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1 Introduction

A plane rectangle is the Cartesian product I1 × I2 ⊂ R
2 of two line-segments I1, I2 ⊂ R of

positive length. A plane thin rectangle is the boundary of a plane rectangle. In R
d, a rectangle

(a thin rectangle) is a set congruent to a plane rectangle (respectively a plane thin rectangle).
Let F be a family of sets in R

d. A set M ⊂ R
d is called F-convex if for any pair of distinct

points x, y ∈ M there is a set F ∈ F such that x, y ∈ F and F ⊂ M .
The second author proposed at the 1974 meeting on Convexity in Oberwolfach the inves-

tigation of this very general kind of convexity [1]. Usual convexity, affine linearity, arc-wise
connectedness, polygonal connectedness, are just some examples of F-convexity (for suitably
chosen families F).
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Blind, Valette and the second author [1], and also Böröczky Jr. [2], investigated the rect-
angular convexity, Magazanik and Perles dealt with staircase connectedness [7], the second
author studied the right convexity [11], then we generalized the latter type of convexity and
investigated the right triple convexity (see [8, 9]). All these concepts (and many more) are
particular cases of F-convexity. The rectangular convexity is obtained if F is the family of all
(non-degenerate) rectangles in R

d.

In [6] we presented a discretization of rectangular convexity, the right quadruple convexity
(rq-convexity, for short), which constitutes a generalization of rectangular convexity.

Here we investigate another generalization of rectangular convexity, by taking the family of
all thin rectangles as F , thus obtaining the thin rectangular convexity. In this case, F-convex
sets are called tr-convex.

Both rq-convexity and tr-convexity are generalizations of rectangular convexity. One could
think that rq-convexity is a generalization of the tr-convexity. This is, however, false; the reason
resides in the non-rq-convexity of a thin rectangle!

Now the old general concept of F-convexity can also be further generalized. After consid-
ering the family F , call a set M ⊂ R

d F-biconvex if, for any pair of distinct points x, y ∈ M ,
there exist sets Fx, Fy ∈ F , such that x ∈ Fx, y ∈ Fy, Fx ∩ Fy �= ∅ and Fx ∪ Fy ⊂ M . The
union Fx ∪ Fy is called a biset.

For the family F corresponding to the usual convexity, the F-biconvexity has already been
investigated (see [3]). If F is the family of all non-degenerate rectangles in R

d, and F-convexity
is the rectangular convexity, F-biconvexity will be naturally called rectangular biconvexity.

A second intention of this paper is to start the investigation of this other generalization of
rectangular convexity.

For M ⊂ R
d, we denote by M its affine hull, by diamM = supx,y∈M ‖x − y‖ its diameter,

and by conv M its convex hull; further, int M , cl M , bdM denote its relative interior, closure,
and boundary, respectively, which means in the topology of M . �M denotes the complement
of M in R

d.

A set of four points w, x, y, z ∈ R
d (always d ≥ 2) forms a rectangular quadruple if conv{w, x,

y, z} is a non-degenerate rectangle. If F is the family of all rectangular quadruples, we obtain
the rq-convexity.

If conv{a1, a2, . . . , an} ∈ R
2 is a polygonal convex set with consecutive vertices a1, a2, . . . , an,

then a1a2 · · · an denotes the set and [a1a2 · · · an] its boundary polygon.

For distinct x, y ∈ R
d, let xy be the line through x, y, xy the line-segment from x to y, and

Hxy the hyperplane through x orthogonal to xy. If L1, L2 are affine subspaces of R
d, L1‖L2

means that they are parallel.

For M1, M2 ⊂ R
d, let d(M1, M2) = inf{d(x, y) |x ∈ M1, y ∈ M2} denote the distance

between M1 and M2. The distance from a point x to a set M is defined as d({x}, M).

The d-dimensional unit ball (centred at 0) is denoted by Bd (d ≥ 2).

For x ∈ R
d and r > 0, Br(x) denotes the compact ball of centre x and radius r.
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2 Not Simply Connected tr-convex Sets

In R
2, all compact rectangularly convex sets are conjectured to be extremely circular and

symmetric. A planar convex set is extremely circular if its set of extreme points lies on a circle.
Analogously, it is reasonable to conjecture that all compact rq-convex or tr-convex sets have
an extremely circular and symmetric convex hull. Consequently, when investigating compact
connected rq-convex or tr-convex sets M , we may begin by assuming that conv M is extremely
circular and symmetric. In [6] we focused on rq-convexity and took bd(conv M) to be a circle.
Here we treat tr-convexity, and shall start in the same way. But the conclusion will be quite
different.

Theorem 2.1 If M is compact and tr-convex, and conv M is a disc, then M = conv M .

Proof Suppose, on the contrary, that (conv M) \ M �= ∅. Then there exists a disc Bε(x) ⊂
conv M disjoint from M . Let ab be a diameter of conv M passing through x. Let b′ ∈
bd(conv M) be close to b, so that ab′ ∩ Bε(x) �= ∅. For the points a, b′, there exists a thin
rectangle T containing them and included in M . Obviously, ab′ cannot be the diagonal of T ,
because then a vertex would be outside conv M . It cannot be a side of T , as it is not included
in M . No other possibility remains. �

It seems that the same conclusion holds for any extremely circular symmetric conv M ,
except for a single case: that of conv M being a rectangle.

Thus, we have now two conjectures, one about rq-convex sets (see also [1, 6]), and another
one about tr-convex sets.

Conjecture 2.2 Each compact simply connected rq-convex set in R
2 is an extremely circular

symmetric convex set.

Conjecture 2.3 Each compact tr-convex set M in R
2 is an extremely circular symmetric

convex set, or else conv M is a rectangle and cl((conv M) \ M) is a union of rectangles with
pairwise parallel sides (see Figure 1).

M

Figure 1 A tr-convex set with holes

3 Unbounded tr-convex Sets

Looking for an analog of Theorem 3.2 in [6], we obtain a characterization of the rectangles.

Theorem 3.1 The complement of a connected open bounded set M in R
2 is tr-convex, if and

only if clM is a rectangle.

Proof The “if” part is obvious.

Suppose now �M is tr-convex. Let Q = conv(clM).

We first show that bdQ ⊂ bd M. Suppose this is not true. Choose x ∈ bd Q \ bd M .The
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point x lies in a line-segment yz with y, z ∈ bd M , and yz is a supporting line of Q. The line
Hxy through x perpendicular to yz cuts bdM in at least two points. Let uv be the longest
line-segment with u, v ∈ Hxy ∩ bd M. Then any thin rectangle containing u, v separates y from
z in M ∪ {y, z}, and therefore must meet M , generating a contradiction. Hence, bdQ ⊂ bd M.

We now prove that M is convex. Assume it is not. Then �M has a component inside Q,
whence �M is not connected. However, this contradicts its tr-convexity.

Let L, L′ be two parallel supporting lines of Q, such that the distance between them be
minimal (and equal to the width of Q). It is well-known that there exist points x ∈ Q ∩ L,
x′ ∈ Q ∩ L′ such that L and xx′ are orthogonal.

At least one of the two arcs on bdQ between x and x′ is different from xx′. Call it A. Let
y′ ∈ A be, among the points farthest from xx′, the closest to L′. We claim that y′ ∈ L′.

Assume that y′ /∈ L′.
Take w ∈ A \ L′ between y and x′. We make the choice such that bdQ is differentiable at

w.
Then, the tangent Lw at w to bd Q is neither parallel, nor orthogonal to L. The existence

in �M of a thin rectangle containing x′, w implies that the line L′′ through x′ orthogonal onto
Lw supports Q. Now, consider a point w′ ∈ bd Q \ (A∪L′′) close to L′′. Clearly, no supporting
line of Q at w′ is orthogonal onto Lw. Moreover, no supporting line of Q at w′ is parallel to Lw,
if (bdQ)∩L′′ is too short, in particular if it equals {x′}. Hence, �M includes no thin rectangle
containing w and w′, unless (bdQ) ∩ L′′ has positive length.

Since the smooth point w has been arbitrarily chosen in the subarc of A from y′ to x′, the
condition about the positive length of (bdQ) ∩ L′′ shows that Lw remains the same for all w,
i.e., A includes a line-segment from y′ to some point x′′ of L′. This point x′′ is different from
x′, otherwise L, L′ do not realize the width of Q.

Now, no thin rectangle in �M contains points in the relative interiors of y′x′′ and x′x′′.
Thus, y′ ∈ L′ and y′x′ ⊂ bd M .
Reasoning symmetrically, there must exist a point y ∈ A∩L such that yy′‖xx′ and y′y∪yx ⊂

bd M .
If xx′ ⊂ bd Q, then Q = xx′y′y. If not, another symmetric reasoning leads to the existence

of points z ∈ L \ A and z′ ∈ L′ \ A, such that zz′‖xx′ and [zz′y′y] ⊂ bdQ.
In conclusion, bdM is a thin rectangle. Being convex, clM must be a rectangle. �

Theorem 3.2 The complement of a connected open bounded set M in R
d, where d ≥ 3, is

tr-convex, if M is either convex or a cylinder K × I, where K ⊂ R
d−1 and I ⊂ R are open.

Proof Let x, y /∈ M . Assume M to be open, bounded and convex. Let Hx, Hy be two
hyperplanes disjoint from M , with x ∈ Hx, y ∈ Hy. They are supporting cl M in case x, y

are boundary points. Take two parallel lines Lx ⊂ Hx, Ly ⊂ Hy through x, y. They can be
obtained by cutting Hx and Hy with a 2-dimensional plane, if Hx‖Hy, or by choosing them
parallel to any line in Hx ∩ Hy.

If M is a cylinder, we proceed like in the proof of Theorem 4.1 in the next section. �

Theorem 3.3 The complement of a convex open set M in R
d, where d ≥ 3, is tr-convex, if

cl M is strictly convex.
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Proof If M is bounded, the conclusion follows from Theorem 3.2.

Suppose M is unbounded and take x, y /∈ M . We assume x, y ∈ bdM , the general case
being reducible to this one by taking the metric projections onto clM .

Consider the supporting planes Hx 
 x and Hy 
 y. As bdM contains no half-lines, Hx

and Hy are not parallel. Let L be a line in Hx ∩ Hy. Take the lines Lx 
 x, Ly 
 y parallel to
L. Clearly, the recession cone K of clM does not contain any half-line included in Lx − x.

Let P be a 2-dimensional plane through x, y, orthogonal to Hx ∩ Hy. The convex curve
P ∩ bd M contains a Jordan arc A from x to y. Take arbitrarily u ∈ intA.

Let xn ∈ Lx, yn ∈ Ly, with xnyn‖xy (n ∈ N), such that xn ∈ xxn+1 for every n and
‖x − xn‖ → ∞, if n → ∞. We claim that, for n large enough, xnyn ∩ M = ∅.

Indeed, suppose zn ∈ xnyn ∩ M , for all n. This implies that the half-line Lu starting at u

and parallel to L lies in clM , which, in turn, implies that the recession cone of K does contain
Lu − u ⊂ Lx − x, and a contradiction is obtained.

Thus, xnyn ∩M = ∅, for some n. As this can be done in both directions on Lx and Ly, we
obtain a thin rectangle in �M containing x, y. �

4 tr-convexity of Cylinders

As already remarked in [1], for d ≥ 3, there is not even any conjectured characterization of
rectangularly convex sets in R

d. Among the sets mentioned in [1] as rectangularly convex we
find the cylinder K × [0, 1] with a (d − 1)-dimensional compact convex set K as basis. In
particular, any right parallelotope, i.e., the cartesian product of d pairwise orthogonal line-
segments, is rectangularly convex and, a fortiori, rq-convex.

In [6] it is established that not all convex cylinders have rq-convex boundaries. Concern-
ing the tr-convexity, we shall see that, on the contrary, all convex cylinders have a tr-convex
boundary. We prove the following stronger result.

Theorem 4.1 If L is a (d−1)-dimensional convex body, J is a compact interval, and K ⊂ L,
I ⊂ J are open or empty, then the compact set (L × J) \ (K × I) ⊂ R

d is tr-convex.

Proof Let {x, y} ⊂ M = (L × J) \ (K × I).

Putting J = [0, 1], let xi, yi be the orthogonal projections of x and y (respectively) on
IRd−1 × {i} (i = 0, 1).

Case 1 x, y ∈ (L \ K) × J.

Clearly, in this case, {x, y} ⊂ [x0x1y1y0] ⊂ M.

Case 2 x, y ∈ K × J.

Consider the points x0, y0. Take the line Q to be x0y0 if x0 �= y0, or any line through x0 if
x0 = y0. The line through x parallel to Q meets bd(L × J) at ux, vx, say. Similarly, the line
through y parallel to Q meets bd(L×J) at uy, vy, chosen such that uxuy and vxvy are parallel.
Then {x, y} ⊂ [uxvxvyuy] ⊂ M.

Case 3 x ∈ (L \ K) × J and y ∈ K × J.

Assume without loss of generality that y is closer to L × {0} than to L × {1}. The line
through y parallel to x0y0 meets bd(L × J) at uy, vy. Put {z} = x0x1 ∩ uyvy.
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Now, y ∈ zuy or y ∈ zvy; assume without loss of generality the latter. Let w be the
projection of vy on L × {1}. Then {x, y} ⊂ [zx1wvy] ⊂ M. �

Corollary 4.2 Every convex cylinder has a tr-convex boundary.

5 Rectangular Biconvexity in the Plane

The very special class of sets to which all rectangularly convex bodies in the plane seemingly
must belong suggests the question whether taking rectangular biconvexity instead would sig-
nificantly enlarge the class. Indeed, this is so.

A convex body K has at every boundary point x a tangent cone Tx. In the planar case, the
cone is bounded by two half-lines, which make an angle α(x). If α(x) = π for some x ∈ bdK,

then K is said to be smooth at x. It is called smooth if it is smooth at every boundary point.
We shall say that K is obtuse, if α(x) > π/2 at all x ∈ bd K.

A chord of K is a line-segment xy joining two points x, y ∈ bd K. A chord xy is called a
normal of K ⊂ R

2 at x if it is orthogonal to a supporting line of K at x. So, a chord xy is a
normal of K, if it is a normal at (at least) one of its endpoints.

For a convex body to be rectangularly convex or even biconvex, it is necessary that α(x) ≥
π/2 at all boundary points x.

Theorem 5.1 If the convex body K ⊂ R
2 is obtuse and, for each normal xy of K, K is smooth

at x or y, then K is rectangularly biconvex.

Proof It suffices to prove the rectangular biconvexity property for the endpoints of chords. So,
let xy be a chord of K. Let [xx′) and [xx′′) denote the two half-lines bounding Tx. Analogously,
consider [yy′) and [yy′′). Assume without loss of generality that x′ and y′ are not separated by
xy.

Case 1 xy is not normal.

Assume without loss of generality ∠x′xy > π/2. Now, we look at y. If ∠xyy′ > π/2, then
a rectangle of small width with xy as a side exists in K. Now, suppose ∠xyy′ ≤ π/2. Then,
since xy is not a normal, ∠xyy′′ > π/2. In this case, a rectangle of small width having xy as
diagonal lies in K.

Case 2 xy is a normal of K, say, at x.

By hypothesis, K is smooth at x or y. Assume first it is smooth at y.

The condition α(x) > π/2 guarantees the existence of a rectangle Rx ⊂ K of, perhaps, a
very small diameter, with x ∈ Rx.

Now, if ∠xyy′ > π/2, then there exists a rectangle Ry ⊂ K of small width, with y as
a vertex, with one side strictly included in xy, and meeting Rx. Thus, x, y ∈ Rx ∪ Ry and
Rx ∪ Ry ⊂ K.

We proceed analogously if ∠xyy′′ > π/2.

Now, consider the case ∠xyy′ = π/2, meaning that xy is a double normal. For a sequence
{yn}∞n=1, with yn ∈ bd K, convergent to y, take chords ynxn normal at yn. Then xn → x.
Consider the chord ynx′

n verifying ∠yynx′
n = π/2. As x′

n → x, too, for n large enough, ynx′
n

meets Rx.
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Take the point sn ∈ ynx′
n ∩ Rx closest to yn, and consider the rectangle R(n) = yynsntn.

For n large enough, R(n) ⊂ K, Rx ∩ R(n) �= ∅ and x, y ∈ Rx ∪ R(n).
Finally, assume K is smooth at x. If xy is normal at y, too, then we are in the case just

discussed. If xy is not normal at y, suppose without loss of generality ∠xyy′ > π/2. Then there
exists a rectangle of small width in K having xy as a diagonal. �

Corollary 5.2 Every smooth convex body in R
d is rectangularly biconvex.

Let K, L be convex bodies in R
2 satisfying K ⊂ int L, and consider the compact set M =

L \ int K. Is M rectangularly biconvex?
Even in the case of L alone (K = ∅), Theorem 5.1 established its rectangular biconvexity

only under some additional conditions. So, too much we cannot expect regarding the rectangular
biconvexity of M .

If K is smooth, M is certainly not rectangularly biconvex. Indeed, take x, y ∈ bd K, with
parallel supporting lines (for K) at these points. Then the strip bounded by these lines separates
any rectangle containing x from any rectangle containing y. Thus, an obvious condition on K is
that, for no pair of boundary points, their Gauss images are single, opposite vectors. But even
asking for this condition is far from guaranteeing the rectangular biconvexity. Lengthy sets of
conditions would have to be added. We present, however, a case which avoids this.

Theorem 5.3 Suppose K is a triangle and L ⊂ R
2 a smooth convex body such that K ⊂ int L.

Then M = L \ int K is rectangularly biconvex.

Proof Put K = abc and {ca, ac} = ac∩bdL, with ca closer to c and ac closer to a. Analogously,
consider {ab, ba} and {bc, cb}. See Figure 2.

cb

ca

ba

bc

ab

ac

c

b

a
K y'

x'

z

y

x

L

Figure 2 Rectangular biconvexity of a not simply connected set

Let x, y ∈ M . The lines ab, bc, ca divide M in 6 regions, Rab, Rbc, Rca, adjacent to ab, bc, ca

respectively, a region Ra between Rab and Rca, and other two analogous regions, Rb and Rc.
Suppose x ∈ Rbc and y ∈ Ra. After having treated this case, all other cases become

analogous or easier. Take a point z ∈ int Rc.

Let x′ ∈ zx ∩ bd L, such that z ∈ xx′, and y′ ∈ zy ∩ bd L, such that z ∈ yy′.
Claim There exists a non-degenerate rectangle Rx ⊂ M containing x, with small width and
small distance from x′.

This is obvious if x /∈ bd M . Now, suppose x ∈ bd M . If zx is not normal at x for bdL, one
of the two angles between zx and the tangent line at x is larger than π/2. Then, a rectangle of
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small width with a vertex at x can be found in L, having a side xx′′ on xx′, with x′′ close or
equal to x′. If zx is normal at x for bdL, we take a point z′ /∈ xx′ close to z, remark that z′x
is not normal at x, and proceed as before. The Claim is proven.

Analogously, there exists a non-degenerate rectangle Ry ⊂ M containing y, with very small
distance from y′. As x, y′, x′, y lie in this order on bdL, the rectangles Rx, Ry cross each other.
So, we obtain {x, y} ⊂ Rx ∪ Ry ⊂ M, with Rx ∩ Ry �= ∅. �

6 Rectangular Biconvexity in d-space

By Corollary 5.2, smooth convex bodies in R
d are rectangularly biconvex. This is strengthened

by the next result.

Theorem 6.1 If K, L ⊂ R
d are smooth convex bodies with card(K ∩ L) > 1, then K ∪ L is

rectangularly biconvex.

Proof Let x, y ∈ K ∪ L. The case that x, y ∈ K or x, y ∈ L is solved by Theorem 5.1. The
only interesting case is x ∈ bd K, y ∈ bd L.

Choose two points u, v ∈ K ∩L. Let z ∈ int uv. Close to z we find a point z′ ∈ int uv, such
that neither is xz′ a normal of K at x, nor is yz′ a normal of K at y.

Since z′ ∈ int(K ∪L), for some ε > 0, Bε(z′) ⊂ K ∪L. Now, we can exhibit a thin rectangle
Rx ⊂ K ∪ Bε(z′) having xz′ as a side, and another one Ry ⊂ L ∪ Bε(z′) having yz′ as a side.
Thus, x, y ∈ Rx ∪ Ry, while Rx ∪ Ry ⊂ K ∪ L and Rx ∩ Ry 
 z′. �

A cone in R
d is the convex hull conv({v} ∪ K), where K is a smooth (d − 1)-dimensional

compact convex set, and v ∈ R
d \ K. It is called right, if ∠avb ≥ π/2 for some pair of points

a, b ∈ bdK.

Theorem 6.2 Every right cone is rectangularly biconvex.

Proof Let L = conv({v} ∪ K) be a right cone. Consider the points x, y ∈ L.
If x, y ∈ K, then the Corollary 5.2 settles the case.
Suppose now x ∈ K, y = v. Let a, b ∈ bd K satisfy ∠avb ≥ π/2. Notice that ab ⊂ bd K is

not excluded. Clearly, for every point z ∈ int(ab), there exists a rectangle Rz ⊂ avb containing
both v and z. If x ∈ int K, then there exists a rectangle in K containing both x and z, which
together with Rz provides the biset. Assume x ∈ bd K \{a, b}. Even if zx happens to be normal
to bd K at x, for any point z′ ∈ int(ab) close enough to z, z′x will not be normal to bdK.
Then there exists a rectangle R′ containing x and z′, either using xz′ as a side or as a diagonal;
R′ ∪ Rz′ provides the required biset. See Figure 3.

b

v

x

z

a

Figure 3 Rectangular biconvexity of a right cone
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If x ∈ {a, b}, say x = a, then take a 2-dimesional plane Π ⊃ ab and a1, a2 ∈ (Π ∩ bd K) on
both sides of Π∩bdK, close to a. If they are close enough, ∠a1aa2 > π/2. Take a small square
Q inside Π ∩ bd K, containing a. Choose z ∈ int Q ∩ ab. Now, the biset Q ∪ Rz is suitable.

Suppose now that x, y are in other positions. If x is not closer from K than y, take the
hyperplane Ξ through y parallel to K. The proof above now works in conv({x} ∪ (L ∩ Ξ)). �

Let S ⊂ R
d be starshaped, and K ⊂ R

d′
be a convex body. Here d, d′ ≥ 1. The Cartesian

product S × K ⊂ R
d+d′

is called an sc-cylinder.

Theorem 6.3 Every sc-cylinder is rectangularly biconvex.

Proof Let L = S × K be an sc-cylinder, with S starshaped in the subspace xd+1 = · · · =
xd+d′ = 0 of R

d+d′
, and K a convex body in x1 = · · · = xd = 0.

Let x, y ∈ L.

Case 1 x, y ∈ S × {u}, for some u ∈ K.
Thus, x = xu × u, y = yu × u, with xu, yu ∈ S. Take k ∈ kerS and w ∈ K \ {u}. We have

the convenient biset

x(xu × w)(k × w)(k × u) ∪ y(yu × w)(k × w)(k × u).

Case 2 x ∈ S × {u}, y ∈ S × {v}, with distinct u, v ∈ K.
Thus, x = xu × u, y = yv × v, with xu, yv ∈ S. Take again k ∈ kerS. The biset

x(xu × v)(k × v)(k × u) ∪ y(yu × v)(k × v)(k × u)

is suitable again.
Case 2 also includes the case x, y ∈ {s} × K, where s ∈ S. �
A set is smooth if its boundary is a differentiable surface. It is smooth at some boundary

point, if the boundary is a surface, which is differentiable at that point. Further, we say that
a set M ⊂ R

d is locally concave at x ∈ bdM , if there exists a neighbourhood V of x and a
hyperplane H through x, such that H+ ∩ V ⊂ M , where H+ is one of the half-spaces bounded
by H.

Theorem 6.4 Let S ⊂ R
2 be starshaped. If S is at every boundary point either smooth or

locally concave, and dim kerS ≥ 2, then S is rectangularly biconvex.

Proof Assume without loss of generality that 0 ∈ kerS.

Let x, y ∈ S. Interesting is only the case x, y ∈ bd S. If S is locally concave at x, or bdS

is smooth and 0x is not a normal of bdS at x, then we find a rectangle Rx ⊂ S containing x

and 0. The same is true about y.
Now, suppose bdS is smooth at x and 0x is a normal of bdS at x. Since dim kerS > 1, we

find a point z ∈ kerS close to 0 and not collinear with 0 and x. Clearly, zx is not normal to
bd S at x, and we find a rectangle Rx ⊂ S containing both x and z.

Now, if zy is not normal to bdS at y, we find a rectangle Ry ⊂ S containing y and z, and
we are done. If zy is normal to bdS at y, then we find a point z′ ∈ kerS \0x close to z and not
collinear with z and y. Again, z′y is not normal to bdS at y, and we find a rectangle Ry ⊂ S

containing both y and z′. As z′x is also not normal to bd S at x, there exists a rectangle R′
x ⊂ S

containing both x and z′. The rectangles R′
x and Ry will do the job. �
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Figure 4 S + K is not rectangularly biconvex

Most starshaped sets are nowhere dense, by the Corollary to Theorem 1 in [10]. So we cannot
expect them to be rectangularly biconvex. By taking the Minkowski sum of a starshaped set
S and a convex body K, there is place for hope. However, it is seen that, without additional
requirements, rectangular biconvexity is impossible, see Figure 4.

Perhaps unexpectedly, taking a convex body from most of them will suffice!

Corollary 6.5 Let S ⊂ R
2 be starshaped. For most convex bodies K ⊂ R

2, the set S + K is
rectangularly biconvex.

Proof Most convex bodies are smooth, as Klee [5] has shown (see also [4]). It is seen that all
hypotheses of Theorem 6.4 are verified. �
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