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We investigate the notion of generosity, a particular case of non-selfishness. Let F be a family of
sets in R. A set M ⊂ R is called F-convex if for any points x, y ∈ M there is a set F ∈ F such
that x, y ∈ F and F ⊂ M . We call a family F of compact sets complete if F contains all compact
F-convex sets. A single convex body K will be called generous, if the family of all convex bodies
isometric to K is not complete. We investigate here the generosity of convex bodies.
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1. Introduction

Let F be a family of sets in R (k ≥ 2). A set M ⊂ R with cardM ≥ 2, is called
F -convex if for any pair of points x, y ∈ M there is a set F ∈ F such that x, y ∈ F
and F ⊂ M .
The third author proposed at the 1974 meeting on Convexity in Oberwolfach the
investigation of F -convexity, for various families F . Obviously, usual convexity,
affine linearity, arc-wise connectedness, polygonal connectedness, are all examples
of F -convexity (for suitably chosen families F).
Blind, Valette and the third author [1], and also Böröczky Jr [2], investigated the
rectangular convexity, the case when F contains all non-degenerate rectangles.
Magazanik and Perles dealt with staircase connectedness, a special kind of polygonal
connectedness [5].
In [10] the third author studied the case when F is the family of all right triangles
in R.
∗ Corresponding author.
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In the last two authors’ paper [7], the type of convexity studied in [10] was gene-
ralized and the right triple convexity was introduced, where F is the family of all
triples {x, y, z} such that ∠xyz = π/2. See also [6].
We call a family F of compact sets complete, if F contains all compact F -convex
sets. A single compact set L is called selfish, if the family FL of all sets similar to
L (resulting from an isometry followed by a homothety, i.e. dilation/contraction) is
complete [8]. Further, a compact set L will be called generous, if the family GL of
all sets congruent, i.e. isometric, to L is not complete. If K is a compact GL-convex
set not belonging to GL, we say that L is generous towards K.
The set of all selfish sets is disjoint from the set of all generous sets, of course, but
there are sets which are neither selfish, nor generous.
We investigate here the generosity of compact convex sets.
For distinct x, y ∈ R, let xy be the line through x, y and xy the line-segment from
x to y.
A k-dimensional compact convex set in R is called a convex body.
For M ⊂ R with k ≥ 2, clM denotes its topological closure and bdM its boundary,
while the convex hull and the affine hull of M , denoted by convM and M respec-
tively, are the intersection of all convex sets, respectively affine subspaces, including
M .
We also denote by x1x2 . . . xn the convex hull of the finite set {x1, x2, . . . , xn}. Such
a set is called a polytope. An extreme point of the polytope P , i.e. a point not
belonging to the relative interior of any line-segment included in P , is called a
vertex of P . A polytope the vertices of which are among the vertices of another
polytope P , is called a subpolytope of P .
The Euclidean distance between two points a, b ∈ R will be denoted by |ab|. So,
|ab| = ∥a − b∥. Also, m(ab) = (a + b)/2 is the midpoint of ab. If ab and cd are
line-segments, we write ab∥cd, if ab and cd are parallel.
For any compact set M , put diamM = maxx,y∈M |xy|. If K is a convex body, and
x, y ∈ bdK, then xy is a chord of K. A chord xy ⊂ K is a diameter of K, if
|xy| = diamK.
Angles, denoted by x̂yz, are always unoriented. Sometimes the term “angle” will
refer to the measure ∠xyz of the angle x̂yz, a number between 0 and π.
The closed unit ball in R is denoted by Bk, and bdBk = Sk−1.
If the sets L,L′ ⊂ R are congruent, we write L ∼ L′ and say that L′ is a copy of L.
A planar convex body is called n-symmetric, if it is invariant under some rotation
of angle 2π

n
.

2. Examples of generous convex bodies

We start with a simple and general argument which will be used several times in
our work.
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Proposition 2.1. Let K,L ⊂ R be non-congruent convex bodies. If, for any x, y ∈
bdK, there exists L′ ∼ L with x, y ∈ L′ and L′ ⊂ K, then L is generous towards K.

Proof. Let x′, y′ ∈ K. Put xy = x′y′ ∩K. Since x, y ∈ bdK, there exists L′ ∼ L
with x, y ∈ L′ and L′ ⊂ K. Because L′ is convex, xy ⊂ L′, whence x′, y′ ∈ L′.

Now we present several examples of generous convex bodies.
It is immediately seen that the (circular) disc B2 is selfish in R2, but is it so in R3,
too? No, it is even generous, because B3 is GB2-convex! By Theorem 1.1 of [8], the
square is selfish, too, in R2. More generally, every rectangle is selfish in R2 [9]. But
are they so in R3 ? The answer is again no. For any rectangle R, B3 is FR-convex.
But, unlike the discs, rectangles are also not generous, by Theorem 4.4 of the present
paper.
Theorem 2.2. If A is an arc of endpoints a, b (with a, b ∈ A) and of length π/2 in
S1, then the ball Bk is GM -convex, where M = conv(A ∪ {−a}).

b

-a

a

Figure 2.1: The set M .

Proof. Let x, y ∈ Bk be distinct from 0. Consider the intersection points x′, y′ of
xy with Sk−1.

We find a point z ∈ Sk−1 ∩ 0xy at distance
√
2 from x′, such that 0x′ does not

separate y′ from z in 0xy, as shown in Figure 2.2.

x'

-x'

x y

0

z
y'

y'

z

0 y

x

-x'

x'

(a) M ′ (b) M ′′

Figure 2.2: M ′ and M ′′.

If |x′y′| ≥
√
2, then we take the subset M ′ of Bk congruent to M such that −x′

corresponds to a, z corresponds to b, and x′ to −a; we have

{x, y} ⊂ x′y′ ⊂ M ′ ⊂ Bk.
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If |x′y′| <
√
2, then we consider the subset M ′′ of Bk congruent to M such that x′

corresponds to a, z corresponds to b, and −x′ to −a; we again have

{x, y} ⊂ x′y′ ⊂ M ′′ ⊂ Bk.

For the points x,0 ∈ Bk, we may choose arbitrarily y ∈ Bk \ {x,0}, and find as
before a subset of Bk congruent to M and containing x, y. It automatically contains
0, too.

Theorem 2.3. Assume that v1v2...v16 ⊂ R2 is a regular 16-gon. Then the octagon
v1v2v3v4v5v8v9v10 is generous.

9

8
76

5

4

3

2

1

P

Q

v16
v15 v14

v13

v12

v11

v10

v9
v8

v7v6

v5

v4

v3

v2

v1

Figure 2.3: P and Q.

Proof. Let P = v1v2...v16 and Q = v1v2v3v4v5v8v9v10. We show that P is GQ-
convex.
We consider the family T of all isosceles triangles and trapezoids with vertices among
the vertices of P , each of which having at least two sides of length |v1v2|. They
belong to eight equivalence classes, regarding congruence. For example, v1v2v4v5 ∼
v3v4v6v7. If the nine consecutive edges vivi+1 (i = 1, ..., 9) get numbers 1, 2,...,
9, then each element of T can be identified with a pair of numbers, for example
v1v2v4v5 with (1, 4). Clearly, vivi+1vjvj+1 ∼ vi′vi′+1vj′vj′+1, i.e., (i, j) ∼ (i′, j′), if
and only if j − i = j′ − i′.
We want to verify that Q displays polygons from T of all types, i.e., from all equiv-
alence classes. Indeed, Q has 1, 2, 3, 4, 8, 9 among its edges. Since 1 = 2 − 1,
2 = 3− 1, 3 = 4− 1, 4 = 8− 4, 5 = 8− 3, 6 = 8− 2, 7 = 8− 1, 8 = 9− 1, all classes
are represented in Q.
Now, take x, y ∈ P . They lie in a triangle vivi+1vi+2 or trapezoid vivi+1vjvj+1; call it
T . Since a polygon congruent with T can be found in Q, according to the discussion
above, this means that Q can be rotated to contain x, y.

In the way described by Theorem 2.3 one can find (infinitely) many examples of
generous polygons. As they are anyway just examples, we preferred to give here
just a specific one, and resisted the temptation of trying to be exhaustive.
Theorem 2.4. If D = v1 . . . v20 is a regular dodecahedron in R3 and P = v1 . . . v19,
then P is generous towards D.
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v20

Figure 2.4: D and P .

Proof. The faces of P are nine regular pentagons, three trapezoids and one equila-
teral triangle. Among the nine pentagonal faces, one can find a pair of neighbouring
ones, a pair of opposite ones, and a pair that are neither neighbouring nor opposite.
Suppose D is centred at 0. Let x, y ∈ D. For 0 /∈ {x, y}, denote by x′, y′ the points
of bdD such that x ∈ 0x′ and y ∈ 0y′. (The case 0 ∈ {x, y} is obvious.) Let F be
the face of D containing x′ (any of them if x′ is a vertex or on an edge of D) and
F ′ the face containing y′.
Three cases can occur: Either F and F ′ are neighbouring, or they are opposite, or
neither neighbouring nor opposite. In the three cases, one can find a subpolytope
of D congruent to P and admitting F and F ′ as faces. Since x, y ∈ 0x′y′, the proof
is finished.

Theorem 2.5. Suppose abcda′b′c′d′ ⊂ R3 is a cube, with an upper face abcd, a lower
one a′b′c′d′, and aa′, bb′, cc′, dd′ as edges. Then the polytope aa′bb′ec′fd′ is generous,
where e, f are the midpoints of cc′, dd′, respectively.

Proof. Set C = abcda′b′c′d′ and A = aa′bb′ec′fd′. Assume C is centred at 0. We
prove that C is GA-convex.
Let x, y ∈ C. Put {x′, y′} = xy ∩ bdC.

g

f e

c'

b'a'

d c

ba

d'

Figure 2.5: C and A.

Case 1. x′, y′ belong to opposite faces of C.
Suppose without loss of generality that x′ ∈ aa′d′. If y′ ∈ bb′c′, then {x′, y′} ⊂ A.
Suppose now y′ ∈ bcc′.
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If y′ ∈ bec′, then again {x′, y′} ⊂ A. If y′ ∈ bc′g, where g = m(bc), the symmetry
with respect to cda′b′ leaves aa′d′ invariant and brings bc′g into c′be, a situation
which was just settled. If y′ ∈ cc′g, another automorphism of C sends cc′g into
c′d′e and aa′d′ into baa′, which are both in A. (The mentioned automorphism is a
rotation about the z-axis bringing a to b, followed by a symmetry with respect to
a′bcd′.)
Case 2. x′, y′ belong to neighbouring faces of C.
This case is solved by the remark that abb′a′ ∪ a′b′c′d′ ⊂ A.

Case 3. x′, y′ belong to the same face of C.
This case is trivial.

We now present families of convex bodies partly displaying increased symmetry.

Theorem 2.6. Suppose k ≥ 3, E ⊂ R is a convex body invariant under any rotation
about the k-th axis xk, H is a hyperplane including xk, H+ is a closed half-space
bounded by H, and K is a convex body different from E. If E ∩H+ ⊂ K ⊂ E, then
K is generous towards E.

Proof. Let x, y ∈ E. Choose a hyperplane J ⊃ xk, which does not separate x from
y. Let J+ be the closed half-space determined by J which contains both x, y. The
rotation mapping H+ into J+ will transform K into a congruent copy containing
x, y.

Theorem 2.7. Let K ⊂ R3 be a convex body symmetric with respect to both axes
x1 and x2. Consider the set L = {y = (y1, y2, y3) ∈ K : y2 ≥ 0 ∨ y3 ≥ 0}. Any
convex body C distinct from K and satisfying L ⊂ C ⊂ K is generous.

Proof. We prove that K is GC-convex.
Let x, y ∈ K. If x, y ∈ L, we are done. If x, y /∈ L, the set L′ symmetric to L
with respect to x1 contains x, y. Suppose now that x ∈ L, y /∈ L. We may assume
without loss of generality that x3 ≥ 0. Then the set L′′ symmetric to L with respect
to x3 contains x, y.
The symmetries carrying L to L′ or L′′ will transform C into a convex body con-
taining x, y and included in K.

Theorems 2.6 and 2.7 allow us to uncover the large degree to which a generous
convex body can be prescribed.

3. General results

Let G be the set of all generous convex compact sets in R.

Proposition 3.1. Let L be a convex body and K ∈ G. If K is GL-convex, then
L ∈ G, too.
Proof. Since K ∈ G, some C non-congruent with K is GK-convex. Then, C is
GL-convex, too, because, for x, y ∈ C, there exists K ′ ⊂ C, congruent with K with
x, y ∈ K ′, and since K ′ is GL-convex, there exists L′ ⊂ K ′ congruent with L, such
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that x, y ∈ L′. Since L′ ⊂ K ′ ⊂ C, and K ′ ̸= C, L′ and C are non-congruent.
Hence, L′ ∈ G.

Theorem 3.2. Let K,L be two non-congruent convex bodies.
(a) If L is generous towards K, then the number of different copies of L included
in K is at least three.
(b) If L is generous towards K and has exactly three copies L1, L2, L3 in K, then
necessarily L1 ∪ L2 = L2 ∪ L3 = L3 ∪ L1 = K.
(c) Conversely, if L1, L2, L3 ⊂ K are three copies of L such that L1∪L2 = L2∪L3 =
L3 ∪ L1 = K, then L is generous towards K.

Proof. (a) Assume only two copies L1, L2 of L exist in K. Then, for x ∈ K \ L1

and y ∈ K \ L2, no copy of L can at the same time contain {x, y} and be included
in K.
(b) Indeed, if L1 ∪L2 ̸= K, choose x ∈ K \ (L1 ∪L2) and y ∈ K \L3; then no copy
of L can at the same time contain {x, y} and be included in K.
(c) Let x, y ∈ K. If {x, y} ̸⊂ L1, say x /∈ L1, then x ∈ L2 and x ∈ L3. If, moreover,
{x, y} ̸⊂ L2, then y /∈ L2; then y ∈ L3, and we have {x, y} ⊂ L3.

Proposition 3.3. If L is generous towards K and L1, L2 ⊂ K are two copies of L,
then diamL = diam(L1 ∪ L2) = diamK. Consequently, L2 cannot be a non-trivial
translate of L1.

Proof. Let ∆ be a diameter of K; since L is generous towards K, there is a copy
L′ of L containing ∆ and included in K, yielding

diamK = diam∆ ≤ diamL′ ≤ diam(L1 ∪ L2) ≤ diamK.

So, we have equalities above.
Suppose L2 is a non-trivial translate of L1. Let a1b1 be a diameter of L1 and a2b2
the diameter of L2 obtained by translation. At least one of the diagonals of the
parallelogram a1b1b2a2 is longer than its sides, hence diam(L1∪L2) > diamL1. This
contradicts our previous findings.

Let P ⊂ R2 be a polygon. A broken line ⟨abcd⟩ (possibly a = d) is called a zyggy,
if ab and cd are edges of P . If bc is an edge, too, then ⟨abcd⟩ is called a boundary
zyggy of P. If bc is a diameter of P , then ⟨abcd⟩ is called a diametral zyggy of P.

Theorem 3.4. If L is a convex polygon generous towards a convex body K ⊂ R2,
then K is a polygon, and every zyggy of K includes a set congruent to a zyggy of L.
More precisely, for any zyggy ⟨abcd⟩ of K there exist a1 ∈ ab and d1 ∈ cd such that
⟨a1bcd1⟩ is a zyggy of a copy of L.
In particular, this holds for boundary and diametral zyggies, too.

Proof. We denote by ∆(L) the set of all distances between any two different vertices
of L.
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If x and y are two different extremal points of K, and L′ congruent to L is such
that {x, y} ⊂ L′ ⊂ K, then x, y are vertices of L′, hence the distance between two
extremal points of K is bounded below by min∆(L), whence K is a polygon.
Let ⟨abcd⟩ be a zyggy of L. Let {an}n∈N and {dn}n∈N be two sequences of points
an ∈ ab, dn ∈ cd, such that:
(i) an → b and dn → c,
(ii) the sequences {|anb|}n∈N and {|dnc|}n∈N are decreasing, and
(iii) the sequence {|andn|}n∈N is monotone.
Therefore, for n large enough, |andn| does not belong to ∆(L).
Let {Ln}n∈N be a sequence of bodies congruent to L such that {an, dn} ⊂ Ln ⊂
K. Extracting a subsequence if necessary, we assume that all Ln have the same
orientation in the plane, i.e. the isometries bringing L to Ln are either all orientation
preserving or all orientation reversing.
Our aim is to prove that, extracting a subsequence if necessary, {Ln}n∈N is a constant
sequence. We partition N in four subsets depending upon whether an or dn is a vertex
of Ln: Let

N1 = {n ∈ N ; an ∈ V (Ln) and dn ∈ V (Ln)},

N2 = {n ∈ N ; an ∈ V (Ln) and dn /∈ V (Ln)},

N3 = {n ∈ N ; an /∈ V (Ln) and dn ∈ V (Ln)},

N4 = {n ∈ N ; an /∈ V (Ln) and dn /∈ V (Ln)}.

Since an and dn belong to bdK, they belong to bdLn; therefore an belongs either
to V (Ln) or to an edge of Ln, and the same holds for dn.
N1 is finite since |andn| /∈ ∆(L) for n large enough.
We now prove that N2 and N3 are also finite. Let m and n be two different integers
of N2, i.e. am ∈ V (Lm), an ∈ V (Ln), and dm and dn are on edges of Lm and Ln

respectively. If dm and dn belong to copies of the same edge of L, then am and an
would correspond to the same vertex of L, hence Lm would be a non-trivial translate
of Ln, which is excluded by Proposition 3.3. To sum up, if m and n are two different
integers of N2, then dm and dn belong to copies of two different edges of L, hence
N2 is finite. For the same reason N3 is also finite.
Since N1 ∪N2 ∪N3 ∪N4 = N, we conclude that N4 is infinite. Extracting a subse-
quence of {(an, dn)}n∈N if necessary, we may assume that N4 = N. In this manner,
for all n ∈ N, an belongs to an edge of Ln, which corresponds to some edge of L.
Since the number of edges of L is finite, extracting a subsequence if necessary, we
may assume that this edge of L is the same for the whole sequence {an}n∈N. Since
two distinct copies of L within K cannot be translates of each other, this means
that {Ln}n∈N is a constant sequence.
Now, b and c are vertices of L1, and ⟨a1bcd1⟩ is a zyggy of L1. If ⟨abcd⟩ is a boundary
or diametral zyggy of K, then ⟨a1bcd1⟩ is a boundary, respectively diametral, zyggy
of L1.
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4. Beginning of classification

In this section we work in R2.

Theorem 4.1. There is no generous triangle.

Proof. Indeed, if L is a triangle and K is GL-convex, then every boundary zyggy
of K must have angles summing up to π (since this is the case for boundary zyggies
of a triangle). But this can happen only if K is itself a triangle, one congruent to
L.

Let us call an n-vase a broken line ⟨a0 . . . an⟩ such that:
– no three among the points ai are collinear,
– a0 ̸= an,
– the polygon with consecutive vertices a0, . . . , an is convex,
– the ray starting from a1 and containing a0 does not cross the ray starting from

an−1 and containing an.

a4

a3

a2

a1

a0

Figure 4.1: A 4-vase ⟨a0a1a2a3a4⟩.

For example, a 4-vase is shown in Figure 6.
Observe that the last condition is equivalent to asking that the angles αi at ai satisfy∑n−1

i=1 αi ≥ (n− 2)π.

Lemma 4.2. If a convex polygon K contains a 4-vase in its boundary, then no
convex quadrilateral is generous towards K.

Proof. Assume that bdK contains a 4-vase ⟨a0a1a2a3a4⟩ and L = abcd is generous
towards K. Then K contains at least three zyggies which are 3-vases: ⟨a0a1a2a3⟩ and
⟨a1a2a3a4⟩, which are boundary zyggies, and ⟨a0a1a3a4⟩, which is not a boundary
zyggy (such a zyggy will be called a non-boundary zyggy).
We first assume that L has no two parallel sides; then among the four boundary
zyggies of L, two are 3-vases and consecutive, say ⟨dabc⟩ and ⟨abcd⟩, and two are
not: ⟨bcda⟩ and ⟨cdab⟩, see Figure 7.
By Theorem 3.4, each of the three aforementioned 3-vases of K must share the same
angles with one of the 3-vases of L.
However the non-boundary zyggy of K cannot share the same two angles with one
of the boundary zyggies of K. For example, if

{∠a0a1a2,∠a1a2a3} = {∠a0a1a3,∠a1a3a4},
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then a2a3 and a3a4 would be parallel, a contradiction. It follows that the two
boundary zyggies of K share the angles with one zyggy of L, say ⟨dabc⟩, and the
non-boundary zyggy of K shares the angles with ⟨abcd⟩.

δγ

β
α

dc

a
b

Figure 4.2: The quadrilateral L.

Let α, β, γ and δ be the angles at a, b, c and d respectively on bdL. Let α′
1 =

∠(a0a1a3) and α′
3 = ∠(a1a3a4), the angles of the non-boundary zyggy of K. The

above discussion sums up as:

{α1, α2} = {α2, α3} = {α, β} and {α′
1, α

′
3} = {β, γ}.

Since α′
1 < α1 and α′

3 < α3 and one of the angles α′
1, α′

3 has to be β, one of the
angles α1, α3 is not β, hence we must have α2 = β, whence α1 = α3 = α (and
α ̸= β).
By Theorem 3.4, we also have |ab| = |a1a2| = |a2a3|, hence the triangle a1a2a3 is
isosceles at a2. Thus, the angles ∠a3a1a2 = α1−α′

1 and ∠a1a3a2 = α3−α′
3 are equal,

yielding α′
1 = α′

3. Then, the equality {α′
1, α

′
3} = {β, γ} implies α′

1 = α′
3 = β = γ.

Since ⟨a0a1a3a4⟩ is a vase, we also have α′
1 + α′

3 ≥ π. To sum up, we have

α1 = α3 = α > α2 = α′
1 = α′

3 = β = γ ≥ π

2
> δ.

Now, by Theorem 3.4, we have |bc| = |a1a3| and |bc| ≤ |a2a3|, whence α2 ≤ π
3
, and

a contradiction is obtained.
If L has two parallel sides then, among its four boundary zyggies, more than two are
3-vases but only one of them is related with the two boundary zyggies ⟨a0a1a2a3⟩
and ⟨a1a2a3a4⟩ of K, and the rest of the proof is the same.

Theorem 4.3. If K and L are convex bodies such that L is a convex quadrilateral
generous towards K, then we are up to isometries in one of the following three
situations.
(a) K is an equilateral triangle v1v2v3 and L is of the form v1v2xy with x ∈ v2v3,
y ∈ v3v1, with ∠xoy ≤ 2π

3
, where o is the centre of K. The smallest quadrilaterals

L in the sense of inclusion are those for which ∠xoy = 2π
3

; the L with least area is
obtained for x = m(v2v3) and y = m(v3v1).
(b) K is a rectangle v1v2v3v4 and L is of the form v1v2v3x with x = (1− t)v4 + tv1,
0 < t ≤ 1

2
. The smallest L (in the sense of both inclusion and area) has t = 1

2
.

(c) K is a regular pentagon v1v2v3v4v5 and L ∼ v1v2v3v4.
Proof. We already know from Theorem 3.4 that K is a convex polygon.
It is easy to see that an n-gon with n ≥ 6 always contains a 4-vase, hence by
Lemma 4.2 K is either a triangle, or a quadrilateral, or a pentagon.
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KK

(a)

LL

v1 v2

v3

o

xy
y

x

o

v3

v2v1

KK

(c)(b)

L

v5

v1

v2 v3

v4
v4

v1 v2

v3

x
L

Figure 4.3: K and L in Theorem 4.3.

The case where K is a triangle will be treated in the next section in a more general
setting, see Theorem 5.6: Not only no quadrilateral can be generous towards a non-
equilateral triangle, but no convex body at all.
The case where K is a quadrilateral will be treated by Theorem 5.7.
We now assume that K is a pentagon. By Lemma 4.2, we can also assume that
bdK has no 4-vase. This implies that all five boundary zyggies of K are 3-vases
and that K has no pair of parallel sides. Each boundary zyggy of K must contain
a congruent copy of a boundary zyggy of L which therefore has to be a 3-vase with
non-parallel sides.
We now prove that only one boundary zyggy of L serves for all five boundary
zyggies of K. Already, only two boundary zyggies of L can play this role and are
moreover consecutive, say ⟨dabc⟩ and ⟨abcd⟩. If both zyggies serve, then there are
two consecutive zyggies of K using both zyggies of L (because K has an odd number
of vertices). Then one easily sees that K has to be included into L, a contradiction.
A a consequence, one boundary zyggy of L, say ⟨dabc⟩, has a congruent copy included
into each boundary zyggy of K. Since the number of vertices of K is odd, the angles
α = ∠dab and β = ∠abc must be equal, and the sides of K are all of equal length
|ab|, hence K is regular.
Now let K = abcde be a regular pentagon and let L be a convex quadrilateral
generous towards K. By Theorem 3.4 applied to the zyggy ⟨abcd⟩, L is congruent
to a′bcd′ with some a′ ∈ ab and d′ ∈ cd. Applying Theorem 3.4 to the zyggy ⟨badc⟩,
we then obtain that L has to be congruent to ab′c′d with some b′ ∈ ab and c′ ∈ cd.
Only one quadrilateral (up to isometries) can satisfy both constraints: abcd.
Conversely the quadrilateral abcd is generous towards K.

It is easy to verify that, for each n = 3, . . . , 7, there is a pentagon generous to Pn. It
can also be seen that no other integer n satisfies this property. Are there pentagons
generous towards other polygons than Pn, where 3 ≤ n ≤ 7? Yes, towards any
non-regular 3-symmetric hexagon!
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Theorem 4.4. A planar polygon cannot be generous to a convex body of dimension 3.

Proof. Suppose the planar polygon L is generous to a three-dimensional convex
body K. Then any two different extreme points of K have to be at distance at least
δ(L) from each other, where δ(L) is the smallest edge-length of L; hence, K has
finitely many extreme points, and is therefore a polytope.
Let ab be a diameter of K. Let ξ be the largest length different from |ab| of a chord
between vertices of L (if it exists). Consider now two points x, y ∈ bdK, close to
a, b, respectively, such that ξ < |xy| < |ab|. They belong to a zyggy of a copy L′ of
L included in K. That zyggy is included in a diametral zyggy of L′. There are just
four such zyggies (for each diameter), with at most four distinct angles. But the
angle x̂ab varies, when x varies on bdK, taking values in a whole interval (notice
that all faces at a make an acute angle with the diameter ab). Hence, there are many
values of ∠xab, which are not among those of diametral zyggies of L. It follows that
those points x do not belong to any diametral zyggy of L′. This contradicts the
generosity of L to K.

Question 4.5. Is there any generous tetrahedron?

Question 4.6. Which convex pentahedra are generous?

5. Gratefulness

A convex body K in R is said to be grateful if there exists a convex body L which is
generous towards K, i.e. such that K is GL-convex, but not congruent to L. Every
Pn is grateful, for all n ≥ 3. Are there other grateful polygons in R2 ? Yes: any
convex non-regular 3-symmetric hexagon. More generally, the following holds.

Theorem 5.1. For all n ≥ 3, every planar n-symmetric convex body is grateful.

Proof. Let K be an n-symmetric convex body for some n ≥ 3 and denote by r the
rotation of angle 2π

n
leaving K unchanged. Choose an extremal point x of K. For

any y ∈ 0x distinct from and x, let D be the line orthogonal to 0x and containing
y. Then D cuts K into two pieces L and L′. (We take both L and L′ compact and
such that L∪L′ = K and L∩L′ ⊂ D.) Let L be the piece not containing x. If y is
close enough to x then L′ and r(L′) are disjoint. It follows that the copies L1 = L,
L2 = r(L) and L3 = r2(L) satisfy the assumptions of Theorem 3.2(c), yielding the
generosity of L towards K.

Theorem 5.2. If K ⊂ R2 is a grateful convex body having a unique diameter, then
K is symmetrical with respect to this diameter and also with respect to the mediator
of this diameter.

Proof. Assume (−x)x is the only diameter of K (with midpoint at the origin 0)
and L ⊂ K is generous towards K. Since K and L have the same diameter, L
can be included in K in at most four ways: as L, −L, L′ or −L′, where the prime
denotes the symmetry with respect to (−x)x.
Suppose K ̸= −K and consider some u ∈ K \ (−K). To fix ideas assume that
u ∈ L; then L ̸⊂ −K, hence only three copies of L fit in −K: −L, L′ and −L′. By
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Theorem 3.2 (b), we then have −K = L′∪ (−L′) = −(L′∪ (−L′)) = K, absurd. We
obtain in the same manner K = K ′.

We denote by G(K) the family of all compact convex subsets of K which are generous
towards K.

Lemma 5.3. If K is a convex body in the plane, then the set G(K)∪{K}, endowed
with the Hausdorff-Pompeiu metric, is compact.

Proof. By the Blaschke selection theorem, the set C(K) of all compact subsets of
K is compact, hence it suffices to prove that G(K) ∪ {K} is closed in C(K). Let
{Ln}n∈N be a sequence in G(K)∪{K} that converges to some L ∈ C(K). Clearly, L is
convex. Let us show that L is generous towards K or equals K. Given x, y ∈ K, for
any n ∈ N there is an isometry φn : K → R2 such that x, y ∈ φn(Ln) and Ln ⊂ K.
All these isometries φn are in the compact subset of all isometries φ : R2 → R2 such
that φ(K)∩K ̸= ∅, hence there is a subsequence {φnk

}k∈N which converges to some
isometry φ. Now, the sequence {φnk

(Lnk
)}k∈N converges to φ(L), which contains

x, y and is included in K.

Theorem 5.4. If K ⊂ R2 is a grateful polygon, then there exists a polygon generous
towards K.

Proof. The area function A : G(K) → R is continuous. By Lemma 5.3, it attains
its minimum on G(K) ∪ {K}.
Let L ⊂ K realize this minimum area A(L). Clearly, L ̸= K, because any compact
convex subsets of K generous towards K has area smaller than A(K). We prove
that L is a polygon.
Since K is an n-gon, it has a finite number d of diameters (actually d ≤ n, see [3]).
Let us fix a diameter ab of L. Then, for any isometry φ such that φ(L) ⊂ K, φ(ab)
is a diameter of K, and for each diameter xy there are at most four isometries which
send ab to xy. In other words, the number m of isometries φ such that φ(L) ⊂ K is
finite and at most 4d. Let us denote these isometries by {φ1, . . . , φm}. Since each
side of K contains at most two extremal points of each φi(L), at most 2mn extremal
points a of L are such that φi(a) ∈ bdK for some i ∈ {1, . . . ,m}.
If L is not a polygon, then it has infinitely many extremal points, hence there is
some extremal point a of L such that φi(a) /∈ bdK for all i ∈ {1, . . . ,m}.
Let ε be the minimum of all distances |fi(a)z|, where 1 ≤ i ≤ m and z ∈ bdK. Take
a′, a′′ ∈ bdL, such that |aa′| < ε and |aa′′| < ε, on each side of a on bdL. Let P
be the closed half-plane not containing a and bounded by a′a′′. Then the compact
convex subset L∩ P of K is generous towards K and has an area less than A(L), a
contradiction.

Theorem 5.5. If K is a planar convex body different from a rhombus, symmetric
with respect to x1 and x2, then K is grateful.

Proof. Put Q+ = {(x1, x2) : x1 ≥ 0 ∧ x2 ≥ 0}. Let a1(−a1) = K ∩ x1 and
a2(−a2) = K ∩ x2. Obviously, K is GL-convex, where L = conv(K \ Q+). Since
K ̸= L, K is grateful.
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Remark that a convex body as described in Theorem 5.5 may have any number of
diameters, even (countably or uncountably) infinitely many.
If the number of diameters is odd, then either a1(−a1) or a2(−a2) is a diameter, but
not both.

Theorem 5.6. The only grateful triangle is the equilateral one.

Proof. If a convex body L is generous to a triangle K, then L has to fit at least
three times in K. Since K is a triangle, its diameters are necessarily edges, but
for every edge of K only two distinct copies of L can have it as a diameter. So, in
K = abc, we must have, say, |ab| = |ac| ≥ |bc|.

Suppose |ab| > |bc|. Any copy L′ of L, included in K and containing b, c, must also
contain either ab or ac, in order to have diamL′ = diamK. But then, L′ = K, a
contradiction.

Theorem 5.7. The only grateful quadrilaterals in R2 are the rectangles.

Proof. Let K be a grateful quadrilateral, and L a convex body generous to K. By
Theorem 5.4, we may suppose L to be a polygon.
Suppose first that K = abcd has only one diameter. Then L, too, has a single
diameter, of same length. If the diameter of K is an edge of K, then there exist no
three distinct copies of L inside of K, which contradicts Theorem 3.2. So, assume
the diameter is the diagonal ac. Then some copy of L must contain both b, d, and
have diameter diamK. This implies L = K, a contradiction.
Hence, K has (at least) two diameters.
Assume first they have a common endpoint, say a. Then both diameters are edges
(and they are ab, ad in K = abcd), or one of them is a diagonal (and they are ac,
ad in K).
If the diameters are ab, ad, then the copy of L containing b, c must also contain ab,
therefore the whole triangle abc; analogously, another copy of L contains acd. But
there is no third copy of L inside K having ab or ad as a diameter. (Some vertex of
such a copy would lie outside of K.)
If the diameters are ac, ad, then the copy of L containing b, d must also include ad,
but not {c} (otherwise it equals K). So, L has just one diameter. Let L′ be the
copy of L in K containing c, d. Then L′ ⊃ acd, and it has more than one diameter,
a contradiction.
Hence, K has two diameters, which cross each other, ac, bd.
Take x ∈ bc, y ∈ ad. Some copy of L must include the zyggy ⟨xcay⟩ or ⟨xbdy⟩,
because diamL = diamK. Let λ = |xc|/|bc| and µ = |ya|/|da|. Call min{λ, µ} and
max{λ, µ} the small and big ratio of the zyggy ⟨xcay⟩. We want to determine the
small and the big ratio of a zyggy which covers any pair of points x, y with x ∈ bc
and y ∈ ad. By taking x, y close to b, a, we see that the big ratio must be 1. By
taking x close to b, and y ∈ am(ad) close to the midpoint m(ad) of ad, we see that
the small ratio is 1/2.
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These zyggies must be included in L. If the two angles of a zyggy are not equal,
then the previous argument gives 1 as small ratio, which means L is congruent to
K. So, the two angles are equal, and bc∥ad. Analogously, ab∥cd. Hence, K is a
parallelogram. Having equally long diagonals, it is a rectangle.
Indeed, any convex body L between m(ad)abc and K (i.e. such that m(ad)abc ⊂
L ⊂ K), distinct from K, is generous towards the rectangle K.

Question 5.8. Is P5 the only grateful pentagon in R2 ?

For every non-prime number n ≥ 6, there are non-regular grateful n-gons: choose a
divisor d ≥ 3 of n, and take any non-regular d-symmetric n-gon.
Let n be a prime number. Is Pn the only grateful n-gon? The answer is positive for
n = 3 (Theorem 5.6), unknown for n = 5 (Question 5.8), and negative for n ≥ 7. It
suffices to consider Pn = v1...vn, and modify it by taking a point v′2 ∈ v2v3 and the
polygon v1v

′
2v3...vn instead of Pn.

Proposition 5.9. There exist grateful convex bodies without any symmetry.

Proof. Cut a small piece of P7 containing v1 and not symmetric with respect to v1;
this is K. In K, reproduce the same cut at v2 and v4 to obtain L. Three copies of
L fit into K: L1 = L itself, L2 = r(L), where r is the rotation about of angle 2π

7

sending v2 to v1, and L3 = r3(L). The small cuts are at the vertices v1, v2, v4 for L1,
v1, v3, v7 for L2, and v1, v5, v6 for L3, hence we have L1∪L2 = L2∪L3 = L3∪L1 = K.
Then, L is generous towards K, due to Theorem 3.2 (c).

Theorem 5.10. If a grateful polygon in R2 has an angle less than π/3, then it has a
second angle of equal size, the two angles being at the endpoints of a single diameter,
which is a bisector of both.

Proof. Suppose K ⊂ R2 is a grateful polygon with an angle α = ∠abc < π/3. Let
L be generous to K.
Let ef be a diameter of K. If b /∈ {e, f}, then be or bf is longer than ef , because
∠ebf < π/3. This being impossible, it follows that b ∈ {e, f}, say b = f . We claim
that be is the unique diameter of K.
Indeed, assume that K has a second diameter be′. We may assume that all diameters
of K lie in êbe′. We have ∠bee′ > π/3, because ∠ebe′ < π/3. There exists L∗ ∼ L
with e, e′ ∈ L∗, whence ebe′ ⊂ L∗. Now, only L∗ and the set symmetrical to it with
respect to the bisector of êbe′ are copies of L included in K, and a third copy is
missing. This is, by Theorem 3.2 (a), impossible, and the claim is proven.
Now, the conclusion follows from Theorem 5.2.

p

e

s qc

a

b

Figure 5.1: A grateful hexagon abcqep.
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For example, the hexagon abcqep of Figure 5.1 is grateful, as the hexagon abcsep is
generous to it.
Question 5.11. Is Theorem 5.10 more generally true for any convex polygon with
some acute angle?
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