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A spanning path in a graph G is called a Hamiltonian path. To determine which graphs possess such paths is an NP-complete
problem. A graph G is called Hamiltonian-connected if any two vertices of G are connected by a Hamiltonian path. We consider
here the family of Toeplitz graphs. About them, it is known only for n � 3 that Tn〈p, q〉 is Hamiltonian-connected, while some
particular cases of Tn〈p, q, r〉 for p � 1 and q � 2, 3, 4 have also been investigated regarding Hamiltonian connectedness. Here, we
prove that the nonbipartite Toeplitz graph Tn〈1, q, r〉 is Hamiltonian-connected for all 1< q< r< n and n≥ 5r − 2.

1. Introduction

A path in a finite undirected graph G is called aHamiltonian
path if it visits each vertex of G exactly once. We call the
graph G Hamiltonian-connected if for any pair of distinct
vertices x and y of G, there exists a Hamiltonian path from x
to y. In 1963, Ore introduced the family of Hamiltonian-
connected graphs [13]. -e Hamiltonian path problem, is
the computational complexity problem of finding Hamil-
tonian paths in graphs, and related graphs are among the
most famous NP-complete problems, see [14]. In this paper,
we are investigating this property of Hamiltonian con-
nectedness for some classes of Toeplitz graphs.

Let n, t1, t2, . . . , tk ∈ N such that 1≤ t1 < t2 < · · ·

< tk < n. An undirected Toeplitz graph Tn〈t1, t2, . . . , tk〉 is a
symmetric graph with the vertex set 1, 2, . . . , n{ } and with an
edge (i, j) between the vertices i and j if and only if |j − i| � tl

for some l ∈ 1, 2, . . . , k{ }. -e integers t1, t2, . . . , tk are
called entries or jumps.-e adjacency matrix of any such graph
is a symmetric Toeplitz matrix. Toeplitz graphs were intro-
duced by G. Sierksma. -e undirected Toeplitz graphs were
first investigated by van Dal et al. [14] with respect to ham-
iltonicity. Heuberger [8] extended this study in 2002, while the
directed case was studied in [9–11]. For results regarding

different properties of Toeplitz graphs such as connectivity,
bipartiteness, planarity, and colourability, see [3–8]. -e well-
known circulant graphs are particular cases of Toeplitz graphs.
In fact, for each Toeplitz graph T, there exists a circulant graph
C such that T is a spanning subgraph of C.

For n, t1, t2, . . . , tk ∈ N, a circulant graph Cn(t1, t2, . . . ,

tk) is a regular graph of degree 2k or 2k − 1 with the vertex set
0, 1, 2, . . . , n − 1{ }, in which two vertices i and j are adjacent if
and only if j − i � tl(mod n), for some l ∈ 1, 2, . . . , k{ }. Cir-
culant graphs are Cayley graphs on the abelian group Zn, i.e., the
circulant graph Cn(t1, t2, . . . , tk) is the Cayley graph Cay(Zn,

t1, t2, . . . , tk􏼈 􏼉). Furthermore, note that Cn(1, 2, . . . , ⌊n/2⌋) �

Kn and Cn(1) � Cn (a cycle or cyclic graph on n vertices).
For results regarding connectivity of the Toeplitz graph,

see [14], where it is shown that the graph Tn〈t1, t2, . . . , tk〉

has at least gcd(t1, t2, . . . , tk) components. -erefore, for
gcd(t1, t2, . . . , tk)> 1, the corresponding Toeplitz graph is
disconnected. But, one may find a disconnected graph even
for gcd(t1, t2, . . . , tk) � 1, e.g., T6〈3, 5〉.

In [11], it has been proven that Tn〈1, 2〉 is Hamiltonian-
connected only for n � 3, while Tn〈1, 2, s〉 is Hamiltonian-
connected for all values of n and s.-e present paper is a sequel
of [12], where it is proved that Tn〈t1, t2〉 is Hamiltonian-
connected only for n � 3. -ereafter, the case k � 3 was

Hindawi
Complexity
Volume 2020, Article ID 5608720, 6 pages
https://doi.org/10.1155/2020/5608720

mailto:mfaisalnadeem@ymail.com
https://orcid.org/0000-0002-3175-7191
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/5608720


considered and it was shown that the graphs Tn〈1, 3, t3〉 and
Tn〈1, 4, t3〉 are Hamiltonian-connected. Here, we are pre-
senting a more general result about Tn〈1, t2, t3〉 with
1< t2 < t3 < n under the assumption that t2 and t3 are not both
odd because otherwise the corresponding Toeplitz graph be-
comes bipartite, hence not Hamiltonian-connected [12]. A
Toeplitz graph becomes circulant if for each entry ti, n − ti also
occurs as an entry for all i � 1, 2, . . . , k, see [1]. In this special
class of Toeplitz graphs, we prove here the existence of
Hamiltonian-connected graphs.

-e following results are needed to prove our first result.

Theorem 1 (see [2]). A connected Cayley graph on an
abelian group is Hamiltonian-connected if and only if it is
neither cyclic nor bipartite.

Theorem 2 (see [15]). 5e circulant graph Cn(t1, t2, . . . , tr)

is connected if and only if gcd(t1, t2, . . . , tr, n) � 1.

Theorem 3 (see [7]). A connected circulant graph Cn(t1,

t2, . . . , tr) is bipartite if and only if t1, t2, . . . , tr are odd and
n is even.

2. Main Results

We start with the following result which is a consequence of
-eorem 1.

Theorem 4. If n is an odd integer and k≥ 2 such that
tk ≤ ⌊n/2⌋ and gcd(t1, . . . , tk, n) � 1, then Tn〈t1, . . . , tk,

n − tk, . . . , n − t1〉 is Hamiltonian-connected.

Proof. Since T � Tn〈t1, t2, . . . , tk, n − tk, . . . , n− t1〉 � Cn

(t1, t2, . . . , tk), under the given conditions and by -eo-
rems 2 and 3, T is a connected noncyclic and nonbipartite
Cayley graph Cay(Zn, t1, t2, . . . , tk􏼈 􏼉). Hence, it is Hamil-
tonian-connected by -eorem 1. □

To prove our next main results, we need the following
notation and lemmas.

Let T be a Toeplitz graph and p, q (p< q) be two vertices
of T. -e symbols Gp,q and Gq,p stand for the paths (p, p + 1)

(p + 1, p + 2) · · · (q − 1, q) and (q, q − 1)(q − 1, q − 2) . . .

(p + 1, p), respectively. By Pp,q, we mean a path from p to
p + 1 with the set of vertices p, p + 1, p + 2, . . . , q − 2,􏼈

q − 1, q}, and by Pq,p, wemean a path from q to q − 1 with the
same vertices. Note that the existence of Pp,q or Pq,p is not
guaranteed. Furthermore, it is easy to observe that if T is a
Toeplitz graph of order n and there exists a path (v1,

v2) . . . (vk−1, vk) in T, then by the symmetry of Toeplitz
graphs, there exists another path (n + 1 − v1, n + 1 − v2) . . .

(n + 1 − vk−1, n + 1 − vk) in T.

Lemma 1. If t is an even integer with n ∈ t + 1, t + 3, . . . ,{

2t − 3} or n≥ 2t − 1, then Tn〈1, t〉 admits a Hamiltonian
path from 1 to 2.

Proof. For n ∈ t + 1, t + 3, . . . , 3t − 3{ }, the Toeplitz graph
Tn〈1, t〉 with t even admits a unique Hamiltonian path which

is starting from 1, passing through the edge (n − 1, n), and
ending at 2. We use these paths as basic paths to construct our
desired path in T � Tn〈1, t〉, which are defined as follows:

When n � t + 1,

P: (1, t + 1)Gt+1,2. (1)

When n � t + i for some i ∈ 3, 5, . . . , t − 1{ },
P′: (1, t + 1)Gt+1,i(i, t + i)(t + i, t + i − 1)(t + i − 1, i − 1)

· (i − 1, i − 2)(i − 2, t + i − 2) . . . (t + 3, t + 2)(t + 2, 2).
(2)

When n � 2t + i for some i ∈ 1, 3, . . . , t − 3{ },
P″: (1, t + 1)Gt+1,t+i(t + i, 2t + i)G2t+i,2t(2t, t)(t, t − 1)

· (t − 1, 2t − 1)(2t − 1, 2t − 2)(2t − 2, t − 2) . . .

· (i + 2, t + i + 2)(t + i + 2, t + i + 1)(t + i + 1, i + 1)Gi+1,2.

(3)

See also Figures 1(a)–1(c), respectively, for the illus-
tration of P, P′, and P″.

Now, by using P, P′, and P″, we construct a Hamiltonian
path from 1 to 2 in Tn〈1, t〉 as follows.

When n ≡ 2(mod(t − 1)), a desired path obtained by
using P is shown in Figure 2(a).

When n ≡ (1 + i)(mod(t − 1)) for some i ∈ 3, 5, . . . ,{

t − 1}, we use P and P′ to get a suitable path shown in
Figure 2(b).

Finally, when n ≡ (2 + i)(mod(t − 1))≥ 2t + 1 for some
i ∈ 1, 3, 5, . . . , t − 3{ }, we consider P and P″ to obtain a path
given in Figure 2(c) as desired. □

Lemma 2. If t is an odd integer and n is an even integer, then
Tn〈1, t〉 admits a Hamiltonian path from 1 to 2.

Proof. Let n ≡ (1 + i)(mod(t − 1)) be an even integer for
some i ∈ 1, 3, . . . , t − 2{ }. For i � 1, consider the path
shown in Figure 2(a), while for other values of i, follow the
path shown in Figure 2(b). □

Immediate consequences of Lemmas 1 and 2 are as
follows.

Corollary 1. Let t be an even integer and p< q be any two
vertices of T � Tn〈1, t〉. 5en, paths Pp,q and Pq,p exist in T if
q − p ∈ 1, t, t + 2, . . . , 2t − 4{ } or q − p≥ 2t − 2.

Corollary 2. Let t be an odd integer and p< q be any two
vertices of T � Tn〈1, t〉. 5en, paths Pp,q and Pq,p exist in T if
q − p � 1 or q − p≥ t is odd.

Lemma 3. Let t be an even integer and x be any vertex of
T � T2t〈1, t〉. 5en, there exists a Hamiltonian path from x to
2t in T.

Proof. For x � 1, the result is trivial. Paths for other values of
x are listed in Table 1. □

Now, by using Corollary 1 and Lemma 3, we prove our
next lemma.
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Lemma 4. Let x<y be any two vertices of Tn〈1, t〉, where t is
an even integer and n≥ 5t − 2. 5en, Tn〈1, t〉 admits a
Hamiltonian path from x to y, except from 2 to t + 1 (by
symmetry, another one from n − t to n − 1).

Proof. Let T � Tn〈1, t〉 be a Toeplitz graph with t even and
n≥ 5t − 2. Because of symmetry of Toeplitz graphs, it suffices

to show that T admits a Hamiltonian path from any vertex
x ∈ 1, 2, . . . , ⌈n/2⌉{ } to each vertex y ∈ 2, 3, . . . , n{ } (x<y)

of T. Take x<y, any two vertices of T, other than the pair
2, t + 1{ } of vertices. We split our proof into two cases. □

Case 1. y � x + 1.

Let x ∈ 1, 2, . . . , t{ }, then by Corollary 1, we have paths
Pt,n and Pt+2,n in T. By joining Pt,n and Pt+2,n to the remaining
subgraph of T, we obtain desired Hamiltonian paths Gx,1(1, t

+ 1)Pt,nGt,x+1 and Gx,3(3, t + 3)Pt+2,n(t + 2, 2)(2, 1)(1, x + 1)

in T, respectively, for x≤ t − 1 and x � t. For illustration, see
Figures 3(a) and 3(b), respectively.

Finally, to obtain Hamiltonian paths for remaining
values of x, we assume a≤x≤ b, where a � t + 1 + i(t − 2)

and b � t + (i + 1)(t − 2) are integers for some i≥ 0 such
that b≤ ⌈n/2⌉. By applying Corollary 1 to T, we get Pa,1 and
Pb+1,n in T and construct a desired path Gx,aPa,1(a − 1, b + 2)

Pb+1,nGb+1,x+1 from x to x + 1 in T. See also Figure 3(c).

Case 2. y≠x + 1.
Here, we partition the vertex set of T into 5 subsets of

vertices, according to Figure 4, and consider the following two
subcases.

1 2 t t + 1

(a) (b)

1 2 t + i

t + 1i

(c)

i + 11

t + 1 t + i

2t + i2t

3 4

2

Figure 1: P, P′, and P″ basic paths.
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(b)

_ _ _ _ _ _
1 2

i + 1 t + 1_ _ _ _ _ _ _ _ _ _ _ _ n_ _ _ 2t _ _ _ 2t + it + i

(c)

Figure 2: Hamiltonian path from 1 to 2 in T, when t is even. (a) n≡ 2(mod (t− 1)). (b) n≡ (1 + i)(mod (t− 1)); i ∈ {3, 5,. . ., t− 1}.
(c) n≡ (2 + i)(mod (t− 1))≥ 2t+ 1; i ∈ {1, 3, . . ., t− 3}.

Table 1: Hamiltonian paths from x to 2t in 〈T2t〉1, t when t is even.

Conditions Paths
1≠x< t is
odd

Gx,t+1(t + 1, 1)(1, 2)(2, t + 2)(t + 2, t + 3)(t + 3, 3)

(3, 4) . . . (x − 2, x − 1)(x − 1, t + x − 1)Gt+x−1,2t

x> t is odd
Gx,t+1(t + 1, 1)G1,x+1−t(x + 1 − t, x + 1)

(x + 1, x + 2)(x + 2, x + 2 − t)(x + 2 − t, x + 3 − t)

. . . (2t − 1, t − 1)(t − 1, t)(t, 2t)

x≤ t is even
Gx,1(1, t + 1)Gt+1,t+x+1(t + x + 1, x + 1)

(x + 1, x + 2)(x + 2, t + x + 2)(t + x + 2, t + x + 3)

. . . (2t − 1, t − 1)(t − 1, t)(t, 2t)(t, 2t)

x> t is even
(x, x − t)(x − t, x − 1 − t)(x − 1 − t, x − 1)

(x − 1, x − 2) . . . (t + 2, 2)(2, 1)(1, t + 1)Gt+1,x+1−t

(x + 1 − t, x + 1)Gx+1,2t
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Case 3. x, y ∈ A∪B∪C.

Corollary 1 guarantees the existence of Pv,n for any vertex
v< n − 2t + 3 in T. Here, by using it, we are getting Ham-
iltonian paths from x to y in T.

When x � 1, we consider the path G1,y−1Py−1,n from 1 to
any vertex y in T.

If x≠ 1, then possible Hamiltonian paths for different
values of x and y are listed in Tables 2–4.

Case 4. x ∈ A∪B∪C and y ∈ B′ ∪A′.
-e case when x ∈ C and y ∈ B′ ∪A′ is symmetric to the

case when x ∈ A∪B and y ∈ C. Hence, we remain only with
the case when x ∈ A∪B and y ∈ B′ ∪A′. Here, by Lemma 3,
we have a Hamiltonian path in T2t〈1, t〉 from any x ∈ A∪B
to 2t. By symmetry, another Hamiltonian path exists from
y ∈ B′ ∪A′ to n − 2t + 1, of vertex set n − 2t + 1,{

n − 2t + 2, . . . , n}. By joining 2t to n − 2t + 1 by the paths
G2t,n−2t+1, we get a Hamiltonian path from x to y in T.

-is completes the proof. □

Now, by using the fact Tn〈1, t, s〉 � Tn〈1, t〉∪Tn〈1, s〉

and Lemma 4, we prove our next main results.
Theorem 5. If t is an even integer, then the Toeplitz graph
Tn〈1, t, s〉 is hamiltonian-connected for all n≥ 5t − 2.

Proof. Let T � Tn〈1, t, s〉 be a Toeplitz graph with t even and
n≥ 5t − 2.-en, because of Lemma 4, we only have to establish
the existence of aHamiltonian path from 2 to t + 1. For this, we
use the entry s along with other two entries 1 and t.

-ere are five cases to consider. In first four cases, we use
Pv,n to construct desired paths which exist for any vertex
v≤ n − 2t + 2 of T due to Corollary 1.

(i) For s � t + 1, considered path is

(2, 1)(1, s + 1 � t + 2)Pt+2,n(t + 3, 3)G3,t+1. (4)

(ii) When s � t + i; for some i ∈ 3, 5, . . . , t − 1{ }, a pos-
sible path is

(2, 1)(1, s + 1 � t + i + 1)Gt+i+1,2t+1P2t+1,n

· (2t + 2, t + 2)(t + 2, t + 3)(t + 3, 3)(3, 4)

· (4, t + 4) . . . (t + i − 1, t + i)(t + i, i)Gi,t+1.

(5)

(iii) s � t + i; for some i ∈ 2, 4, . . . , t − 2{ }; in this case,
constructed path is

Pt,n_ _ _
1 x t

_ _ _

(a)

Pt+2,n
1 2

3

t t + 2
_ _ _

(b)

Pb+1,nPa,1
a b

x
_ _ _ _ _ _ b + 1

(c)

Figure 3: Hamiltonian path from x to x + 1 in T when x≤ ⌈n/2⌉. (a) x≤ t− 1. (b) x� t. (c) y� x+ 1 for x> t.

A B

n/2

ABC

1 t – 1 t 2t – 22t – 3 nn – t + 2n – t + 1n – 2t + 4n – 2t + 3_ _ __ _ _ _ _ __ _ _ _ _ __ _ _ _ _ _ _ _ _

Figure 4: Five subsets of vertices.

Table 2: Hamiltonian paths from 1≠x to y in T when t is even.

x, y ∈ A

Conditions Paths

y is even

Gx,1(1, t + 1)Gt+1,t+x(t + x, 2t + x)P2t+x−1,nG2t+x−1,2t

(2t, t)(t, t − 1)(t − 1, 2t − 1)(2t − 1, 2t − 2)

(2t − 2, t − 2) . . . (t + x + 2, t + x + 1)

(t + x + 1, x + 1)Gx+1,y

x is even
and y is
odd

Gx,1(1, t + 1)Gt+1,t+x+1(t + x + 1, x + 1)(x + 1, x + 2)

(x + 2, t + x + 2) . . . (y − 2, y − 1)(y − 1, t + y − 1)

Gt+y−1,2t−1P2t−1,n(2t, t)Gt,y

Both are
odd

Gx,1(1, t + 1)Gt+1,y+1(y + 1, t + y + 1)Gt+y+1,2t+2
(2t + 2, t + 2)(t + 2, t + 3)(t + 3, 2t + 3) . . .

(t + x − 1, t + x)(t + x, 2t + x)G2t+x,2t+y−1P2t+y−1,n

(2t + y, t + y)Gt+y,t+x+1(t + x + 1, x + 1)Gx+1,y
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G2,i+2(i + 2, t + i + 2)(t + i + 2, t + i + 3)

· (t + i + 3, i + 3) . . . (t − 1, t)(t, 2t)(2t, 2t + 1)

· P2t+1,n(2t + 2, t + 2)Gt+2,t+i+1(t + i + 1, i + 1)(1, t + 1).

(6)

(iv) s ∈ 2t, 2t + 1, . . . , n − 2t + 2{ }; a desired Hamilto-
nian path is

(2, 1)(1, s + 1)Ps,nGs,2t(2t, t)(t, t − 1)(t − 1, 2t − 1) . . .

· (t + 4, 4)(4, 3)(3, t + 3)Gt+3,t+1.

(7)

(v) s ∈ n − 2t + 3, n − 2t + 4, . . . , n − 1{ }: here, first, by
using Lemma 3, we construct a path Qn−2t+1,s+1 in
Tn〈1, t〉 from s + 1 to n − 2t + 1, of vertex set
n − 2t + 1, n − 2t + 2, . . . , n{ }. -en, by joining this
path to the remaining subgraph of T, we get a
Hamiltonian path

(2, 1)(1, s + 1)Qn−2t+1,s+1Gn−2t+1,2t(2t, t)(t, t − 1)

· (t − 1, 2t − 1) . . . (t + 4, 4)(4, 3)(3, t + 3)Gt+3,t+1,
(8)

from 2 to t + 1. -is concludes the proof. □

Theorem 6. If t is odd and s is even, then the Toeplitz graph
Tn〈1, t, s〉 is Hamiltonian-connected for all n≥ 5s − 2.

Table 3: Hamiltonian paths from 1≠x to y in T when t is even.

1≠x ∈ A and y ∈ B∪C

Conditions Paths
y � t Gx,1(1, t + 1)Gt+1,t+xPt+x,n(t + x + 1, x + 1) Gx+1,t

x is odd and y � t + i;

i ∈ 2, 4, . . . , x − 1{ }

Gx,i−1(i − 1, t + i − 1)(t + i − 1, t + i − 2) (t + i − 2, i − 2)(i − 2, i − 3) . . . (2, 1)

(1, t + 1)Gt+1,x+1(x + 1, t + x + 1)Pt+x,nGt+x,y

x is odd and y � t + i;

i ∈ 1, 3, . . . , x − 2{ }

Gx,t+1(t + 1, 1)(1, 2)(2, t + 2)(t + 2, t + 3) (t + 3, 3) . . . (i − 2, i − 1)(i − 1, t + i − 1)

(t + i − 1, 2t + i − 1)P2t+i−2,nG2t+i−2,t+x−1 (t + x − 1, x − 1)(x − 1, x − 2)

(x − 2, t + x − 2)(t + x − 2, t + x − 3) . . . (y + 2, y + 1)(y + 1, i + 1)(i + 1, i)(i, y)

x is odd and y≥ t + x
Gx,t+1(t + 1, 1)(1, 2)(2, t + 2)(t + 2, t + 3) (t + 3, 3) . . . (x − 2, x − 1)(x − 1, t + x − 1)

Gt+x−1,y−1Py−1,n

x is even and y � t + 1 Gx,3(3, 3 + t)Gt+3,t+x+1(t + x + 1, x + 1) (x + 1, x + 2)(x + 2, t + x + 2) . . . (t − 1, t)

(t, 2t)(2t, 2t + 1)P2t+1,n(2t + 2, t + 2) (t + 2, 2)(2, 1)(1, t + 1)

x is even and y � t + i;

i ∈ 3, 5, . . . , t − 1{ } such that i<x + 1
Gx,1(1, 1 + t)Gt+1,t+i−1(t + i − 1, 2t + i − 1) P2t+i−2,nG2t+i−1,2t(2t, t)(t, t − 1)(t − 1, 2t − 1)

. . . (t + x + 3, t + x + 2)(t + x + 2, x + 2) (x + 2, x + 1)(x + 1, t + x + 1)Gt+x+1,y

x is even and y � t + x + 1 Gx,1(1, t + 1)Gt+1,t+x(t + x, 2t + x)P2t+x−1,n G2t+x−1,2t(2t, t)(t, t − 1)(t − 1, 2t − 1) . . .

(t + x + 3, t + x + 2)(t + x + 2, x + 2) (x + 2, x + 1)(x + 1, y)

x is even and y � t + i;

i ∈ 3, 5, . . . , t − 1{ } such that i>x + 1

Gx,1(1, t + 1)Gt+1,t+x+1(t + x + 1, x + 1) (x + 1, x + 2)(x + 2, t + x + 2) . . . (i − 2, i − 1)

(i − 1, t + i − 1)(t + i − 1, 2t + i − 1)P2t+i−2,n G2t+i−2,2t(2t, t)

(t, t − 1)(t − 1, 2t − 1) . . . (i + 1, i)(i, y)

x is even and y � t + i; i ∈ 2, 4, . . . , t{ }

such that i≤ x

Gx,i−1(i − 1, t + i − 1)(t + i − 1, t + i − 2) (t + i − 2, i − 2) . . . (t + 2, 2)(2, 1)(1, t + 1)

Gt+1,x+1(x + 1, t + x + 1)Pt+x,nGt+x,y

x is even and y � t + i; i ∈ 2, 4, . . . , t{ }

such that i> x

(x, x − 1)(x − 1, t + x − 1)(t + x − 1, t + x − 2) (t + x − 2, x − 2) . . . (t + 2, 2)(2, 1)(1, t + 1)

Gt+1,i−1(i − 1, t + i − 1)(t + i − 1, t + i − 2) (t + i − 2, i − 2) . . . (x + 2, x + 1)(x + 1, t + x + 1)

(t + x + 1, t + x)(t + x, 2t + x)P2t+x−1,nG2t+x−1,y

x is even and y≥ 2t + 1 Gx,1(1, 1 + t)Gt+1,t+x+1(t + x + 1, x + 1) (x + 1, x + 2)(x + 2, t + x + 2) . . . (t − 1, t)(t, 2t)

G2t,y−1Py−1,y

Table 4: Hamiltonian paths from 1≠x to y in T when t is even.

x, y ∈ B∪C

Conditions Paths
x ∈ t + 1, t + 3, . . . , 2t − 3{ } and y � t + i;

i ∈ 2, 4, . . . , t − 2{ }

Gx,t+1(t + 1, 1)G1,t(t, 2t)G2t,t+x+1 (t + x + 1, x + 1)(x + 1, x + 2) (x + 2, t + x + 2) . . . (y −

2, y − 1) (y − 1, t + y − 1)Gt+y−1,3t−2P3t−2,n (3t − 1, 2t − 1)G2t−1,y

x ∈ t + 1, t + 3, . . . , 2t − 3{ } and y � t + i;

i ∈ 1, 3, . . . , t − 1{ }

Gx,t+1(t + 1, 1)G1,i+1(i + 1, t + i + 1) (t + i + 1, t + i + 2)(t + i + 2, i + 2)

. . . (t − 1, t)(t, 2t)G2t,t+xPt+x+1,n (t + x + 1, x + 1)Gx+1,y

x ∈ t + 1, t + 3, . . . , 2t − 3{ } and y � 2t

Gx,t+1(t + 1, 1)G1,i+1(i + 1, t + i + 1) (t + i + 1, t + i + 2)(t + i + 2, i + 2) . . .

(t − 2, 2t − 2)(2t − 2, 3t − 2)G3t−2,2t+1 (2t + 1, 3t + 1)P3t,n(3t, 3t − 1)

(3t − 1, 2t − 1)(2t − 1, t − 1)(t − 1, t) (t, 2t � y)

x ∈ t + 1, t + 3, . . . , 2t − 3{ } and y> 2t
Gx,t+1(t + 1, 1)G1,i+1(i + 1, t + i + 1) (t + i + 1, t + i + 2)(t + i + 2, i + 2)

. . . (t − 1, t)(t, 2t)G2t,y−1Py−1,n

x ∈ t, t + 2, . . . , 2t − 4{ }∪C Px+1,1Gx+1,y−1Py−1,n
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Proof. Again by virtue of Lemma 4, for s even and n≥ 5s − 2,

we only need to prove the existence of a Hamiltonian path
starting from 2 and ending at s + 1. Here, we consider the
following four cases:

(i) s � t + 1; by Corollary 1, we have Pt+2,n in Tn〈1, s〉,
which helps us to get a desired path:

(2, 1)(1, t + 1)Gt+1,3(3, t + 3)Pt+2,n. (9)

(ii) s � t + 3; again by applying Corollary 1 to Tn〈1, s〉,
we get P2t+1,n to construct a Hamiltonian path:

(2, 1)(1, t + 1)Gt+1,3(3, t + 3)(t + 3, t + 2)

· (t + 2, 2t + 2)P2t+1,nG2t+1,t+4.
(10)

(iii) s ∈ t + 5, t + 7, . . . , 2t{ }; here,

(2, 1)(1, t + 1)Gt+1,3(3, t + 3)(t + 3, t + 2)

· (t + 2, 2t + 2)G2t+2,2t+4(2t + 4, t + 4)(t + 4, t + 5)

· (t + 5, 2t + 5) . . . (s − 1, s)(s, s + t)Gs+t,3tP3t,n

· (3t + 1, 2t + 1)G2t+1,s+1,

(11)

is a desired path, which is constructed by using P3t,n,
obtained by applying Corollaries 1 and 2 to Tn〈1, s〉.

(iv) s≥ 2t; in this case, we use Corollaries 1 and 2 to
obtain Ps+2,n in Tn〈1, s〉 and Ps+2,t+2 in Tn〈1, t〉,
respectively, which enables us to obtain a Hamil-
tonian path

(2, 1)(1, t + 1)Gt+1,3(3, s + 3)Ps+2,nPs+2,t+2, (12)

from 2 to s + 1 in T. -is completes the proof. □

3. Conclusion

We proved here the existence of a number N such that for
n≥N, every nonbipartite Toeplitz graph Tn〈1, t, s〉 is
Hamiltonian-connected. Also, the family of Toeplitz graphs,
which are also circulant, contains Hamiltonian-connected
graphs.
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