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The length of the cut locus on convex surfaces

Liping Yuan and T. Zamfirescu

Abstract. In this paper, we prove the conjecture stating that, on any
closed convex surface, the cut locus of a finite set M with more than two
points has length at least half the diameter of the surface.
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§ 1. Introduction

It is notorious that the cut locus is kind of an “enfant terrible” in differential
geometry. The reason is clear. While the concept is quite natural, the classical
methods of differential geometry are not very helpful. This paper is about its
length, in the most basic case, that of a compact convex surface in 3-space.

All surfaces appearing in this paper are compact 2-dimensional Alexandrov
spaces with curvature bounded below and without boundary, as defined in [1]. Thus,
they are equipped with an intrinsic metric and are topological 2-manifolds [1].

For any surface S and closed subset M ⊂ S, ρ denotes the intrinsic metric of S
and d(M) the intrinsic diameter of M . A segment ab is a shortest path from a to b
(of length ρ(a, b)).

A point x ∈ S such that some shortest path xy from x to M (called a segment
from x to M) cannot be extended as a shortest path to M beyond x is called a cut
point with respect to M in the direction of yx. The set C(M) of all cut points
with respect to M is called the cut locus of M . If M contains a single point x, we
write C(x) for C(M). Let λ denote the length, that is, the 1-dimensional Hausdorff
measure.

Consider now surfaces S of the same diameter.
It is easily seen that C(M) is connected if M is finite. It was shown in [2] and [3]

(and already followed from [4]) that the length λC(x) of C(x) may be infinite. C(x)
may even fail to have locally finite length: there are convex surfaces S on which,
for any point x, every open set in S contains a compact subset of C(x) with infinite
length [5]. Although if in the Riemannian case this cannot happen (see [6], [2]),
λC(M) still has no upper bound depending only on card M .
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Thus, we are interested in establishing a lower bound for the length of the cut
locus. The case when card M = 1 and the surface is the sphere S2 shows that the
bound vanishes. For surfaces not homeomorphic to S2, but where still card M = 1,
several results have been obtained in [7].

For infinite M , the bound vanishes again: take M to be a great circle on S2. If
card M = 2, the bound is also zero: take S to be an ellipsoid of revolution with
one axis much longer than the others, and take M to consist of the two endpoints
of the long axis.

Even if M is a 3-point set, C(M) can have length as small as wished, see Figure 1.
But the surface in Figure 1 is not convex. This motivated the following conjecture,
which was formulated in 2005.

Figure 1

Conjecture (Itoh–Zamfirescu). For any smooth convex surface S, if M ⊂ S is
finite and contains more than two points, then λC(M) ⩾ d(S)/2 (see [8]).

We prove here this conjecture for an arbitrary convex surface.

§ 2. Prerequisites

We shall use several lemmas, in which S is always a surface in R3 and M ⊂ S is
finite.

Lemma 1. If cardM ⩾ 3 and d(M) ⩽ d(S)/2, then λC(M) ⩾ d(S)/2.

A set in S is called concyclic if it is included in some intrinsic circle (the set of
all points at a fixed positive distance from a fixed point) of S. The following lemma
refers to a set in S which is not concyclic.

Lemma 2. Let S be homeomorphic to S2 , M = {p, pa, pb} ⊂ S , a, b ∈ S , and
ρ(a, b) = d(S). Assume that pa , pb are the points of M closest from a, respectively, b
(pa ̸= pb), and any point of S equidistant from pa and pb has smaller distance
from p. If ρ(p, pa) + ρ(p, pb) ⩽ d(S), then λC(M) ⩾ d(S)/2.

Lemma 3. If S is convex, M is concyclic, and cardM = 3, then λC(M) ⩾
d(S)/2.

Lemma 4. If S is convex, u, v, w ∈ S , and u∗, v∗, w∗ ∈ R2 are such that ρ(u, v) =
∥u∗ − v∗∥, ρ(v, w) = ∥v∗ −w∗∥, ρ(w, u) = ∥w∗ − u∗∥, then, for any points u′ ∈ uw ,
v′ ∈ vw , and points u′∗ ∈ u∗w∗ , v′∗ ∈ v∗w∗ corresponding via the isometries between
sides, we have ρ(u′, v′) ⩾ ∥u′∗ − v′∗∥.
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Lemmas 1–3 are from [8], while Lemma 4 is Alexandrov’s convexity condition
(see [9], pp. 39, 40, or [10], p. 47).

Lemma 5. Let u, v be points on a convex surface S , and let Γ′ , Γ′′ be two segments
from u to v . Then, by gluing Γ′ to Γ′′ , the closure of each of the two components
of S \ (Γ′ ∪ Γ′′) becomes a convex surface.

This is a consequence of the well-known Gluing Theorem of Alexandrov (see [10],
p. 362, or [11], p. 154) and his Realization Theorem.

Lemma 6. Let S be convex, M ⊂ S , a, b ∈ S , and ρ(a, b) = d(S). Assume that
pa , pb are closest in M from a, respectively, b. If cardM ⩾ 2 and pa = pb , then
λC(M) ⩾ d(S)/2.

Proof. Let us scale the metric such that d(S) = 2.
Let p be a point in M \ {pa} closest to pa. Let ca and cb be the cut points

with respect to M in the directions of the segments paa and pab, respectively.
Then ρ(ca, pa) ⩽ ρ(ca, p) and ρ(cb, pa) ⩽ ρ(cb, p). Let p′ be the midpoint of some
segment pap. See Figure 2.

Figure 2

If ρ(ca, cb) ⩾ 1, we are done. If not, we have ρ(a, ca) + ρ(b, cb) ⩾ 1; otherwise

ρ(a, b) ⩽ ρ(a, ca) + ρ(ca, cb) + ρ(cb, b) < 2,

which is false.
Since ρ(pa, a) + ρ(pa, b) ⩾ 2, we have ρ(pa, ca) + ρ(pa, cb) ⩾ 3. Hence ρ(pa, ca)

and ρ(pa, cb) cannot be both less than 3/2. Assume without loss of generality that
ρ(pa, ca) ⩾ 3/2.

We shall compare the triangle capap with the Euclidean triangle c∗ap
∗
ap

∗ having
the same side lengths, shown in Figure 3, (a). In c∗ap

∗
ap

∗ we have ∥p∗ − p∗a∥ ⩽ 2,
∥p∗ − c∗a∥ ⩾ ∥p∗a − c∗a∥ ⩾ 3/2.

Consider the isosceles triangle ∆ ⊂ R2 with vertices (−1, 0), (1, 0), (0,
√
5/2),

see Figure 3, (b). It has one side of length 2, and two sides of length 3/2 each.
Also, consider the isosceles triangle p∗p∗as with ∥p∗ − s∥ = ∥p∗a − s∥ = ∥p∗a − c∗a∥.
Let p′∗ be the midpoint of p∗ap

∗. We obviously have ∥s− p′∗∥ ⩽ ∥c∗a − p′∗∥.
Comparing in R2 the triangles p∗p∗as and ∆, we see that ∥s−p′∗∥ ⩾

√
5/2. Hence

∥c∗a − p′∗∥ ⩾
√
5/2.
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Figure 3

Now Lemma 4 tells us that

ρ(ca, p
′) ⩾ ∥c∗a − p′∗∥ ⩾

√
5

2
.

Thus, any of the arcs of C(M) from ca to p′ has length at least
√
5/2.

Lemma is completely proved.

The ambiguous locus A(M) of M is the set of all points x ∈ S admitting at least
two segments xa, xb from x to M with distinct a, b ∈ M (see [12]).

We shall also use a straightforward generalization of the cyclic part Ccp(z) of
the cut locus of a point z ∈ S (see [7]). It is defined as Ccp(M) = S \ S′, where
S′ is the set of all points x ∈ S such that, for any segments σ1, σ2 from x to M ,
either σ1 = σ2 or σ1 ∪ σ2 is a null-homotopic closed curve in (S \M) ∪ (σ1 ∩ σ2).

We have A(M) ⊂ Ccp(M) ⊂ C(M).

§ 3. The case n = 3

In this section, we consider the case of a 3-point set M .

Proposition. Let S ⊂ R3 be a convex surface and M ⊂ S . If card M = 3, then
λC(M) ⩾ d(S)/2.

Proof. We start by scaling the metric so that d(S) = 2.
If M is concyclic, then, by Lemma 3, λC(M) ⩾ 1. So, in the rest of the proof,

we assume that M is not concyclic.
Let a, b ∈ S satisfy ρ(a, b) = 2, and let pa, pb ∈ M be the points closest to,

respectively, a and b.
For pa = pb, the proposition follows from Lemma 6. Suppose hence that pa ̸= pb.
Let M = {p, pa, pb}. Since M is not concyclic, the set Γa of all points equidistant

from p and pa does not meet the set Γb of all points equidistant from p and pb, but
the cut locus C(M) also includes an arc γ from some point a′ ∈ Γa to some point
b′ ∈ Γb. See Figure 4.

If ρ(p, pa)+ρ(p, pb) ⩽ 2, the conclusion follows from Lemma 2. So, suppose that
ρ(p, pa) + ρ(p, pb) > 2.

Let qa, qb, q′ be the midpoints of the three segments ppa, ppb, papb. We put
{p′a} = papb ∩ Γa and {p′b} = papb ∩ Γb.
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Figure 4

By Lemma 4, ρ(q′, qa) ⩾ ρ(p, pb)/2 and ρ(q′, qb) ⩾ ρ(p, pa)/2. It follows that
ρ(q′, qa) + ρ(q′, qb) > 1.

Denote by α the arc of Γa from qa to a′ which contains p′a, and by α′, its subarc
from p′a to a′. Let β and β′ be defined analogously. We have

λC(M) ⩾ λα+ λβ + λγ ⩾ ρ(qa, p
′
a) + λα′ + ρ(qb, p

′
b) + λβ′ + λγ

⩾ ρ(qa, p
′
a) + ρ(p′a, p

′
b) + ρ(p′b, qb) ⩾ ρ(qa, q

′) + ρ(q′, qb) > 1.

This proves the proposition.

§ 4. More preparation

Let S ⊂ R3 be a surface and M ⊂ S finite. For every point x ∈ M ,

V (x) = {z ∈ S : ∀ y ∈ M \ {x} ρ(x, z) ⩽ ρ(y, z)}

is the (Voronoi) cell of x. Two such cells, V (x) and V (y), are neighbours if their
boundaries meet.

We shall need the following strengthening of Lemma 2.

Lemma 7. Let S be homeomorphic to S2 , M ⊂ S , p, pa, pb ∈ M , and ρ(a, b) =
d(S). Assume that pa , pb are closest in M from a, respectively, b (pa ̸= pb), and
V (p) or V (pb) is the only neighbour of V (pa). If ρ(p, pa) + ρ(p, pb) ⩽ d(S), then
λC(M) ⩾ d(S)/2.

Proof. Let qa be the intersection point of a segment pap with bd V (pa). Further,
if pa ̸= a, let ca be the cut point of M in the direction of a segment paa; if pa = a,
set ca = qa. The point cb is defined analogously, while {qb} = ppb ∩ bdV (pb).

We may suppose that ρ(a, ca) + ρ(b, cb) > d(S)/2, otherwise ρ(ca, cb) ⩾ d(S)/2,
and we are done.

From the inequality in the statement, we get

ρ(p, pa) + ρ(p, pb)− ρ(pa, pb) ⩽ ρ(a, b)− ρ(pa, pb) ⩽ ρ(a, pa) + ρ(b, pb).

This implies

ρ(p, qa) + ρ(p, qb)− ρ(qa, qb) = ρ(p, pa) + ρ(p, pb)− (ρ(pa, qa)+ ρ(qa, qb)+ ρ(qb, pb))

⩽ ρ(p, pa) + ρ(p, pb)− ρ(pa, pb) ⩽ ρ(a, pa) + ρ(b, pb).
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Since ρ(qa, ca) ⩾ ρ(pa, ca)− ρ(pa, qa) and ρ(qb, cb) ⩾ ρ(pb, cb)− ρ(pb, qb), we have

ρ(qa, ca) + ρ(qb, cb) ⩾ ρ(pa, a) + ρ(a, ca) + ρ(pb, b) + ρ(b, cb)− ρ(pa, qa)− ρ(pb, qb).

Let cac
′
a be the shortest arc in C(M) with c′a ∈ bdV (pa). Let c′b be defined

analogously. Since V (p) or V (pb) is the only neighbour of V (pa), there is a unique
shortest arc a′b′ ⊂ C(M) with a′ ∈ bdV (pa) and b′ ∈

(⋃
v∈M bdV (v)

)
\ bdV (pa).

Let A ⊂ C(M) be an arc joining qa to qb and missing c′a if c′a ̸= a′ and c′b if
c′b ̸= b′.

We also find arcs Aa and Ab joining ca to qa and cb to qb, and meeting A only
in qa, qb, and perhaps a′, b′. Finally,
λC(M) ⩾ λA+ λAa + λAb ⩾ ρ(qa, qb) + ρ(qa, ca) + ρ(qb, cb)

⩾ ρ(qa, qb) + ρ(pa, a) + ρ(a, ca) + ρ(pb, b) + ρ(b, cb)− ρ(pa, qa)− ρ(pb, qb)

⩾ ρ(p, qa) + ρ(p, qb) + ρ(a, ca) + ρ(b, cb)− ρ(pa, qa)− ρ(pb, qb)

⩾ ρ(a, ca) + ρ(b, cb) >
d(S)

2
.

Lemma 7 is proved.

In the case of convex S, we obtain the conclusion of Lemma 7 without using the
inequality from its hypotheses.

Lemma 8. Let S be convex, M ⊂ S , p, pa, pb ∈ M , a, b ∈ S and ρ(a, b) = d(S).
Assume that pa , pb are closest in M from, respectively, a, and b (pa ̸= pb), and
V (p) or V (pb) is the only neighbour of V (pa). Then λC(M) ⩾ d(S)/2.

Proof. If ρ(p, pa) + ρ(p, pb) ⩽ d(S), then the conclusion follows, by Lemma 7. So,
suppose that ρ(p, pa) + ρ(p, pb) > d(S).
Case I. V (p) is the only neighbour of V (pa).

Let qa, q, qb be the midpoints of pap, papb, ppb, respectively. Considering the
triple {p∗, p∗a, p∗b} ⊂ R2 isometric to {p, pa, pb} ⊂ S, we have in the triangle p∗p∗ap

∗
b

∥q∗ − q∗a∥+ ∥q∗ − q∗b∥ =
∥p∗ − p∗b∥

2
+

∥p∗ − p∗a∥
2

>
d(S)

2
,

where q∗a, q∗, q∗b correspond to qa, q, qb, respectively.
Let xy be the minimal subsegment of papb such that q ∈ xy, x ∈ bdV (pa), and

y ∈ C(M). Also, let vw be the minimal subsegment of ppb such that qb ∈ vw,
and v, w ∈ C(M). Using again the above isometry, and denoting by x∗, y∗, v∗,
w∗ the corresponding points in R2, we note that either ∥y∗ − v∗∥ ⩾ ∥y∗ − q∗b∥, or
∥y∗ − w∗∥ ⩾ ∥y∗ − q∗b∥. Suppose the latter is true (the proof in the other case is
similar). Define a′, b′ as in the previous proof. Let A ⊂ C(M) be an arc joining qa
to x and missing a′ if x ̸= a′. Further, let D ⊂ C(M) be an arc joining x to y, and
B ⊂ C(M) an arc joining y to w disjoint from D.

Hence
λC(M) ⩾ λA+ λB + λD ⩾ λA+ ρ(x, y) + ρ(y, w)

⩾ ρ(qa, x) + ρ(x, q) + ρ(q, y) + ∥y∗ − w∗∥
⩾ ∥q∗a − x∗∥+ ∥x∗ − q∗∥+ ∥q∗ − y∗∥+ ∥y∗ − q∗b∥

⩾ ∥q∗a − q∗∥+ ∥q∗ − q∗b∥ >
d(S)

2
,

and the proof of Case I is finished.
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Case II. V (pb) is the only neighbour of V (pa).
We may suppose that p is a point of M different from pa and pb, closest

to pb. If M = {p, pa, pb}, the conclusion follows from the proposition. So, let
s ∈ M \ {p, pa, pb} be closest to p.

We reconsider the proof of Case I, reversing the roles of p and pb. Using the
same notation, we obtain

λC(M) ⩾
∥p∗ − p∗b∥

2
+

∥p∗a − p∗b∥
2

.

Let q′ be the midpoint of a segment ps. In the Euclidean realization s∗p∗p∗b of sppb,
we have ∥q′∗ − q∗b∥ = ∥s∗ − p∗b∥/2 ⩾ ∥p∗ − p∗b∥/2.

Since q′ and qb can be joined by an arc of C(M) disjoint from the arcs used
above, we have

C(M) ⩾ ∥p∗ − p∗b∥+
∥p∗a − p∗b∥

2
⩾ ∥p∗ − p∗b∥+

∥p∗ − p∗a∥ − ∥p∗ − p∗b∥
2

=
∥p∗ − p∗a∥+ ∥p∗ − p∗b∥

2
=

ρ(p, pa) + ρ(p, pb)

2
>

d(S)

2
.

Lemma 8 is proved.

§ 5. The general result

The main result of this paper is as follows.

Theorem. For any convex surface S , if M ⊂ S is finite and contains more than
two points, then λC(M) ⩾ d(S)/2.

Proof. If d(M) ⩽ d(S)/2, the result follows from Lemma 1. So, from now on, we
assume that d(M) > d(S)/2.

We distinguish between two cases.
Case I. Ccp(M) is 2-connected.

Let u, v ∈ M realize the diameter of M . Let the point w ∈ M \ {u} be closest
from u and w′ ∈ M \ {v} be closest from v. These points may coincide. Assume
without loss of generality that ρ(u,w) ⩽ ρ(v, w′).

Let u′, v′ be midpoints of uw, respectively, vw. The point u′ belongs to A(M).
If v′ is not in A(M), then it does not belong to the cell V (v) of v; let v′′ ∈
v′v ∩ bdV (v) ⊂ A(M). If v′ belongs to A(M), we put v′′ = v′ (see Figure 5).

In the Euclidean plane, consider the triangle u∗v∗w∗ with

ρ(u, v) = ∥u∗ − v∗∥, ρ(v, w) = ∥v∗ − w∗∥, ρ(w, u) = ∥w∗ − u∗∥.

We also consider the points u′∗ ∈ u∗w∗ and v′∗, v′′∗ ∈ v∗w∗, corresponding to u′,
v′, v′′ according to the isometries.

Since ρ(u,w) ⩽ ρ(v, w′) ⩽ ρ(v, w), we have ∥u′∗ − w∗∥ ⩽ ∥v′∗ − w∗∥ and,
therefore, ∠u′∗v′

∗
w∗ ⩽ ∠v′∗u′∗w∗. This yields ∠u′∗v′

∗
w∗ < π/2, whence

∥u′∗ − v′′
∗∥ ⩾ ∥u′∗ − v′

∗∥ =
∥u∗ − v∗∥

2
=

d(M)

2
.
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Figure 5

By Lemma 4,

ρ(u′, v′′) ⩾ ∥u′∗ − v′′
∗∥ ⩾

d(M)

2
>

d(S)

4
.

Since Ccp(M) is 2-connected, there exist two paths from u′ to v′′ in Ccp(M)
having only their endpoints u′, v′′ in common. Thus, each of them having length
at least ρ(u′, v′′), together have length exceeding d(S)/2. Consequently, λC(M) >
d(S)/2.
Case II. Ccp(M) is not 2-connected.

We use induction on n = cardM . For n = 3, the statement of the theorem is
true by the proposition. We assume now that n > 3 and that the statement of the
theorem is true if 2 < cardM < n.

Since Ccp(M) is not 2-connected, there exists a point x ∈ M whose cell V (x)
disconnects S, that is, S \ V (x) is not connected (see Figure 6).

Figure 6

Let γ ⊂ C(M) be the arc (possibly reduced to one point) of those points in S
joined with x by two segments with non-null homotopic union in (S \ M) ∪ {x}.
Thus, γ traverses V (x) if card γ ̸= 1, and C(M) \ γ is disconnected. Let ℓ and r
be the “left” and the “right” endpoint of γ. Let Γ′, Γ′′ be the two segments from ℓ
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to x. The closed Jordan curve Γ = Γ′∪Γ′′ cuts S into two pieces, the left-hand one
S′
ℓ and the right-hand one S′

r.
Now we glue Γ′ to Γ′′. By Lemma 5, we obtain from S′

ℓ a convex surface Sℓ

containing all points of Mℓ = M ∩ S′
ℓ. In Sℓ, the cut locus C(Mℓ) of Mℓ is

equal to the left component of C(M) \ γ plus {ℓ}. Indeed, the gluing process does
not change the Voronoi cell V (x). To prove this, suppose that, for some points
s ∈ Mℓ \ {x}, t ∈ S′

ℓ ∩ V (x) and segment st, after gluing, st crosses Γ′ = Γ′′

at a point q obtained by identifying q′ ∈ Γ′ with q′′ ∈ Γ′′. We necessarily have
sq ∩ bdV (x) ̸= ∅, say sq′′ ∩ bdV (x) = {e}. Hence

λ(st) = λ(sq) + λ(qt) = λ(se) + λ(eq′′) + λ(q′t)

⩾ λ(xe) + λ(eq′′) + λ(q′t) > λ(xq′′) + λ(q′t)

= λ(xq′) + λ(q′t) ⩾ λ(xt).

Of course, the Voronoi cells of the other points of Mℓ also remain unchanged.
Assume that cardMℓ ⩾ 3 and cardMr ⩾ 3.
As cardMℓ < cardM , the induction hypothesis says that λC(Mℓ) ⩾ d(Sℓ)/2.

Proceeding similarly on the right-hand side, we obtain λC(Mr) ⩾ d(Sr)/2. Notice
that γ ⊂ C(Mr).

Now let a, b ∈ S realize the diameter of S. Suppose first that a ∈ Sℓ, b ∈ Sr.
Then

λC(M) = λC(Mℓ) + λC(Mr) ⩾
d(Sℓ) + d(Sr)

2

⩾
ρ(a, x) + ρ(b, x)

2
⩾

ρ(a, b)

2
=

d(S)

2
.

Suppose now that a, b ∈ Sr. Then

λC(M) ⩾ λC(Mr) ⩾
d(Sr)

2
=

d(S)

2
.

The case a, b ∈ Sℓ is in fact included in the preceding case; we can see this by
choosing Γ′, Γ′′ to join r to x, and reasoning symmetrically.

Assume now that cardMℓ = 2. If a, b ∈ Sr, we proceed as above. If not,
suppose a /∈ Sr. Let Mℓ = {x, y}, where y is the second point of M in Sℓ. Clearly,
by construction, the only neighbour cell to V (y) is V (x). If a ∈ V (y), then the
hypotheses of Lemma 8 are satisfied, because y = pa and the only neighbour cell
of V (pa) is V (x), where x is either pb or some third point of M . If a /∈ V (y), then
x = pa, and as long as b ∈ V (y), we have y = pb, and one can apply Lemma 8 with
swapped a and b. It remains to elucidate the case where neither a nor b is in V (y).

Obviously, a ∈ V (x), whence x = pa. Consider a segment by and put {f} =
by ∩ bdV (y). We now revive ca, the cut point of M in the direction of a segment
paa, beyond a. Let A ⊂ C(Mℓ) be an arc joining ca with f , avoiding the left-hand
endpoint ℓ of γ. We intend to show that λA ⩾ ρ(f, a)/2.

Consider the triangle fpaca, with the Euclidean realization f∗p∗ac
∗
a. If ρ(f, ca) ⩾

ρ(f, a)/2, we are done. If not, then ρ(a, ca) ⩾ ρ(f, ca), but we shall see that this
is in fact impossible. In f∗p∗ac

∗
a, ∠faca < π/2. Hence ρ(f, pa) > ρ(f, a). Since

ρ(a, b) ⩾ ρ(y, b), we have ρ(f, a) ⩾ ρ(f, y), and therefore, ρ(f, pa) > ρ(f, y).
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Consider now the triangle bypa. We have

ρ(b, y) = ρ(b, f) + ρ(f, pa) > ρ(b, f) + ρ(f, a) ⩾ ρ(b, a),

a contradiction.
So, we proved that λA ⩾ ρ(f, a)/2. Further, we have

λC(Mℓ) ⩾ λA+ ρ(f, ℓ) ⩾
ρ(f, a) + ρ(f, ℓ)

2
⩾

ρ(ℓ, a)

2
.

Finally,

λC(M) = λC(Mℓ) + λC(Mr) ⩾
ρ(ℓ, a)

2
+

ρ(ℓ, b)

2
⩾

ρ(a, b)

2
,

proving the theorem.

As already observed in [8], p. 103, the inequality of the Theorem is best possible.

§ 6. Outlook

Let S ⊂ R3 be an Alexandrov surface, and denote now by CS(M) the cut locus
of a compact set M ⊂ S. Since, for convex S, the lower bound for λCS(M) jumps
from 0 to d(S)/2 as cardM changes from 2 to 3, and then stays there for all finite M ,
but returns to 0 as M becomes infinite, it is interesting to determine the more exact
jumping moment in the latter case. So we have the following problem.

Problem 1. Determine the lower bound of λCS(M) for countable M .

Is it ∞? Is it still d(S)/2? Does smoothness of S make any difference? (See
Theorem 8 in [8].)

While uncountable M brings the lower bound back to 0, it seems that the number
of components of M makes again a difference. So we have the following problem.

Problem 2. Does λCS(M) ⩾ d(S)/2 hold again for convex S if M has more than
two, but finitely many, simply connected components whose diameter is bounded
in some way?

Note that in Problem 2 some boundedness condition on the components of M
is necessary, otherwise the inequality is false: if x1 ∈ S2, ε > 0, M ′

ε = {y ∈ S2 :
∥x1−y∥ ⩾ ε} and x2, . . . , xn ∈ S2 \ (M ′

ε∪{x1}), then, for Mε = M ′
ε∪{x1, . . . , xn},

it is clear that λCS2(Mε) → 0 as ε → 0.
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