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Abstract

We investigate in this paper the poidge-convexity, which is a generalization of right convexity,

introduced by one of the present authors in 2014. Although not every convex body is poidge-

convex, there are many families of compact sets, some of them very different from convex bodies,

which are poidge-convex. We present here several such families.

Keywords: poidge-convexity; starshaped sets; topological discs; polyhedral surfaces.

2010 MSC: 52A01, 52A37.

1 Introduction

At the 1974 meeting about convexity in Oberwolfach, the third author proposed the

investigation of the following very general kind of convexity. Let ℱ be a family of sets in

a space X . A set 𝑀 ⊂ X is called ℱ -convex if for any pair of distinct points 𝑥, 𝑦 ∈ 𝑀

there is a set 𝐹 ∈ ℱ such that 𝑥, 𝑦 ∈ 𝐹 and 𝐹 ⊂ 𝑀 . In this paper, X will be IR𝑛; we

always assume 𝑛 ≥ 2. Usual convexity, affine linearity, arc-wise connectedness, polygonal

connectedness, are just some examples of ℱ -convexity (for suitably chosen families ℱ).

Blind, Valette and the third author [1], and also Böröczky Jr. [2], investigated the

rectangular convexity, the case when ℱ is the family of all non-degenerate rectangles.

Bruckner and Bruckner [7], and also Magazanik and Perles [11] investigated 𝐿𝑛 sets,

which are ℱ -convex sets, ℱ consisting of all polygonal paths with at most 𝑛 edges in the

plane. Magazanik and Perles [10] and Breen [3, 4, 5, 6] dealt with staircase connectedness,

which is also a kind of ℱ -convexity, ℱ being the family of all staircases. The third author

studied the right convexity [18] (the case with ℱ consisting of all right triangles), and the

last two authors, generalizing it, investigated the rt-convexity, i.e. the right triple convexity

[12, 13].

*Corresponding author.
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A set 𝑀 ⊂ IR𝑛 is called rt-convex if it is ℱ -convex, ℱ being the family of all triples

{𝑥, 𝑦, 𝑧} ⊂ IR𝑛 with ∠𝑥𝑦𝑧 = 𝜋/2. If, for 𝑥, 𝑦 ∈ 𝑀, there exists 𝑧 ∈ 𝑀 such that the triangle

𝑥𝑦𝑧 is right, we say that the pair 𝑥, 𝑦 has the rt-property.

A set 𝑀 will be called poidge-convex if it is ℱ -convex, ℱ being the family of all unions

{𝑥} ∪ 𝜎, called poidges, where 𝑥 is a point, 𝜎 a line-segment, and conv({𝑥} ∪ 𝜎) a right

triangle (see Figure 1). If, for points 𝑢, 𝑣 ∈ 𝑀 , there is a poidge containing them included

in 𝑀 , we say that the pair 𝑢, 𝑣 has the poidge-property.

x

 

x

 

Figure 1: Poidges

For convex sets, right convexity, rt-convexity and poidge-convexity are equivalent. Ob-

viously, in general, not every rt-convex set is poidge-convex, but every rightly convex set is

both rt-convex and poidge-convex. Less obvious, but true, is that not every poidge-convex

set is rt-convex either.

The poidge-convexity also generalizes the thin rectangular convexity (for short tr-convexity,

where ℱ is the family of all boundaries of non-degenerated rectangles), and a fortiori the

rectangular convexity itself.

In this paper, we start the investigation of poidge-convexity. Our main goal will be to

identify large classes of poidge-convex sets. On the one hand, not all convex bodies are

poidge-convex: take, for example, the convex hull of an ellipse different from a circle. On

the other hand, sets looking quite different from being convex, like meandering topological

discs or single-point-kernel starshaped sets, can be found among the poidge-convex sets.

2 Notation

For distinct 𝑥, 𝑦 ∈ IR𝑛, let 𝑥𝑦 denote the line-segment from 𝑥 to 𝑦, and 𝑥𝑦 the line

through 𝑥, 𝑦.

For any compact set 𝑀 ⊂ IR𝑛, let 𝑆𝑀 be the smallest hypersphere containing 𝑀 in its

convex hull; also, 𝑀 means the affine hull of 𝑀 , int𝑀 the relative interior of 𝑀 (i.e., in the

topology of 𝑀) and bd 𝑀 the relative boundary of 𝑀 .

By dim𝑀 we denote the Hausdorff dimension of𝑀 . Also, denote by p𝐴(𝑥) the orthogonal

projection of 𝑥 onto the affine subspace 𝐴. The distance from a point 𝑥 to a compact set 𝑀

will be denoted by 𝜌(𝑥,𝑀) = min{‖𝑥− 𝑦‖ : 𝑦 ∈ 𝑀}.
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Furthermore, for distinct 𝑥, 𝑦 ∈ IR𝑛, we denote by 𝐻𝑥𝑦 the hyperplane through 𝑥 orthog-

onal to 𝑥𝑦, by 𝐻+
𝑥𝑦 the closed half-space containing 𝑦 determined by 𝐻𝑥𝑦, and by 𝐻−

𝑥𝑦 the

other closed half-space determined by 𝐻𝑥𝑦.

We denote by [𝑥𝑦) the half-line starting at 𝑥 and passing through 𝑦. Also, we set Ô𝑥𝑘𝑦 =

conv ([𝑘𝑥) ∪ [𝑘𝑦)), if 𝑘 /∈ 𝑥𝑦.

The compact ball of centre 𝜔 and radius 𝑟 is denoted by 𝐵𝑟(𝜔). 0 is the origin of IR𝑛.

In a Baire space, we say that most of its elements have property P if those not enjoying

P form a set of first Baire category.

3 Starshaped sets

3.1 One-sided starshaped sets

Let 𝒮 be the Baire space of all starshaped sets in IR𝑛, always considered compact here.

For 𝑀 ∈ 𝒮, a line-segment 𝑘𝑥 ⊂ 𝑀 is called a ray if 𝑘 ∈ ker𝑀 and 𝑘𝑥 cannot be extended

beyond 𝑥 in 𝑀 .

It is known (see the corollary to Theorem 1 in [17]) that most starshaped sets have a

single-point kernel. Moreover, in 𝒮, the set of those starshaped sets𝑀 with card(𝑀∩𝑆𝑀) = 2

is nowhere dense. For a proof, the reader can adapt the first part of the proof of Theorem 1

in [16], which deals with convex curves instead of starshaped sets.

More generally, we call any compact set 𝑀 ordinary if card(𝑀 ∩ 𝑆𝑀) ≥ 3.

Clearly, being ordinary is a necessary condition for any compact set to be poidge-convex.

Let 𝑀 ⊂ IR2 be a starshaped set with more than one point, and let 𝑘 ∈ ker𝑀 . The set

𝑀 will be called one-sided, if there exist half-lines [𝑘𝑥) and [𝑘𝑦) such that

(i) 𝑀 ⊂ Ô𝑥𝑘𝑦, or
(ii) [𝑘𝑥) and [𝑘𝑦) are opposite, i.e. [𝑘𝑥) ∪ [𝑘𝑦) is a line, and 𝑀 is included in one of the

two half-planes with boundary [𝑘𝑥) ∪ [𝑘𝑦).

Now, taking ∠𝑥𝑘𝑦 to be minimal over all 𝑥, 𝑦 ∈ IR2 ∖ {𝑘} and 𝑘 ∈ ker𝑀 in case (i), we

call 𝜔(𝑀) = ∠𝑥𝑘𝑦 the opening of 𝑀 . In case (ii), put 𝜔(𝑀) = 𝜋. Thus, 0 ≤ 𝜔 ≤ 𝜋. (Note

that 𝑀 ̸= {𝑘} because card𝑀 > 1.) See Figure 2.

We call 𝑀 acute, if there exists no non-degenerate triangle 𝑘𝑥𝑦 ⊂ 𝑀 , where 𝑘𝑥 is a ray

of 𝑀 .

Theorem 3.1. Let 𝑀 ⊂ IR2 be an ordinary one-sided starshaped set. If 0 < 𝜔(𝑀) 6 𝜋
2
,

then 𝑀 is poidge-convex. If 𝑀 is acute and 𝜋
2
< 𝜔(𝑀) < 𝜋, then 𝑀 is not poidge-convex.
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Figure 2: The opening of an one-sided starshaped set

Proof. Take the point 𝑘 from the definition of the opening to be {0}. Assume 0 < 𝜔(𝑀) 6 𝜋
2
.

Let 𝑥, 𝑦 ∈ 𝑀 ∖ {0}, with ‖𝑥‖ 6 ‖𝑦‖. If 𝑥, 𝑦 are linearly independent, consider 𝑧 = p0𝑦(𝑥).

Then {𝑥}∪ 𝑧𝑦 ⊂ 𝑀 . If 𝑥, 𝑦 are linearly dependent, there exists 𝑢 ∈ 𝑀 ∖0𝑦, since 𝜔(𝑀) > 0.

Consider a point 𝑣 ∈ 0𝑢 close to 0 and 𝑤 = p0𝑦(𝑣). Then 𝑥, 𝑦 belong to {𝑣} ∪ 𝑤𝑦 ⊂
𝑀 . It remains to consider the pairs (0, 𝑥) ∈ 𝑀 . Let 0𝑦 be the ray containing 𝑥. From

card(𝑀 ∩ 𝑆𝑀) > 3 it follows that 𝑀 has a point 𝑧′ /∈ int conv𝑆0𝑦 different from 0 and 𝑦.

One possibility is that ∠𝑧′0𝑦 < 𝜋
2
. Then 0𝑧′ ∩ 𝑆0𝑦 ̸= {0, 𝑦}. Take 𝑧 ∈ 0𝑧′ ∩ 𝑆0𝑦 ∖ {0, 𝑦};

possibly 𝑧 = 𝑧′. Obviously, the points 0, 𝑥 belong to the poidge {𝑧} ∪ 0𝑦 ⊂ 𝑀 . The other

possibility is that ∠𝑧′0𝑦 = 𝜋
2
. In this case, 0, 𝑥 belong to the poidge {𝑧′} ∪ 0𝑦 ⊂ 𝑀 .

Now assume 𝜋
2
< 𝜔(𝑀) < 𝜋. There exist two rays 0𝑥,0𝑦 of 𝑀 such that 𝜋

2
< ∠𝑥0𝑦 < 𝜋.

We claim that 𝑥, 𝑦 do not enjoy the poidge-property. Since every line-segment in 𝑀 starting

at 𝑥 or 𝑦 must be collinear with 0, otherwise 𝑀 would not be acute, the only way for 𝑥, 𝑦

to have the poidge-property would be to belong to a poidge with its line-segment 𝜎 along

one of the rays 0𝑥,0𝑦. But since ∠𝑥0𝑦 > 𝜋
2
, 𝜎 would contain 0 in its relative interior. This

contradicts the inequality 𝜔(𝑀) < 𝜋.

It is easily seen that, for 𝜔(𝑀) = 0, 𝑀 is not poidge-convex and, for 𝜔(𝑀) = 𝜋, both

poidge-convexity and non-poidge-convexity are possible.

We consider the family 𝒮𝜅 of all one-sided 𝑀 ∈ 𝒮 with bounded opening 𝜔(𝑀) ≤ 𝜅.

This family is closed in 𝒮, and is therefore itself complete and consequently a Baire space.

Theorem 3.2. For 0 < 𝜅 ≤ 𝜋/2, most sets in 𝒮𝜅 are poidge-convex.

For 𝜋/2 < 𝜅 < 𝜋, most sets in 𝒮𝜅 are not poidge-convex.

Proof. For any 𝜅 ∈]0, 𝜋[, most sets in 𝒮𝜅 are ordinary. The proof parallels the one for 𝒮 or

for the space of all convex curves instead of 𝒮𝜅. Moreover, the sets 𝑀 ∈ 𝒮𝜅 with 𝜔(𝑀) = 0
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form a nowhere dense family. Hence, by the first part of Theorem 3.1, most sets in 𝒮𝜅 are

poidge-convex.

For any 𝜅 < 𝜋, most sets in 𝒮𝜅 are nowhere dense (the proof works like in the case of 𝒮
instead of 𝒮𝜅, see the corollary to Theorem 1 in [17]), hence acute. By the second part of

Theorem 3.1, most sets in 𝒮𝜅 are not poidge-convex.

3.2 Symmetric starshaped sets

Clearly, the space 𝒮* of all (point) symmetric starshaped sets in IR𝑛 is closed in 𝒮, so it

is itself a Baire space.

Like most starshaped sets, most symmetric starshaped sets have a single-point kernel.

If a starshaped set is symmetric, then its kernel is also symmetric, with the same centre

of symmetry, say 0. Being convex, the kernel contains 0.

Theorem 3.3. A set 𝑀 ∈ 𝒮* is poidge-convex if and only if it is ordinary.

Proof. Suppose 𝑀 ∈ 𝒮* is ordinary. Take 𝑥, 𝑦 ∈ 𝑀 ∖{0}, assuming without loss of generality

that ‖𝑥‖ 6 ‖𝑦‖. Suppose first that 𝑥, 𝑦 are linearly independent. Taking 𝑧 = p0𝑦(𝑥),

we have {𝑥, 𝑦} ⊂ {𝑥} ∪ 𝑧𝑦 ⊂ 𝑀 . If 𝑥, 𝑦 are linearly dependent, then 𝑥 ∈ 𝑦(−𝑦). If

𝑆𝑦(−𝑦) ∩ 𝑀 = {𝑦,−𝑦}, then 𝑀 is not ordinary. Hence, 𝑆𝑦(−𝑦) ∩ 𝑀 contains some point

𝑧 /∈ {𝑦,−𝑦}, and 𝑥, 𝑦 belong to the poidge {𝑧} ∪ 𝑦(−𝑦).

Suppose now that 𝑀 is not ordinary, whence it has a single diameter 𝑥(−𝑥). There is

no point 𝑧 ∈ 𝑆𝑥(−𝑥) ∩𝑀 ∖ {𝑥,−𝑥}. Moreover, the hyperplanes 𝐻𝑥(−𝑥) and 𝐻(−𝑥)𝑥 meet 𝑀

in 𝑥,−𝑥 only. So, 𝑥,−𝑥 don’t belong to any poidge in 𝑀 .

The next result has a corresponding one for convex bodies (with a similar proof), and

uncovers a major discrepancy in comparison with the non-symmetric case.

Theorem 3.4. Most sets belonging to 𝒮* are not ordinary.

Proof. Let 𝒮*
𝑚 be the set of all 𝑀 ∈ 𝒮* having a pair of diameters at Pompeiu-Hausdorff

distance at leat 1/𝑚 from each other. We prove that 𝒮*
𝑚 is nowhere dense in 𝒮*.

Let 𝒪 ⊂ 𝒮* be open and 𝑀 ∈ 𝒪. Choose a diameter of 𝑀 . This is also a diameter of 𝑆𝑀 .

Extend it in both directions by 𝜀 > 0 to a line-segment Δ𝜀. Then 𝑀𝜀 = 𝑀 ∪Δ𝜀 belongs to

𝒮* and has the unique diameter Δ𝜀. If 𝜀 is small enough, 𝑀𝜀 ∈ 𝒪, too. There exists an open

neighbourhood 𝒩 of 𝑀𝜀 in 𝒪 such that every set belonging to 𝒩 has all its diameters at

distance less than 1/2𝑚 from Δ𝜀. This shows that they are not in 𝒮*
𝑚. Thus, 𝒮*

𝑚 is nowhere

dense, and the set ∪∞
𝑚=1𝒮*

𝑚 of all 𝑀 ∈ 𝒮* having more than one diameter is of first Baire

category.

Corollary 3.5. Most sets belonging to 𝒮* are not poidge-convex.
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3.3 Starshaped sets close to convex

We introduce a measure of non-convexity for non-convex starshaped sets, which might

be of independent interest. Line-segments 𝑥𝑦 joining 𝑥, 𝑦 ∈ bd 𝑀 are called chords of the

set 𝑀 ⊂ IR𝑛. Let 𝑘 belong to the kernel ker𝑀 of 𝑀 ∈ 𝒮. Let Γ(𝑀) be the set of chords 𝑥𝑦

of 𝑀 not included in 𝑀 . Let

𝜉(𝑀) = sup
𝑥𝑦∈Γ(𝑀)

inf
𝑘∈ker𝑀

∠𝑥𝑘𝑦.

See Figure 3. If the sequence {𝑀𝑚}∞𝑚=1 of starshaped sets converges, and 𝜉(𝑀𝑚) → 0, then

the limit set is convex. Thus, 𝜉 indicates how close to being convex a starshaped set is. We

shall see that starshaped sets “closer” to convex ones, i.e. with smaller value of 𝜉, are more

likely to be poidge-convex.

k

y

x

Figure 3: The function 𝜉.

Theorem 3.6. If 𝑀 ⊂ IR2, 𝑀 ∈ 𝒮, 𝑀 is ordinary, dimker𝑀 > 1, and 𝜉(𝑀) < 𝜋
2
, then 𝑀

is poidge-convex.

Proof. Let 𝑥, 𝑦 ∈ 𝑀 .

Case 1. 𝑥𝑦 ⊂ 𝑀 .

Being ordinary, 𝑀 must have a point 𝑧 /∈ (int conv𝑆𝑥𝑦) ∪ {𝑥, 𝑦}.
If 𝑧 ∈ 𝑆𝑥𝑦, then {𝑧} ∪ 𝑥𝑦 is a suitable poidge. If 𝑧 ∈ 𝐻𝑥𝑦 ∪𝐻𝑥𝑦, then again {𝑧} ∪ 𝑥𝑦 is a

suitable poidge. So, let 𝑧 lie in one of the four components of IR2 ∖ (𝐻𝑥𝑦 ∪𝐻𝑦𝑥 ∪ conv𝑆𝑥𝑦),

namely 𝐻−
𝑥𝑦, 𝐻

−
𝑦𝑥, 𝐸1, 𝐸2.

Take 𝑘 ∈ (ker𝑀) ∖ (𝑥𝑦 ∪ 𝑥𝑧 ∪ 𝑦𝑧). This is possible, because dimker𝑀 > 1.

If 𝑘 ∈ (𝐻𝑥𝑦 ∪𝐻𝑦𝑥 ∪ 𝑆𝑥𝑦), we are done.

If 𝑘 ∈ 𝐸1 ∪ 𝐸2, then 𝑘𝑥 ∩ 𝑆𝑥𝑦 ̸= ∅, and we are done again.
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If 𝑘 ∈ 𝐻−
𝑥𝑦, then 𝑘𝑦 meets 𝐻𝑥𝑦 and the intersection point is not 𝑥. For 𝑘 ∈ 𝐻−

𝑦𝑥, we have

an analogous situation. So, assume 𝑘 lies in int conv𝑆𝑥𝑦.

Now, we consider again the positions that 𝑧 may take.

If 𝑧 ∈ 𝐻−
𝑥𝑦, then 𝑘𝑧 ∩𝐻𝑥𝑦 ̸= ∅ and the intersection point is not 𝑥.

If 𝑧 ∈ 𝐻−
𝑦𝑥, then 𝑘𝑧 ∩𝐻𝑦𝑥 ̸= ∅ and the intersection point is not 𝑦.

Finally, if 𝑧 ∈ 𝐸1 ∪ 𝐸2,, then 𝑘𝑧 ∩ 𝑆𝑥𝑦 ̸= ∅.
Thus, in all cases a poidge in 𝑀 including 𝑥𝑦 can be found.

Case 2. 𝑥𝑦 ̸⊂ 𝑀 .

Extend 𝑥𝑦 until we obtain a chord 𝑥′𝑦′ ∈ Γ(𝑀). Since inf
𝑘∈ker𝑀

∠𝑥′𝑘𝑦′ ≤ 𝜉(𝑀) < 𝜋/2, we

find a point 𝑘* ∈ ker𝑀 satisfying ∠𝑥′𝑘*𝑦′ < 𝜋/2, which implies ∠𝑥𝑘*𝑦 < 𝜋/2.

Assume without loss of generality that ‖𝑘* − 𝑥‖ ≤ ‖𝑘* − 𝑦‖. Now, if 𝑧 = p𝑘*𝑦(𝑥), then

{𝑥} ∪ 𝑧𝑦 is a suitable poidge.

4 Topological discs

4.1 Smooth topological discs

For a set 𝑀 ⊂ IR2 with differentiable boundary, a chord 𝑥𝑦 is called a double normal of

M if it is orthogonal to both tangent lines of bd 𝑀 at 𝑥 and 𝑦 (see Figure 4).

y

x

D

Figure 4: A double normal 𝑥𝑦.

Let D𝑚 be the space of all planar topological discs with a 𝐶𝑚-boundary.

Theorem 4.1. A topological disc 𝐷 ∈ D2 is poidge-convex if for any double normal 𝑥𝑦 of

bd 𝐷, the curvature of bd 𝐷 at 𝑥 or 𝑦 is less than 2
‖𝑥−𝑦‖ .

Proof. Clearly, 𝑥, 𝑦 have the poidge-convex property if one of them is interior to 𝐷. So, let

𝑥, 𝑦 ∈ bd 𝐷. If 𝑥𝑦 is not a double normal, then the tangent line at 𝑥 or 𝑦 is not orthogonal

to 𝑥𝑦. Suppose the tangent line 𝑇 at 𝑥 is not orthogonal to 𝑥𝑦. Then there exists a small

line-segment 𝑥𝑧 ⊂ 𝐷 orthogonal to 𝑥𝑦. Thus, {𝑦} ∪ 𝑥𝑧 is a suitable poidge.
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If 𝑥𝑦 is a double normal, by hypothesis, at 𝑥 or 𝑦, say at 𝑥, the curvature radius satisfies

𝜌(𝑥) > ‖𝑥−𝑦‖
2

. This implies that 𝑆𝑥𝑦 has a small arc starting at 𝑥, inside of 𝐷. If that arc

is
⌢
𝑥𝑧, then the poidge {𝑦} ∪ 𝑥𝑧 is as required. (Notice that the case that 𝐷 is not locally

convex at 𝑥 is not excluded. In that case, the curvature condition is even superfluous.)

Remarks. A topological disc must have at least one double normal: take its diameter!

The condition, which works for rt-convexity, that 𝐷 has at least two diameters, or that

𝐷 is ordinary (i.e. card (𝐷 ∩ 𝑆𝐷) > 3), is not sufficient for the poidge-convexity.

We offer now an extension of Theorem 4.1 to topological discs with boundaries of class

𝐶1.

Suppose 𝐷 ⊂ IR2 is a topological disc, locally convex at some boundary point 𝑥. Then,

if bd 𝐷 is differentiable at 𝑥, a lower and an upper curvature, 𝛾𝑖(𝑥) and 𝛾𝑠(𝑥), at 𝑥 can be

defined, as in [8] (page 14). The preceding theorem can be (in the same way) proven in the

following more general form.

Theorem 4.2. A topological disc 𝐷 ∈ D1 is poidge-convex if, for any double normal 𝑥𝑦 of

bd 𝐷, at one of its endpoints, say at 𝑥, either 𝐷 is locally convex and 𝛾𝑠(𝑥) < 2
‖𝑥−𝑦‖ , or

IR2 ∖ int𝐷 is locally convex.

4.2 Unions of convex sets

Here, we consider unions of compact convex sets in IR𝑛, possibly of distinct dimensions.

Theorem 4.3. Every ordinary connected union of two ordinary compact convex sets is

poidge-convex.

Proof. Let 𝑀 = 𝐴 ∪ 𝐵, with 𝐴,𝐵 compact convex sets, satisfying the hypothesis. Let

𝑥, 𝑦 ∈ 𝑀 . If both 𝑥, 𝑦 lie in 𝐴, or both in 𝐵, then we have a right triangle 𝑥𝑦𝑧 in 𝐴 or in 𝐵

because they are rightly convex, by Theorem 3 in [18]. So, assume without loss of generality

that 𝑥 ∈ 𝐴 ∖ 𝐵 and 𝑦 ∈ 𝐵 ∖ 𝐴. If inside 𝑆𝑥𝑦 there is no point of 𝑀 , then 𝐴 ∩ 𝐵 = ∅
and 𝑀 is not connected. If 𝑀 ⊂ conv𝑆𝑥𝑦, then, 𝑀 being ordinary, there exists a point

𝑧 ∈ 𝑆𝑥𝑦 ∖ {𝑥, 𝑦}. If 𝑀 ̸⊂ conv𝑆𝑥𝑦, but 𝑆𝑥𝑦 ∩ 𝑀 = {𝑥, 𝑦}, then either 𝐴 ⊂ conv𝑆𝑥𝑦 and

𝐵 ∩ conv𝑆𝑥𝑦 = {𝑦}, or vice-versa. In both cases 𝑀 becomes disconnected, or one of the sets

𝐴,𝐵 is not ordinary, which is false.

Hence, in any (possible) case, there exists 𝑧 ∈ 𝑆𝑥𝑦 ∩ 𝑀 ∖ {𝑥, 𝑦}. Now, if 𝑧 ∈ 𝐴 then

{𝑦} ∪ 𝑥𝑧 is a suitable poidge, and if 𝑧 ∈ 𝐵, a suitable poidge is {𝑥} ∪ 𝑦𝑧.

For 𝑚 ≥ 3, an ordinary connected union of 𝑚 ordinary compact convex sets may not be

poidge-convex, see Figure 5.
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Figure 5: A connected union of 3 convex bodies.

5 Not simply connected sets

5.1 Convex bodies with spherical holes

It is easily seen that there are poidge-convex sets which are not simply connected. So,

for example, the set 𝐵1(0) ∖ int𝐵𝜀(0) in IR2, for any 𝜀 ∈]0, 1[.

Theorem 5.1. Let 𝐾 ⊂ IR2 be an ordinary convex body, and assume that 0 is the centre of

𝑆𝐾. The set 𝐾 ∖ int𝐵𝛼(0) is poidge-convex, if 𝛼 satisfies the following conditions. For any

double normal 𝑎𝑏 of bd 𝐾,

(i) if 𝑎𝑏 is not a chord of 𝑆𝐾, then 𝛼 ≤ 𝜌(0, 𝑎𝑏), and

(ii) if 𝑎𝑏 is a chord of 𝑆𝐾 and 𝑐 ∈ 𝑆𝐾 ∩𝐾 ∖ {𝑎, 𝑏}, then 𝛼 ≤ max{𝜌(0, 𝑏𝑐), 𝜌(0, 𝑐𝑎)}.

Proof. Let 𝐿 = 𝐾 ∖ int𝐵𝛼(0), and 𝑥, 𝑦 ∈ 𝐿. We need to investigate only the case when 𝑥𝑦

is a double normal of bd 𝐾, which we now assume.

Case 1. 𝑥𝑦 is not a chord of 𝑆𝐾 .

In this case, 𝑥𝑦 ⊂ 𝐿, because 𝑥𝑦 ∩ int𝐵𝛼(0) = ∅, by condition (i). Since 𝐾 is ordinary,

𝑆𝑥𝑦 ∩𝐾 ̸= {𝑥, 𝑦}. Choose 𝑤 ∈ 𝑆𝑥𝑦 ∩𝐾 ∖ {𝑥, 𝑦}. So, {𝑤} ∪ 𝑥𝑦 is a poidge in 𝐿.

Case 2. 𝑥𝑦 is a chord of 𝑆𝐾 .

Since 𝐾 is ordinary, 𝑆𝐾 ∩𝐾 ∖ {𝑥, 𝑦} contains a point 𝑧. Now, we have 𝑦𝑧 ∩ int𝐵𝛼(0) = ∅
or 𝑧𝑥∩ int𝐵𝛼(0) = ∅, by condition (ii) of the hypothesis. Assume without loss of generality

that 𝑦𝑧 ∩ int𝐵𝛼(0) = ∅.
Since ∠𝑦𝑧𝑥 = 𝜋/2, we have the poidge {𝑥} ∪ 𝑦𝑧 ⊂ 𝐿.

Is always the existence of such a number 𝛼 guaranteed?

9



Theorem 5.2. If 𝐾 ⊂ IR2 is an ordinary convex polygon, in which every double normal

passing through the centre 0 of 𝑆𝐾 is a chord of 𝑆𝐾, then a number 𝛼 satisfying the conditions

in Theorem 5.1 does exist.

Proof. Let 𝒟1 be the family of those double normals of 𝐾 which do not contain 0, and 𝒟2

the complementary family of double normals, which must be chords of 𝑆𝐾 .

Since no double normal in 𝒟1 contains 0, 𝛽 = min{𝜌(0, 𝑁) : 𝑁 ∈ 𝒟1} > 0.

The set of double normals passing through 0 is finite. For each double normal 𝑁 = 𝑎𝑏 ∈
𝒟2, consider

𝛾𝑁 = max{max{𝜌(0, 𝑎𝑥), 𝜌(0, 𝑏𝑥)} : 𝑥 ∈ 𝑆𝐾 ∩ bd 𝐾 ∖ {𝑎, 𝑏}}

and 𝛾 = min{𝛾𝑁 : 𝑁 ∈ 𝒟2} > 0.

By choosing 𝛼 = min{𝛽, 𝛾}, both conditions of Theorem 5.1 are satisfied, condition (i)

for the double normals of 𝒟1, and condition (ii) for the double normals of 𝒟2.

Corollary 5.3. If 𝐾 ⊂ IR2 is an ordinary convex polygon, in which no double normal passes

through the centre 0 of 𝑆𝐾, then a number 𝛼 satisfying the conditions in Theorem 5.1 does

exist.

Theorem 5.2 presents only sufficient conditions for a convex polygon to acquire an ap-

propriate number 𝛼. All regular polygons are poidge-convex, although they do not satisfy

the conditions of Theorem 5.2.

5.2 Tetrahedral surfaces

Starting with this section, we investigate the poidge-convexity of convex surfaces in IR𝑛,

for 𝑛 = 3 or for larger 𝑛.

The following lemma is straightforward.

Lemma 5.4. Every non-obtuse triangle is poidge-convex.

Lemma 5.5. If 𝑃 is a (𝑛−1)-dimensional polytope in IR𝑛, 𝑥 ∈ IR𝑛, and 𝑦 ∈ 𝑃 ∖(𝑉 (𝑃 )∪{𝑥}),
then there exists a poidge in 𝑃 ∪ {𝑥} containing both 𝑥 and 𝑦.

Proof. Indeed, 𝐻𝑦𝑥 ∩ 𝑃 includes a non-degenerate line-segment 𝜎 with an endpoint in 𝑦.

Thus, {𝑥} ∪ 𝜎 is a suitable poidge.

Theorem 5.6. Suppose 𝑎𝑏𝑐𝑑 is a tetrahedron in IR3 with a non-obtuse facet (i.e. 2-dimensional

face) 𝑎𝑏𝑐. Then bd (𝑎𝑏𝑐𝑑) is poidge-convex if and only if

𝑑 ∈
(︀
𝐻+

𝑏𝑎 ∪𝐻+
𝑐𝑎)
⋂︁
(𝐻+

𝑎𝑏 ∪𝐻+
𝑐𝑏)
⋂︁
(𝐻+

𝑎𝑐 ∪𝐻+
𝑏𝑐

�
.
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The boundary of a tetrahedron with all facets obtuse is not poidge-convex.

Proof. Suppose 𝑎𝑏𝑐 and 𝑑 are as stipulated in the first part of the theorem. We prove that

bd (𝑎𝑏𝑐𝑑) is poidge-convex.

Let 𝑥, 𝑦 ∈ bd (𝑎𝑏𝑐𝑑) be any two distinct points.

Case 1. There is a face 𝐹 of 𝑎𝑏𝑐𝑑 such that 𝑥, 𝑦 ∈ 𝐹 .

If 𝐹 is a non-obtuse face, then there exists a poidge containing 𝑥, 𝑦 and contained in 𝐹 ,

by Lemma 5.4. If 𝐹 is an obtuse face, then we obviously have to consider only the case that

𝑥, 𝑦 are vertices of the longest edge of bd 𝐹 . If that edge is included in bd (𝑎𝑏𝑐), then we

find a poidge containing 𝑥 and 𝑦 in the face 𝑎𝑏𝑐, by Lemma 5.4. So, suppose the obtuse

angle of 𝐹 is not at 𝑑. Let 𝑑′ be the orthogonal projection of 𝑑 on the plane 𝑎𝑏𝑐.

Subcase 1.1. 𝑑′ ∈ 𝐻+
𝑏𝑎 ∩𝐻+

𝑐𝑎 ∩𝐻+
𝑎𝑏 ∩𝐻+

𝑐𝑏 ∩𝐻+
𝑎𝑐 ∩𝐻+

𝑏𝑐. (See Figure 6.)

 +bc

 +cb

 +ab

 +ba

 +ac +ca

d
'

c

b

a

Figure 6: 𝑑′ ∈ 𝐻+
𝑏𝑎 ∩𝐻+

𝑐𝑎 ∩𝐻+
𝑎𝑏 ∩𝐻+

𝑐𝑏 ∩𝐻+
𝑎𝑐 ∩𝐻+

𝑏𝑐.

All the angles Ô𝑑𝑎𝑐, Ô𝑑𝑐𝑎, ̂︂𝑑𝑐𝑏, ̂︂𝑑𝑏𝑐, Ô𝑑𝑏𝑎, Ô𝑑𝑎𝑏 are non-obtuse. Then the obtuse face 𝐹 must

have an obtuse angle at 𝑑, and we obtain a contradiction.

Subcase 1.2. 𝑑′ ∈ (𝐻+
𝑐𝑎 ∩𝐻+

𝑎𝑐) ∖ (𝐻+
𝑏𝑎 ∩𝐻+

𝑏𝑐). (See Figure 7.)

All angles Ô𝑑𝑎𝑐, Ô𝑑𝑐𝑎, ̂︂𝑑𝑐𝑏, Ô𝑑𝑎𝑏 are non-obtuse. Clearly, 𝐹 ̸= 𝑐𝑎𝑑. If 𝐹 = 𝑏𝑐𝑑, it must have

its obtuse angle at 𝑏. If 𝑑′′ is the orthogonal projection of 𝑑 onto 𝑎𝑐, then 𝑑′′ ∈ 𝑎𝑐 and 𝑥, 𝑦

belong to the poidge 𝑐𝑑′′ ∪ {𝑑}. The case 𝐹 = 𝑎𝑏𝑑 is analogous.

The cases 𝑑′ ∈ (𝐻+
𝑏𝑐 ∩𝐻+

𝑐𝑏) ∖ (𝐻+
𝑎𝑐 ∩𝐻+

𝑎𝑏) and 𝑑′ ∈ (𝐻+
𝑏𝑎 ∩𝐻+

𝑎𝑏) ∖ (𝐻+
𝑐𝑎 ∩𝐻+

𝑐𝑏) are analogous

to subcase 1.2.

Case 2. There are two distinct faces 𝐹1 and 𝐹2 such that 𝑥 ∈ 𝐹1 and 𝑦 ∈ 𝐹2.

If 𝑥 ∈ int𝐹1 or 𝑦 ∈ int𝐹2, then they have the poidge-property, by Lemma 5.5. Otherwise,

𝑥 ∈ bd 𝐹1 and 𝑦 ∈ bd 𝐹2, which means that we are in Case 1, unless 𝑥 and 𝑦 are in opposite

edges. Without loss of generality, we can assume that 𝑥 ∈ 𝑎𝑑 and 𝑦 ∈ 𝑏𝑐. Let 𝑤 be the
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Figure 7: 𝑑′ ∈ (𝐻+
𝑐𝑎 ∩𝐻+

𝑎𝑐) ∖ (𝐻+
𝑏𝑎 ∩𝐻+

𝑏𝑐).

orthogonal projection of 𝑥 onto 𝑏𝑐. Then 𝑤 ∈ 𝑏𝑐, and 𝑥, 𝑦 will be contained in the poidge

{𝑥} ∪ 𝑤𝑏 or {𝑥} ∪ 𝑤𝑐.

Now, let us show that, if 𝑎𝑏𝑐 is as required, but 𝑑 not (see Figure 8), then bd (𝑎𝑏𝑐𝑑) is

not poidge-convex. This will be proved by showing that 𝑑 and one of the other three vertices

do not enjoy the poidge-property.

 +bc

 +cb

 +ab

 +ba

 +ac +ca

d
'

c

b

a

Figure 8: bd (𝑎𝑏𝑐𝑑) is not poidge-convex.

If 𝑑 /∈ 𝐻+
𝑏𝑎 ∪ 𝐻+

𝑐𝑎, then the angles Ô𝑑𝑐𝑎 and Ô𝑑𝑏𝑎 are obtuse. Then, obviously, 𝑎 and 𝑑 do

not enjoy the poidge-property. The cases 𝑑 /∈ 𝐻+
𝑏𝑎 ∪𝐻+

𝑐𝑎 and 𝑑 /∈ 𝐻+
𝑎𝑏 ∪𝐻+

𝑐𝑏 are analogous.
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The proof of the first part of the theorem is now complete.

For the second part, assume all facets of the tetrahedron 𝑎𝑏𝑐𝑑 are obtuse. Assume without

loss of generality that 𝑎𝑏 is a diameter of 𝑎𝑏𝑐𝑑. The pair of points 𝑎, 𝑏 has not the poidge-

property. Indeed, 𝑆 ∩ 𝑎𝑏𝑐𝑑 = {𝑎, 𝑏}, 𝐻𝑎𝑏 ∩ 𝑎𝑏𝑐𝑑 = {𝑎} and 𝐻𝑏𝑎 ∩ 𝑎𝑏𝑐𝑑 = {𝑏}.

5.3 Boundaries of Cartesian products and cones

As we could see in the preceding section, there exist poidge-convex convex surfaces.

However, many convex surfaces are not poidge-convex: for example, no strictly convex body

has a poidge-convex boundary. Therefore, most convex surfaces are not poidge-convex (see

[9]). We present now some classes of convex surfaces which are poidge-convex.

We consider the Cartesian product in IR𝑛 of a 𝑘-dimensional compact convex set 𝐾 and

an (𝑛− 𝑘)-dimensional compact convex set 𝐿, hence with 𝐾 orthogonal to 𝐿.

Theorem 5.7. Every Cartesian product of compact convex sets of positive dimensions has

a poidge-convex boundary.

Proof. We consider 𝐾 to be spanned by the first 𝑘 axes, and 𝐿 by the last 𝑛− 𝑘 axes. Let

𝑆 = bd (𝐾 × 𝐿).

Let 𝑥, 𝑦 ∈ 𝑆. We have 𝑥 = 𝑢× 𝑡𝑢 and 𝑦 = 𝑣 × 𝑡𝑣, where 𝑢, 𝑣 ∈ 𝐾 and 𝑡𝑢, 𝑡𝑣 ∈ 𝐿.

Consider the chord 𝑡′𝑢𝑡
′
𝑣 = 𝑡𝑢𝑡𝑣 ∩ 𝐿 of 𝐿.

Case 1. 𝑥, 𝑦 ∈ {𝑢} × 𝐿, where 𝑢 ∈ bd 𝐾.

Take 𝑢′ ∈ 𝐾 ∖ {𝑢} arbitrarily. Then the poidge {𝑢′ × 𝑡′𝑢} ∪ ({𝑢}× 𝑡′𝑢𝑡
′
𝑣) contains 𝑥, 𝑦 and

lies in 𝑆.

Case 2. 𝑥 ∈ {𝑢} × 𝐿, 𝑦 ∈ {𝑣} × 𝐿,where 𝑢, 𝑣 ∈ bd 𝐾 are distinct.

If 𝑡′𝑢, 𝑡𝑢, 𝑡𝑣, 𝑡
′
𝑣 lie in this order on 𝑡𝑢𝑡𝑣, we have 𝑡𝑢𝑡𝑣 ⊂ 𝑡𝑢𝑡

′
𝑣. Then {𝑥} ∪ ({𝑣} × 𝑡𝑢𝑡

′
𝑣) is a

suitable poidge in 𝑆.

Case 3. 𝑥, 𝑦 ∈ 𝐾 × {𝑡}, where 𝑡 ∈ bd 𝐿.

For this case we have the poidge (𝑢× 𝑡′) ∪ 𝑥𝑦 ⊂ 𝑆, where 𝑡′ ∈ (bd 𝐿) ∖ {𝑡}.
Case 4. 𝑥 ∈ 𝐾 × {𝑡𝑢}, 𝑦 ∈ 𝐾 × {𝑡𝑣}, where 𝑡𝑢, 𝑡𝑣 ∈ bd 𝐿 are distinct.

If 𝑢 ̸= 𝑣, a good poidge is {𝑦} ∪ 𝑥(𝑣× 𝑡𝑢). Otherwise, {𝑦} ∪ 𝑥𝑧 is a good one, 𝑧 being an

arbitrary point of 𝐾 × {𝑡𝑢} different from 𝑥.

Case 5. 𝑥 ∈ 𝐾 × {𝑡𝑢}, 𝑦 ∈ (bd 𝐾)× 𝐿, where 𝑡𝑢 ∈ bd 𝐿.

Now, if we are not in Case 1 or 4, a suitable poidge is {𝑥} ∪ ({𝑣} × 𝐼), where 𝐼 is an

arbitrary line-segment in 𝐿 starting at 𝑡𝑢.

Let 𝐾 be an (𝑛− 1)-dimensional convex body in IR𝑛, and 𝑣 ∈ IR𝑛 ∖𝐾. Put 𝑣′ = p𝐾(𝑣).

We call the cone 𝐶 = conv ({𝑣}∪𝐾) right, if 𝑣′ ∈ 𝐾 and, for any pair of points 𝑎, 𝑏 ∈ bd 𝐾,

∠𝑎𝑣𝑏 ≤ 𝜋/2.
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Figure 9: A conical surface.

The boundary of a right cone will be called here a conical surface. See Figure 9.

Theorem 5.8. Every conical surface is poidge-convex.

Proof. Let 𝑆 = bd 𝐶, where 𝐶 = conv ({𝑣} ∪𝐾) is a right cone. We observe the preceding

notation.

Let 𝑥, 𝑦 ∈ 𝑆. We assume without loss of generality that ‖𝑣 − 𝑥‖ ≤ ‖𝑣 − 𝑦‖.
Case 1. 𝑥, 𝑦 ∈ 𝐾.

If 𝑥, 𝑦 are not both boundary points of 𝐾, then they clearly have the poidge-property

(in 𝐾). Suppose now 𝑥, 𝑦 ∈ bd 𝐾. Since ∠𝑥𝑣𝑦 ≤ 𝜋/2 and ‖𝑣 − 𝑥‖ ≤ ‖𝑣 − 𝑦‖, 𝑧 = p𝑣𝑦(𝑥)

belongs to 𝑣𝑦. Thus, {𝑥} ∪ 𝑦𝑧 is a suitable poidge.

Case 2. The points 𝑣, 𝑥, 𝑦 are collinear.

The point 𝑥 is closer from 𝑣 than 𝑦, possibly 𝑥 = 𝑣.

Let {𝑦′} = 𝑥𝑦 ∩𝐾.

If 𝑦′ = 𝑦, then we consider the poidge {𝑥} ∪ 𝑦𝑧, where 𝑧 = p𝐾(𝑥).

If 𝑦′ ̸= 𝑦, then take 𝑢 ∈ (bd 𝐾) ∖ {𝑦′} so close to 𝑦′ that ‖𝑣 − 𝑢‖ > ‖𝑣 − 𝑦‖. Then
∠𝑣𝑢𝑦 < 𝜋/2, and the projection 𝑧 = p𝑣𝑢(𝑥) belongs to 𝑣𝑢. So, we obtain the poidge

{𝑧} ∪ 𝑥𝑦 ⊂ 𝑆.

Case 3. 𝑥 ∈ 𝑣𝑥′, 𝑦 ∈ 𝑣𝑦′, with 𝑥′, 𝑦′ ∈ bd 𝐾.

We may suppose 𝑥 ̸= 𝑣, 𝑦 ̸= 𝑣, and 𝑥′ ̸= 𝑦′, otherwise we are in Case 2. Since ∠𝑥𝑣𝑦 ≤ 𝜋/2,

we have 𝑧 ∈ 𝑣𝑦 ∖ {𝑦}, where 𝑧 = p𝑣𝑦(𝑥). Thus, {𝑥} ∪ 𝑦𝑧 is a suitable poidge.

Case 4. 𝑥 ∈ 𝐾, 𝑦 /∈ 𝐾.

Let 𝑧 = p𝐾(𝑦). If 𝑧 ̸= 𝑥, then {𝑦} ∪ 𝑥𝑧 is a good poidge. If 𝑧 = 𝑥, take any point 𝑧′ ∈ 𝐾

different from 𝑧. The poidge {𝑦} ∪ 𝑧𝑧′ will do it.

For results on right convexity in cylinders and cones, see [18].
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5.4 Polyhedral surfaces

We have already seen that some tetrahedral surfaces are poidge-convex, some are not.

The same is true in the larger frame of all polyhedral surfaces.

The star 𝑆𝑥 at a vertex 𝑥 of a polytope in IR𝑛 is the union of all facets (i.e. (𝑛 − 1)-

dimensional faces) having 𝑥 as a vertex. Two vertices of a polytope in IR𝑛 will be called

opposite if 𝐻𝑥𝑦 and 𝐻𝑦𝑥 are supporting hyperplanes of the polytope.

Recall that a compact set 𝑀 ⊂ IR𝑛 is called ordinary, if card(𝑆𝑀 ∩ 𝑀) ≥ 3. This is

equivalent to the property that, for any pair of points 𝑥, 𝑦 ∈ 𝑀 , not all points of 𝑀 different

from 𝑥, 𝑦 lie inside 𝑆𝑥𝑦, i.e. 𝑀 ∖ int conv𝑆𝑥𝑦 ̸= {𝑥, 𝑦}.
Now, we say that a polytope 𝑃 ∈ IR𝑛 is extraordinary, if, for any pair of opposite vertices

𝑥, 𝑦 ∈ 𝑃 , not all points of 𝑆𝑥∪𝑆𝑦 different from 𝑥, 𝑦 lie inside 𝑆𝑥𝑦, i.e. (𝑆𝑥∪𝑆𝑦)∖int conv𝑆𝑥𝑦 ̸=
{𝑥, 𝑦}.

Of course, every extraordinary polytope is ordinary, but not vice-versa.

Among the extraordinary polytopes we find all those admitting a circumscribed sphere,

i.e. a sphere containing all vertices. The Platonic and the Archimedean Solids are well-known

examples.

Theorem 5.9. Every extraordinary polytope in IR𝑛 has a poidge-convex boundary.

Proof. By Lemma 5.5, we only need to verify the poidge-property for pairs of vertices 𝑥, 𝑦

of the given extraordinary polytope 𝑃 .

Figure 10: An ordinary, not extraordinary polytope.
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Take 𝑥, 𝑦 ∈ 𝑉 (𝑃 ). Let 𝐻𝑥 be a supporting hyperplane of 𝑃 at 𝑥. Consider the hyperplane

𝐻𝑦 ∋ 𝑦 parallel to 𝐻𝑥.

If 𝐻𝑦 is supporting 𝑃 , then our hypothesis implies the existence of some point 𝑧 ∈
(𝑆𝑥∪𝑆𝑦)∖ int conv𝑆𝑥𝑦 different from 𝑥 and 𝑦. Assume without loss of generality that 𝑧 ∈ 𝑆𝑥.

Then 𝑧𝑥 ∩ 𝑆𝑥𝑦 ̸= {𝑥}. If 𝑧′ ∈ 𝑧𝑥 ∩ 𝑆𝑥𝑦 ∖ {𝑥}, then 𝑥𝑧′ ⊂ 𝑆𝑥, as {𝑥} is the kernel of the

starshaped set 𝑆𝑥. Moreover, ∠𝑥𝑧′𝑦 = 𝜋/2. Thus, {𝑦} ∪ 𝑥𝑧′ is a suitable poidge.

If 𝐻𝑦 is not supporting 𝑃 , then both 𝐻𝑦 and 𝑆𝑥𝑦 are locally cutting bd 𝑃 at 𝑦. Locally,

the intersection 𝑆𝑥𝑦 ∩ 𝑆𝑦 is a union of pieces of spheres of dimension 𝑛− 2. Take a point 𝑧

in 𝑆𝑥𝑦 ∩ 𝑆𝑦 different from 𝑦. Then {𝑥} ∪ 𝑦𝑧 is a suitable poidge.

Figure 10 shows an ordinary polytope which is not extraordinary.

Sometimes even the 1-skeleta of polytopes are poidge-convex.

In IR3, let T1, C1, O1, D1, I1 be the boundary 1-complexes of the regular tetrahedron,

cube, regular octahedron, regular dodecahedron, and regular icosahedron, respectively.

Theorem 5.10. T1, C1, O1 are poidge-convex, while D1, I1 are not.

Proof. We leave to the reader the first part of the statement. Consider D1. Let 𝑎𝑏𝑐𝑑𝑒 be a

face of D1, and 𝑎𝑎′ an edge different from 𝑎𝑏 and 𝑒𝑎. Consider the points 𝑥 ∈ 𝑎𝑎′ and 𝑦 ∈ 𝑏𝑐.

Obviously, 𝐻𝑥𝑦 ∩ 𝑎𝑎′ = {𝑥}, and 𝐻𝑦𝑥 ∩ 𝑏𝑐 = {𝑦}. Moreover, 𝑥𝑦 ̸⊂ D1. Hence, 𝑥, 𝑦 have not

the poidge-property.

For I1, the proof is similar.

6 Problems

We end the paper with two problems about the relationship between various ℱ -convexities.

Problem 6.1. Which poidge-convex sets are not rt-convex?

We mentioned (and it is easily verified) that tr-convexity implies poidge-convexity.

Problem 6.2. Which poidge-convex sets are not tr-convex?
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