that almost fix K . Then one has L(K ) ≤ f (a, b, c) in the two following situa-
tions:

(i) rel bd K contains at most one of the line-segments ab, bc and ca.
(ii) rel bd K contains two of the line-segments and K is weakly strictly convex.

Remarks If the three line-segments ab, ac, and bc are in rel bd K , then K is the triangle
abc and L(K ) is given by Theorem 4.7 in the sequel.

The example at the end of Sect. 3 shows that the statement of Theorem 4.6 would be
false with four points instead of three. Actually, it can be shown that the parallelogram
a′b0c′d0 of Fig. 5 plus its Steiner tree d0a′ ∪ a′c′ ∪ c′b0 cannot be approximated by
any cage holding the parallelogram K = a0b0c0d0.

The question remains openwhether the inequality is still validwhen K is notweakly
strictly convex.
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Fig. 8 A cage holding K in the case 1 of Theorem 4.6(i)

Proof If a, b, c are collinear, with c ∈ ab, then we prove, as at the beginning of the
proof of case 2 of Theorem 4.3 above, that a, b almost fix K , and Theorem 4.3 applies,
since f (a, b, c) = f (a, b). We now assume that a, b, c are not collinear.
(i) Case 1: None of the line-segments ab, bc or ca is in rel bd K .

Let d0 = t(a, b, c) be the Fermat–Torricelli point of a, b, c. We first assume that
d0 is distinct from a, b and c.

For any arbitrarily small ε > 0, let a′, a′′, b′, b′′, c′, c′′ ∈ rel bd K be six points
fixing K , labelled in that cyclic order on rel bd K , with |aa′|, . . . , |cc′′| < ε2.

Let u be the unit vector orthogonal to P0 = aff K pointing upward, and put d =
d0 + εu. Let P be the plane parallel to P0, below P0, at a distance ε3. The plane
Pc = aff (a′′b′d) cuts P along a line denoted by Dc, parallel to a′′b′ and at a distance
of order ε2 from it, see Fig. 8. Take a2, b1 ∈ Dc, a2 at a distance of order ε from
a′′ and b1 at a distance of order ε from b′, in such a manner that the angles â2a′′b′
and b̂1b′a′′ have measures of order ε. Similarly, let Pa = aff (b′′c′d), Da = Pa ∩ P ,
Pb = aff (c′′a′d), Db = Pb ∩ P and choose b2, c1 ∈ Da and c2, a1 ∈ Db analogously
to a2 and b1.

Let a3 ∈ Pb ∩ Pc be at a distance of order ε from a, so that∠(a3a′d) and∠(a3a′′d)

are of order ε, similarly for b3 ∈ Pc ∩ Pa and c3 ∈ Pa ∩ Pb.
Finally, consider a4 ∈ P ∩ aff (a′a′′a3), say with a4 ∈ πP (Pb ∩ Pc), and similarly

b4, c4. Then one proves as in the proof of case 1 of Theorem 4.3 that the 1-skeleton
of the polyhedron

� = da′a′′a1a2a3a4b′b′′b1b2b3b4c′c′′c1c2c3c4

holds K . This triskaidecahedron (13 faces) has:

• one enneagonal (9-vertex) face a1a4a2b1b4b2c1c4c2,
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• three heptagonal faces da3a′′a2b1b′b3, db3b′′b2c1c′c3, and dc3c′′c2a1a′a3,
• three quadrilateral faces a3a′a4a′′, b3b′b4b′′, and c3c′c4c′′,
• and six triangular faces a1a′a4, a2a′′a4, b1b′b4, b2b′′b4, c1c′c4, and c2c′′c4.

Among its 30 edges, six have lengths whose sum is close to f (a, b, c): the edges
a2b1, b2c1, c2a1, a3d, b3d, and c3d. The remaining 24 edges have lengths of order ε.

The case where t(a, b, c) is one of the points, say t(a, b, c) = a, goes similarly:
We choose for d0 the point on the bisector of ̂bac at the distance

√
ε from a. The rest

of the proof is the same.
(i) Case 2: One of the line-segments ab, bc or ca is in rel bd K .

Assume ab ⊂ rel bd K . Then the plane P is chosen containing ab and making an
angle of measure ε3 with P0. In this manner a′′b′ is an edge of the cage and a1, b2
are no more needed. The rest of the cage is constructed exactly as above, yielding a
hendecahedron (11 faces) da′a′′a1a3a4b′b′′b2b3b4c′c′′c1c2c3c4 with

• one enneagonal face a1a4a′′b′b4b2c1c4c2,
• two heptagonal faces da3a′′a2b1b′b3, db3b′′b2c1c′c3, and dc3c′′c2a1a′a3,
• one pentagonal face da3a′′b′b3,
• three quadrilateral faces a3a′a4a′′, b3b′b4b′′, and c3c′c4c′′,
• and four triangular faces a1a′a4, b2b′′b4, c1c′c4, and c2c′′c4.

Among its 26 edges, six have lengths whose sum is close to f (a, b, c): the
edges a′′b′, b2c1, c2a1, a3d, b3d, and c3d. The remaining 20 edges have lengths of
order ε.
(ii) Assume ab and ac are in rel bd K . Since a, b, c almost fix K , there exist two
parallel supporting lines of K at b and c; this gives wid K ≤ |bc|. Since K is weakly
strictly convex, Corollary 4.4 applies, yielding

L(K ) ≤ 3wid K ≤ 3|bc| = f (b, c) ≤ f (a, b, c). ��
Question Is there a planar convex body K in R

3 satisfying

L(K ) �= inf{ f (a, b, c) ; a, b, c almost fix K }?

A parallelogram will be called acute if, at each of its vertices, the angles between
the diagonal and the sides are acute.

Theorem 4.7 (i) If T = abc is a triangle of sides I1 = bc, I2 = ca, I3 = ab, then

L(T ) = min{ f (x1, x2, x3) ; xk ∈ Ik}.

In particular, for the equilateral triangleT2 of unit edge length, we have L(T2) =
3+√

3
2 .

(ii) If R is a rectangle of diagonal length δ, then L(R) = 3δ. In particular, for the
square C2, we have L(C2) = 3

√
2.

(iii) If K is a non-acute parallelogram of diagonal lengths δ and �, with δ < �,
then L(K ) ≥ 3δ.
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Proof (i) Since f is continuous and I1×I2×I3 is compact, inf{ f (x1, x2, x3) ; xk ∈ Ik}
is reached at some point (u, v, w). Two cases occur: Either each point is in the relative
interior of its side, or two points are at a vertex, say, u = v = c, and the third one w

is at the foot of the corresponding height. This second case occurs for all non-acute
triangles; it can be seen that it occurs also for some acute ones, if the largest angle is
close enough to π

2 .
In the first case, the three normals at u, v, w are concurrent by Theorem 2.7, hence

the points u, v, w fix the triangle T . In the second case, we choose u′, v′ arbitrarily
close to c such that the three normals at u′, v′, w are concurrent, and the points u′, v′, w
fix T . This proves that c, w almost fix T . Then Theorem 4.3 or Theorem 4.6 applies,
yielding L(T ) ≤ f (u, v, w).

Conversely, let G be a cage holding T . Let P = aff T and consider the geometric
graph πP (G), i.e., the projection of the cage G in the plane P . Let v1, . . . , vn denote
the external vertices of πP (G).
In the plane P , let Sa denote the half-strip not containing a, bounded by the side bc
and the two rays parallel to ab starting from b and from c. Then G intersects Sa at
some point x , otherwise T would escape from G by a translation inside Sa .

Similarly, let Sb and Sc denote the analogous half-strips for b and c, see Fig. 9. Then
G intersects Sb at some point y and Sc at some point z. Now consider the projections
on T : u = πT (x), y = πT (y) and w = πT (z). They satisfy u ∈ I1, v ∈ I2, and
w ∈ I3. By using Lemma 2.3, Corollary 2.6, and Theorem 2.4, we obtain

f (u, v, w) ≤ f (x, y, z) ≤ f (v1, . . . , vn) ≤ λG.

Lemma 2.9 proves the equality for the equilateral triangle.

(ii) Let R = abcd be a rectangle and denote its sides by I1 = ab, I2 = bc, I3 = cd,
and I4 = da, see Fig. 10. Let G be a cage holding R, let P = aff R, and let v1, . . . , vn
denote the external points ofπP (G). In the plane P , let S be thehalf-strip not containing
R determined by da, ab, and bc. Then G intersects S at some point m, otherwise R

xu

y

v

z

wa

b

c
Sb

Sa

Sc

Fig. 9 Proof of Theorem 4.7(i)
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Fig. 10 Proof of Theorem 4.7(ii)

d

c b
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mδ S

H

H

Fig. 11 Proof of Theorem 4.7(iii)

would escape from G by a translation inside S. Let H be the open half-plane not
containing R bounded by ab. Since m is in the convex hull of the points v1, . . . , vn ,
one of these points, vk1 , belongs to H . Therefore the point u1 = πR(vk1) belongs to I1.
In the same manner, there are k2, k3, k4 ∈ {1, . . . , n} such that ui = πR(vki ) belongs
to Ii for each i = 2, 3, 4. By applying Theorem 2.4, Lemma 2.3, and Lemma 2.10,
we then obtain

λG ≥ f (v1, . . . , vn) ≥ f (vk1 , vk2 , vk3 , vk4) ≥ f (u1, u2, u3, u4) ≥ 3δ.

(iii) LetG be a cage holding the parallelogram K = abcd, with |ac| = δ < |bd| = �,

let P = aff K , and let v1, . . . , vn denote the external points of πP (G), see Fig. 11.
In the plane P , let S be the half-strip not containing K determined by da, ab, and
bc. The cage G intersects S at some point m, otherwise K would escape from G by
a translation inside S. Let H be the open half-plane not containing c bounded by the
straight line containing a and orthogonal to ac, i.e., H = {x ∈ P ; ĉax is obtuse}.
Since K is non-acute, H contains S and since m is in the convex hull of the points
v1, . . . , vn , one of these points, say vk , belongs to H . In the same manner, some point
vl belongs to the symmetric half-plane H ′ = {x ∈ P ; âcx is obtuse}. We then obtain

λG ≥ f (v1, . . . , vn) ≥ f (vk, vl) = 3|vkvl | ≥ 3|ac| = 3δ. ��

Remarks We conjecture that, in the case of an acute parallelogram K of diagonal
lengths δ and � with δ ≤ �, we have L(K ) = 3δ.
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In the case of a non-acute parallelogram, it is easy to prove that the vertices a and c
do not almost fix K anymore and that inf{ f (x, y, z) ; x, y, z almost fix K } is attained
e.g. for x = a, y = c and z = πda(c), whereas inf{ f (x, y) ; x, y almost fix K } is
attained only for x = b, y = d and is larger. By Theorem 4.6(i), we then obtain
L(K ) ≤ f

(

a, c, πda(c)
)

. We conjecture that this is an equality.

5 Cages for the Regular Tetrahedron

LetG be a cage holding the regular tetrahedron of unit edge lengthT3 = abcd. Recall
that πT3 is the projection function on T3.

Lemma 5.1 We have πT3(G) ∩ (ab ∪ ac) �= ∅.
Proof Suppose the intersection in the statement is empty. Imagine P0 := aff abc to
be horizontal and d above it. Denote by P−

0 the half-space below, bounded by P0. Let
�a be the vertical plane (i.e., orthogonal to aff abc) which includes bc. Similarly, let
�b and �c be the vertical planes which include ac and ab respectively, see Fig. 12.

Denote by �+
a the half-space containing a and bounded by �a . We have

G ∩ �b ∩ �+
a ∩ P−

0 = G ∩ �c ∩ �+
a ∩ P−

0 = G ∩ P0 ∩ �+
a \ abc = ∅.

Since G holds T3, G contains a point x below aff abc, in the triangular prism � =
π−1
T3

(int abc). We claim that this prism also contains a vertex of G. To see this, take
x ∈ G∩� to be farthest from�; this is possible by compactness ofG and because the
two boundaries of � which are parts of �b and �c do not cross G. If x is not a vertex
of G, then the side e of G to which x belongs must have an endpoint v below aff abc.
If v /∈ �+, then the other endpoint v′ of e equals x (otherwise πT3(v

′) ∈ ab ∪ ac). If
v ∈ �+, then both endpoints v, v′ of e lie in �+, and x ∈ {v, v′}, or e is parallel to
bc and x can be chosen in {v, v′}.

a

b

c

a+
a

x

x 0

a

d

b, c

a

b c

P0

P −
0x

x 0

Fig. 12 Proof of Lemma 5.1. Left: top view, right: front view
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Now, among all vertices of convG which are in�, choose one x0 such that the angle
between x0bc and abc is minimal. Then aff x0bc separates int T3 from int convG.
Thus, G cannot hold T3, the seeked contradiction. ��

Theorem 5.2 For the regular tetrahedron T3 of unit edge length, we have L(T3) = 3.

Proof Let T3 = abcd. A plane parallel to ab and to cd, and close (at distance η) to
ab cuts T3 along a rectangle Q = pqrs with p ∈ ac, q ∈ ad, r ∈ bd, s ∈ bc. Let
G be the 1-skeleton of the pentahedron abpqrs. We shall prove below that G holds
T3. As η → 0, the length of six sides of G tends to 0, while the length of each of the
remaining three tends to 1. Hence, L(T3) ≤ 3. In order to prove that G holds T3, it
obviously suffices to show that Q holds T3.

Suppose Q can go far away without meeting rel intT3. Then aff Q must contain a
vertex of T3 somewhere on Q’s way. Of course, that vertex cannot be c or d; let us
assume it is b. Let Q′ be that position of Q. Let x, y be the points where aff Q′ meets
ac, ad, respectively. Put � = xyb. Note that x ∈ ap implies ‖x − b‖ > ‖p− r‖. But
then, � is too long to fit inside Q′. Hence, p ∈ ax . Analogously, q ∈ ay. To fit in Q′,
� must have xb and yb at most as long as pr . This implies ‖p − x‖ > ‖a − p‖ and
‖q − y‖ > ‖a − q‖, whence ‖x − y‖ > 2‖p − q‖.

Let p′ ∈ pc satisfy ‖p − p′‖ = ‖a − p‖, and analogously choose q ′. As Q was
chosen close to ab, x is close to a, ∠p′bq ′ is close to 0, and therefore the height h of
p′bq ′ at p′ (or q ′) is larger than ‖p − q‖. Obviously, both heights of � at x and y are
larger than h. Thus, � does not fit into Q′.

Conversely, let G be a cage holding T3. If πT3(G) does not meet some side e of
T3, let e′ denote the side opposite to e; if πT3(G)meets all sides, choose opposite e, e′
arbitrarily.

By Lemma 5.1, there exist w1, w2, w3, w4 ∈ G respectively projecting via πT3

into the four sides different from e and e′, which we denote by e1, . . . , e4.
Consider the projection function πP onto a plane P parallel to e and e′. Then

πP (T3) is a square C , of side length 1√
2
and sides I1, . . . , I4, with Ii = πP (ei ), see

Fig. 13.

v1 w1

e

e

aff e1
e2

e3

e4

Fig. 13 Proof of Theorem 5.2
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Of course, πP (wi ) /∈ intC , for i = 1, . . . , 4, otherwise πT3(wi ) would be on a
face of T3 instead of the side ei .

We have πC (πP (w1)) ∈ I1, hence πP (w1) is in the closed half-plane bounded by
aff e1 and not containing intC . Therefore there exists an external vertex v1 of πP (G)

in the same half-plane, hence also satisfying πC (v1) ∈ I1. We do the same with
w2, w3 and w4. This gives four external vertices v1 . . . , v4 of πP (G), with possible
coincidences, such that πC (vi ) ∈ Ii . By using Theorem 2.4 and Lemmas 2.3 and 2.10,
we then obtain

λG ≥ f (v1, . . . , v4) ≥ f (πC (v1), . . . , πC (v4)) ≥ inf
ui∈Ii

f (u1, . . . , u4) = 3. ��
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9. Kós, G., Törőcsik, J.: Convex disks can cover their shadow. Discrete Comput. Geom. 5(6), 529–531

(1990)
10. Lillington, J.N.: A conjecture for polytopes. Proc. Cambr. Philos. Soc. 76, 407–411 (1974)
11. Linhart, J.: Kantenlängensumme, mittlere Breite und Umkugelradius konvexer Polytope. Arch. Math.

29, 558–560 (1977)
12. Zamfirescu, T.: Inscribed and circumscribed circles to convex curves. Proc. Am. Math. Soc. 80(3),

455–457 (1980)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

Author's personal copy


	Cages of Small Length Holding Convex Bodies
	Abstract
	1 Introduction
	2 Geometric Graphs and Steiner Trees
	3 Points Almost Fixing Planar Convex Bodies
	4 Cages for Planar Convex Bodies in mathbbR3
	5 Cages for the Regular Tetrahedron
	Acknowledgements
	References




