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We adapt the notion of poidge-convexity to subgraphs of the triangular lattice, and investigate the 
poidge-convexity of graphs belonging to two families of such subgraphs: paths and grid graphs.

1. Introduction

At the 1974 meeting on convexity in Oberwolfach, the third author proposed the investigation of the following very general 
kind of convexity, also see [1]. Let  be a family of sets in ℝ𝑑 . A set 𝑀 ⊂ ℝ𝑑 is called  -convex if for any pair of distinct points 
𝑥, 𝑦 ∈𝑀 there is a set 𝐹 ∈  such that 𝑥, 𝑦 ∈ 𝐹 and 𝐹 ⊂𝑀 . Usual convexity, affine linearity, arc-wise connectedness, polygonal 
connectedness, are just some examples of  -convexity (for suitably chosen families  ).

For 𝑀 ⊂ℝ2, conv𝑀 and bd𝑀 denote the convex hull and the boundary of 𝑀 , respectively.

In 1980, Blind, Valette and the third author [1] first investigated rectangular convexity, the case when  is the family of all 
(2-dimensional) rectangles, which was also studied by Böröczky, Jr. [2]. In 2014, the third author [10] studied the right convexity, 
the case with  consisting of all (2-dimensional) right triangles. Later, the last two authors [8,9] investigated the 𝑟𝑡-convexity, which 
is a discrete generalization of the right convexity. Recently, the authors [7] studied poidge-convexity, another generalization of the 
right convexity.

But  can be taken to be any family of sets, not just subsets of ℝ𝑑 . For a subset of the vertex set of a graph, the 𝑔-convexity 
investigated by Farber and Jamison [6], the 𝑇 -convexity studied by Changat and Mathew [4], Duchet’s 𝑀 -convexity [5], and the 
𝑃3-convexity considered by Centeno et al. [3] can also be regarded as examples of  -convexity for suitable families  .

Planar lattices, square, triangular or hexagonal, play a crucial role in many real life problems. There is no need of enumerating 
them here. These problems are converted into mathematical ones. In this mathematical paper, we propose a mathematical problem, 
and solve it, hoping that it will be useful one day.

A lattice graph is a finite subgraph of the infinite planar triangular lattice  in ℝ2. The triangles in  are equilateral, of side 1.
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Fig. 1. 𝑎1 ∈ 𝑉 (𝑃 ) and 𝑎3𝑎4 ∉𝐸(𝑃 ).

Fig. 2. ∠𝑎𝑛−1𝑎𝑛𝑎𝑛+1 =
2𝜋
3

.

A path in a lattice graph is called linear if all its vertices are on the same lattice line.

Now, we adapt to lattice graphs the notion of poidge-convexity, introduced for planar sets in [7].

A graph in  consisting of an isolated vertex 𝑣 of  plus a linear path 𝑃 in  , such that 𝑣 and the endvertices of 𝑃 are the 
vertices of a non-degenerate right triangle, is called a poidge. A lattice graph 𝐺 is poidge-convex if, for any pair 𝑥, 𝑦 ∈ 𝑉 (𝐺), there is a 
poidge with 𝑥, 𝑦 as vertices, subgraph of 𝐺.

For any vertices 𝑎, 𝑏, 𝑐 of  , we denote by 𝑎𝑏𝑐 the angle of 𝑎𝑏𝑐 at 𝑏, and by ∠𝑎𝑏𝑐 its measure. Also, we denote by 𝛿(𝑎, 𝑏) the 
length of the shortest path in  between 𝑎 and 𝑏.

For any two vertices 𝑎, 𝑏, we denote by 𝑎𝑏 the lattice line through 𝑎, 𝑏, and by 𝑎𝑏 the line-segment from 𝑎 to 𝑏. If 𝑎, 𝑏 are neighbours 
in  , then 𝑎𝑏 ∈𝐸( ). Put 𝑎1𝑎2… 𝑎𝑛 = 𝑎1𝑎2 ∪ 𝑎2𝑎3 ∪… 𝑎𝑛−1𝑎𝑛 and [𝑎1𝑎2… 𝑎𝑛] = 𝑎1𝑎2… 𝑎𝑛 ∪ 𝑎𝑛𝑎1.

For any two parallel lattice lines 𝐿1 and 𝐿2, we define the intrinsic distance 𝜌(𝐿1, 𝐿2) to be the Euclidean distance between them 
multiplied by 2√

3
. Let 𝜋(𝑎, 𝐿) be the orthogonal projection of 𝑎 onto the line 𝐿.

Let 𝐶 be a (finite) cycle in  . We denote by set(𝐶) the set of all points lying on the edges and at the vertices of 𝐶 . All vertices 
and edges lying on 𝐶 or in the bounded component of the complement of set(𝐶) in ℝ2 form a graph called grid graph (of boundary

𝐶).
In this paper, our goal is to investigate the poidge-convexity of paths and grid graphs in  . We achieve full characterizations.

2. Poidge-convex paths

First, we discover that linear paths of a poidge-convex path cannot be too long.

Lemma 1. Suppose that 𝑎1, 𝑎2, 𝑎3 and 𝑎4 are four consecutive vertices on a lattice line, and 𝑃 is a poidge-convex path, such that the length 
of any linear subpath of 𝑃 is at most 3. If 𝑎1 ∈ 𝑉 (𝑃 ) and at least one of the three edges 𝑎1𝑎2, 𝑎2𝑎3 and 𝑎3𝑎4 is not in 𝐸(𝑃 ), then 𝑎4 ∉ 𝑉 (𝑃 )
(see Fig. 1).

Proof. By the poidge-convexity of 𝑃 , if 𝑎4 ∈ 𝑉 (𝑃 ), then there exists a poidge in 𝑃 containing 𝑎1 and 𝑎4. Then there exists a linear 
subpath 𝑄 of 𝑃 , such that 𝑄 only contains one of the two vertices 𝑎1 and 𝑎4, say 𝑎1, and 𝑄 ∪ {𝑎4} is a poidge. However, 𝑄 is a 
subpath of length 6, which is not possible, see Fig. 1. □

Lemma 2. If 𝑃 is a poidge-convex path, then the length of any linear subpath of 𝑃 is at most two.

Proof. Let 𝑃 be a poidge-convex path. Suppose without loss of generality that 𝑎0𝑎1⋯ 𝑎𝑛−1𝑎𝑛 (𝑛 ≥ 3) is a maximal linear subpath of 
𝑃 .

If ∠𝑎𝑛−1𝑎𝑛𝑎𝑛+1 =
2𝜋
3 , as shown in Fig. 2, then there is no poidge in 𝑃 containing 𝑎𝑛−2 and 𝑎𝑛+1. Hence, ∠𝑎𝑛−1𝑎𝑛𝑎𝑛+1 =

𝜋

3 .

Case 1. 𝑛 = 3, as shown in Fig. 3. By the poidge-convexity of 𝑃 , there exists a poidge in 𝑃 containing 𝑎0 and 𝑎4. This implies 
that 𝑎0𝑏1𝑏2 ⊂ 𝑃 , see Fig. 3. By the poidge-convexity of 𝑃 , there exists a poidge in 𝑃 containing 𝑎3 and 𝑏1. Therefore, we have 
𝑎4𝑏3 ∈ 𝐸(𝑃 ). Then 𝑏2𝑏3 ∉ 𝐸(𝑃 ). The poidge in 𝑃 containing 𝑏2 and 𝑏3 must be 𝑎4𝑏3𝑏4 ∪ {𝑏2} or 𝑏1𝑏2𝑏4 ∪ {𝑏3}. So, 𝑏4 ∈ 𝑉 (𝑃 ), but 
only one of the two edges 𝑏2𝑏4 and 𝑏3𝑏4 belongs to 𝑃 . This contradicts Lemma 1.

Case 2. 𝑛 > 3, as shown in Fig. 4. Then no poidge in 𝑃 contains 𝑎𝑛−3 and 𝑎𝑛+1.
2

Hence, the length of any linear subpath of 𝑃 is at most two. □
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Fig. 3. 𝑛 = 3.

Fig. 4. 𝑛 > 3.

Fig. 5. 𝑏2 ∈ 𝑉 (𝑃 ).

Fig. 6. The 9 kinds of poidge-convex paths in  .

Lemma 3. Let 𝑃 ⊂  be a poidge-convex path such that the length of a maximal linear subpath of 𝑃 is 2. Suppose that 𝑎0𝑎1𝑎2 is a linear 
subpath of 𝑃 . If 𝑢 ∈ 𝑉 (𝑃 ) is a neighbour of 𝑎2 in  distinct from 𝑎1, then ∠𝑢𝑎2𝑎1 =

𝜋

3 .

Proof. Suppose, on the contrary, that 𝑢 = 𝑏2 ∈ 𝑉 (𝑃 ), see Fig. 5. Due to the poidge-convexity of 𝑃 , there exists a poidge in 𝑃
containing 𝑎0 and 𝑏2, which means that 𝑎0𝑏0𝑐0 ⊂ 𝑃 . Since there exists a poidge in 𝑃 containing 𝑎1 and 𝑏2, and according to 
Lemma 1, we have 𝑏2𝑐1 ∈ 𝐸(𝑃 ). Then 𝑎2𝑏2 ∉ 𝐸(𝑃 ) or 𝑐0𝑐1 ∉ 𝐸(𝑃 ). Assume without loss of generality that 𝑐0𝑐1 ∉ 𝐸(𝑃 ). Since there 
exists a poidge in 𝑃 containing 𝑐0 and 𝑐1, 𝑐1𝑑0 ∈𝐸(𝑃 ). This contradicts Lemma 1; Lemma 3 is proven. □

Now, we present all poidge-convex paths of  .

Theorem 1. There are precisely 9 kinds of poidge-convex paths in  (see Fig. 6).

Proof. Let 𝑃 be a poidge-convex path and label some vertices of  as shown in Fig. 7. Due to Lemma 2, the length of a maximal 
linear subpath of 𝑃 is at most 2.
3

First, suppose the length of a maximal linear subpath of 𝑃 is 1.
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Fig. 7. 𝑎1𝑏0 ∈𝐸(𝑃 ).

Fig. 8. 𝑎1𝑏1 ∈𝐸(𝑃 ).

Fig. 9. 𝑏1𝑐1 ∈𝐸(𝑃 ).

Assume without loss of generality that 𝑎0𝑎1 ∈𝐸(𝑃 ) and 𝑎0 is an endvertex of 𝑃 . The angle between any two incident edges is 2𝜋3 . 
Otherwise, suppose 𝑎1𝑏0 ∈𝐸(𝑃 ), see Fig. 7. Since there exists a poidge in 𝑃 containing 𝑎0 and 𝑏0, there must exist a linear subpath 
of length 2 containing 𝑎0 or 𝑏0, contradicting our assumption.

Suppose without loss of generality that 𝑎1𝑏1 ∈𝐸(𝑃 ), see Fig. 8. If 𝑏1𝑏2 ∈𝐸(𝑃 ), then, by the poidge-convexity of 𝑃 , there exists a 
poidge in 𝑃 containing 𝑎0 and 𝑏2, which implies that there exists a linear subpath of length 2 containing 𝑎0 or 𝑏2, a contradiction. So 
𝑏1𝑐0 ∈𝐸(𝑃 ). Since 𝑎0𝑏0 ∉𝐸(𝑃 ), by Lemma 1, 𝑑0 ∉ 𝑉 (𝑃 ). Then 𝑐0𝑐−1 ∈𝐸(𝑃 ). Since 𝑎1𝑏0 ∉𝐸(𝑃 ), by Lemma 1, 𝑑−2 ∉ 𝑉 (𝑃 ). Suppose 
that 𝑏−1 ∈ 𝑉 (𝑃 ). Due to the poidge-convexity of 𝑃 , there exists a poidge in 𝑃 containing 𝑎0 and 𝑏−1. Because 𝑎0𝑏−1 ∉ 𝐸(𝑃 ), this 
poidge must include a linear subpath of length 2 containing 𝑎0 or 𝑏−1, a contradiction. Thus, 𝑐−1 is an endvertex of 𝑃 , and it is clear 
that 𝑃 = 𝑎0𝑎1𝑏1𝑐0𝑐−1 is poidge-convex (Type 1).

Second, suppose the length of a maximal linear subpath of 𝑃 is 2.

Assume without loss of generality that 𝑎0𝑎1𝑎2 is a linear subpath of length 2, and 𝑏1𝑎2 belongs to 𝐸(𝑃 ), by Lemma 3. According 
to Lemma 3, we have 𝑏2 ∉ 𝑉 (𝑃 ).

Case 1. 𝑎0 is an endvertex of 𝑃 . If 𝑏1 is also an endvertex, it is clear that 𝑃 = 𝑎0𝑎1𝑎2𝑏1 is a poidge-convex path, see Fig. 6 (Type 
2). Now, suppose that 𝑏1 is not an endvertex of 𝑃 . Assume 𝑏2 ∈ 𝑉 (𝑃 ). Since 𝑎0𝑏0 ∉𝐸(𝑃 ) and 𝑎2𝑏2 ∉𝐸(𝑃 ), we have no poidge in 𝑃
containing 𝑎0 and 𝑏2. Hence, 𝑏2 ∉ 𝑉 (𝑃 ). Then 𝑏1𝑐1 ∈𝐸(𝑃 ), or 𝑏1𝑐0 ∈𝐸(𝑃 ), or 𝑏1𝑏0 ∈𝐸(𝑃 ).

Subcase 1.1. 𝑏1𝑐1 ∈ 𝐸(𝑃 ), see Fig. 9. Then at most one of the two edges 𝑐1𝑐2 and 𝑐1𝑐0 belongs to 𝐸(𝑃 ). Assuming 𝑐1𝑐2 ∈ 𝐸(𝑃 ), 
there is no poidge in 𝑃 containing 𝑎1 and 𝑐2, because 𝑎2𝑎3 ∉𝐸(𝑃 ). Hence, 𝑐1𝑐2 ∉𝐸(𝑃 ). Since 𝑎0𝑏0, 𝑎1𝑏0, 𝑎1𝑏1, 𝑏1𝑐0 are not in 𝐸(𝑃 ), 
according to Lemma 1 we conclude that 𝑑0, 𝑑−2, 𝑑1, 𝑑−1 do not belong to 𝑉 (𝑃 ). If 𝑃 has an endvertex at 𝑐1, then it includes no 
poidge containing 𝑏1 and 𝑐1. Hence, 𝑐1𝑐0 ∈𝐸(𝑃 ). By the poidge-convexity of 𝑃 , there exists a poidge in 𝑃 containing 𝑏1 and 𝑐0. This 
yields 𝑐−1𝑐0 ∈𝐸(𝑃 ). Since 𝑐0𝑏0, 𝑎1𝑏0, 𝑎1𝑏1 and 𝑏1𝑐0 are not in 𝐸(𝑃 ), we have no poidge in 𝑃 containing 𝑏1 and 𝑏0. This implies that 
𝑏0 ∉ 𝑉 (𝑃 ). Thus, 𝑐−1 is an endvertex of 𝑃 . Obviously, 𝑃 = 𝑎0𝑎1𝑎2𝑏1𝑐1𝑐0𝑐−1 is a poidge-convex path (Type 3).

Subcase 1.2. 𝑏1𝑐0 ∈ 𝐸(𝑃 ), see Fig. 10. If 𝑐0 is an endvertex of 𝑃 , then it is easily seen that 𝑃 = 𝑎0𝑎1𝑎2𝑏1𝑐0 is a poidge-convex 
path (Type 4). Otherwise, since 𝑎0𝑏0 ∉ 𝐸(𝑃 ) and 𝑎2𝑏1𝑐0 is a linear subpath of length 2, we have 𝑑0 ∉ 𝑉 (𝑃 ), 𝑐0𝑑−1 ∉ 𝐸(𝑃 ) and 
𝑐0𝑐−1 ∉𝐸(𝑃 ). Thus 𝑐0𝑐1 ∈𝐸(𝑃 ) or 𝑐0𝑏0 ∈𝐸(𝑃 ).

Subcase 1.2.1. 𝑐0𝑐1 ∈𝐸(𝑃 ), see Fig. 10. Since 𝑎0𝑏0, 𝑎1𝑏1 are not in 𝐸(𝑃 ), by Lemma 1, 𝑑0 and 𝑑1 do not belong to 𝑉 (𝑃 ). Assume 
𝑐1𝑐2 ∈𝐸(𝑃 ). From 𝑎0𝑏0, 𝑎2𝑏2, 𝑐−1𝑐0, 𝑐2𝑏3, 𝑎2𝑎3 ∉𝐸(𝑃 ), it follows that no poidge in 𝑃 contains 𝑎0 and 𝑐2. Hence, 𝑐1𝑐2 ∉𝐸(𝑃 ). Since 
𝑏2 ∉ 𝑉 (𝑃 ) and 𝑐1𝑏1 ∉𝐸(𝑃 ), 𝑐1 is an endvertex of 𝑃 . It is clear that 𝑃 = 𝑎0𝑎1𝑎2𝑏1𝑐0𝑐1 is a poidge-convex path (Type 5).

Subcase 1.2.2. 𝑐0𝑏0 ∈𝐸(𝑃 ), see Fig. 11. Next, we claim that 𝑏0 is an endvertex of 𝑃 . Suppose this is not the case. The existence of 
4

𝑎2𝑏1𝑐0 ⊂ 𝑃 prohibits 𝑐−1 ∉ 𝑉 (𝑃 ), by Lemma 3. Then 𝑏0𝑏−1 ∈𝐸(𝑃 ). Since there is a poidge in 𝑃 containing 𝑎0 and 𝑏−1, 𝑏−1𝑏−2 ∈𝐸(𝑃 ). 
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Fig. 10. 𝑐0𝑐1 ∈𝐸(𝑃 ).

Fig. 11. 𝑐0𝑏0 ∈𝐸(𝑃 ).

Fig. 12. 𝑏1𝑏0 ∈𝐸(𝑃 ).

Fig. 13. 𝑎0𝑏0 ∈𝐸(𝑃 ).

This contradicts Lemma 1. Hence, 𝑏0 is an endvertex of 𝑃 . It is easy to check that 𝑃 = 𝑎0𝑎1𝑎2𝑏1𝑐0𝑏0 is a poidge-convex path (Type 
6).

Subcase 1.3. 𝑏1𝑏0 ∈ 𝐸(𝑃 ), see Fig. 12. Since 𝑎0𝑏0 and 𝑏1𝑐0 are not in 𝐸(𝑃 ), according to Lemma 1 we conclude that 𝑑0 and 𝑑−1
do not belong to 𝑉 (𝑃 ). By Lemma 3, 𝑎0𝑎1𝑎2 ⊂ 𝑃 yields 𝑏−1 ∉ 𝑉 (𝑃 ). Hence, 𝑃 includes no poidge containing 𝑏1 and 𝑏0, which is not 
possible.

Case 2. 𝑎0 is not an endvertex of 𝑃 .
Subcase 2.1. 𝑎0𝑏0 ∈𝐸(𝑃 ), see Fig. 13. Then 𝑏0𝑏1 ∉𝐸(𝑃 ). Since there exists a poidge in 𝑃 containing 𝑏0 and 𝑏1, that poidge must 

be 𝑎0𝑏0𝑐0 ∪ 𝑏1 or 𝑎2𝑏1𝑐0 ∪ 𝑏0. Suppose without loss of generality that 𝑏1𝑐0 ∈𝐸(𝑃 ) and 𝑏0𝑐0 ∉𝐸(𝑃 ). Then 𝑑0 ∉ 𝑉 (𝑃 ). Since 𝑎2𝑏1𝑐0 is 
a linear subpath of length 2, we have 𝑐0𝑑−1 ∉𝐸(𝑃 ) and 𝑑−1 ∉ 𝑉 (𝑃 ). Next, we claim that 𝑐0 is an endvertex of 𝑃 . Suppose the claim 
is false. Since 𝑎2𝑏1𝑐0 ⊂ 𝑃 , by Lemma 3, 𝑐−1 ∉ 𝑉 (𝑃 ). Then 𝑐0𝑐1 ∈ 𝐸(𝑃 ). Recall that 𝑏2 ∉ 𝑉 (𝑃 ). Since 𝑑0, 𝑏2 and 𝑐−1 are not in 𝑉 (𝑃 )
and 𝑏0𝑎1 ∉𝐸(𝑃 ), no poidge in 𝑃 contains 𝑐1 and 𝑏0, a contradiction.

Thus, 𝑐0 is an endvertex of 𝑃 . From the analysis of the symmetric Subcase 1.2.2, it follows that 𝑏0 is an endvertex of 𝑃 , and 
𝑃 = 𝑏0𝑎0𝑎1𝑎2𝑏1𝑐0 is poidge-convex (Type 6).

Subcase 2.2. 𝑎0𝑒1 ∈ 𝐸(𝑃 ), see Fig. 14. If 𝑒1 and 𝑏1 are endvertices of 𝑃 , then 𝑃 = 𝑒1𝑎0𝑎1𝑎2𝑏1, and 𝑃 is poidge-convex (Type 7). 
Now we suppose that at least one of the vertices 𝑒1, 𝑏1 is not an endvertex of 𝑃 . Assume without loss of generality that 𝑏1 is not an 
endvertex of 𝑃 .
5

Recall that 𝑏2 ∉ 𝑉 (𝑃 ). Since 𝑒1 ∈ 𝑉 (𝑃 ) and 𝑒1𝑎1 ∉𝐸(𝑃 ), according to Lemma 1, 𝑐1 ∉ 𝑉 (𝑃 ). Then 𝑏1𝑐0 ∈𝐸(𝑃 ) or 𝑏1𝑏0 ∈𝐸(𝑃 ).
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Fig. 14. 𝑎0𝑒1 ∈𝐸(𝑃 ) and 𝑏1𝑐0 ∈𝐸(𝑃 ).

Fig. 15. 𝑏1𝑏0 ∈𝐸(𝑃 ).

Subcase 2.2.1. If 𝑏1𝑐0 ∈ 𝐸(𝑃 ), then 𝑐0𝑑−1 ∉ 𝐸(𝑃 ), see Fig. 14. Due to 𝑎2𝑏1𝑐0 ⊂ 𝑃 , by Lemma 3, we have 𝑐−1 ∉ 𝑉 (𝑃 ). Since 
𝑎0𝑎−1 ∉ 𝐸(𝑃 ) and 𝑎2 ∈ 𝑉 (𝑃 ), from Lemma 1 we get 𝑎−1 ∉ 𝑉 (𝑃 ). Next, we claim that 𝑐0 ia an endvertex of 𝑃 . Suppose the claim 
were false. Then 𝑐0𝑏0 ∈ 𝐸(𝑃 ) or 𝑐0𝑐1 ∈ 𝐸(𝑃 ). The latter case is excluded by Lemma 1. If 𝑐0𝑏0 ∈ 𝐸(𝑃 ), there is no poidge in 𝑃
containing 𝑒1 and 𝑏0, like in the symmetric subcase 2.1, a contradiction. Hence, 𝑐0 ia an endvertex of 𝑃 . From the analysis of the 
symmetric Subcase 1.2.1, it follows that 𝑒1 ia an endvertex of 𝑃 . It is easily seen that 𝑃 = 𝑒1𝑎0𝑎1𝑎2𝑏1𝑐0 is a poidge-convex path (Type 
5).

Subcase 2.2.2. 𝑏1𝑏0 ∈ 𝐸(𝑃 ), see Fig. 15. Since 𝑎0𝑎1𝑎2 ⊂ 𝑃 , by Lemma 3, 𝑏−1 ∉ 𝑉 (𝑃 ). Assume 𝑐−1 ∈ 𝑉 (𝑃 ) or 𝑐0 ∈ 𝑉 (𝑃 ). Due to 
𝑏1𝑐0, 𝑎1𝑒1 ∉ 𝐸(𝑃 ) and 𝑏−1 ∉ 𝑉 (𝑃 ), no poidge in 𝑃 contains 𝑒1, 𝑐−1 or 𝑒1, 𝑐0. Hence, 𝑐0 and 𝑐−1 do not belong to 𝑉 (𝑃 ). Thus, 𝑏0 ia 
an endvertex of 𝑃 .

If 𝑒1 is also an endvertex of 𝑃 , then 𝑃 = 𝑒1𝑎0𝑎1𝑎2𝑏1𝑏0, and it is easily checked that 𝑃 is poidge-convex (Type 8), see Fig. 1. 
Suppose now that 𝑒1 is not an endvertex of 𝑃 . Since 𝑏1𝑎1 ∉ 𝐸(𝑃 ) and 𝑏1 ∈ 𝑉 (𝑃 ), by Lemma 1, we have 𝑓1 ∉ 𝑉 (𝑃 ). On the other 
hand, due to 𝑎0𝑎1𝑎2 ⊂ 𝑃 and 𝑏0 ∈ 𝑉 (𝑃 ), according to Lemma 3, we have 𝑒0 ∉ 𝑉 (𝑃 ) and 𝑒1𝑓2 ∉𝐸(𝑃 ). Thus, 𝑒1𝑒2 ∈𝐸(𝑃 ). Like in the 
case of 𝑏0, we conclude that 𝑒2 is an endvertex of 𝑃 . Then 𝑃 = 𝑒2𝑒1𝑎0𝑎1𝑎2𝑏1𝑏0, and this path is poidge-convex (Type 9). □

3. Poidge-convex grid graphs

We investigate here the grid graphs in  with convex boundary, and characterize those which are poidge-convex.

Proposition 1. Let 𝐿1 and 𝐿2 be two parallel lattice lines, and 𝑎 ∈ 𝐿1 be a lattice point. Then 𝜋(𝑎, 𝐿2) is a lattice point if and only if 
𝜌(𝐿1, 𝐿2) is even.

Proposition 2. Suppose that 𝑎, 𝑏 are two vertices on the same lattice line. If 𝐿𝑎 and 𝐿𝑏 are two parallel distinct lattice lines containing 𝑎
and 𝑏, respectively, then 𝜌(𝐿𝑎, 𝐿𝑏) = 𝛿(𝑎, 𝑏).

In the following results, 𝐺 is a grid graph and 𝐶 its boundary cycle.

Lemma 4. Let 𝐺 be a grid graph with set(𝐶) convex. If 𝐺 is poidge-convex and the angles at two vertices of set(𝐶) are acute, then the 
vertices are neighbours (in set(𝐶)).

Proof. Suppose the lemma were false. Let 𝑎 and 𝑏 be two vertices of set(𝐶) such that the angles at 𝑎 and 𝑏 are acute, and 𝑎 and 
𝑏 are not neighbours. According to the convexity of set(𝐶), there exist two parallel lattice lines 𝑎𝑎1 and 𝑏𝑏1, such that set(𝐶) ⊆
conv{𝑎, 𝑎1, 𝑏, 𝑏1} and 𝑎1𝑏, 𝑎𝑏1 are also two parallel lattice lines, as shown in Fig. 16. There exist two parallel lattice lines 𝐿𝑎 and 
𝐿𝑏, such that 𝐿𝑎 ∩ conv{𝑎, 𝑎1, 𝑏, 𝑏1} = {𝑎}, 𝐿𝑏 ∩ conv{𝑎, 𝑎1, 𝑏, 𝑏1} = {𝑏}; then conv{𝑎, 𝑎1, 𝑏, 𝑏1} is contained in the strip bounded by 
𝐿𝑎 and 𝐿𝑏. Thus, 𝜋(𝑎, 𝐿𝑏) and 𝜋(𝑏, 𝐿𝑎) are not vertices of 𝐺, or they equal 𝑏 and 𝑎, respectively. On the other hand, since 𝑎𝑎1𝑏 and 
𝑎𝑏1𝑏 are obtuse, 𝜋(𝑎, 𝑎1𝑏), 𝜋(𝑏, 𝑎𝑎1), 𝜋(𝑎, 𝑏𝑏1) and 𝜋(𝑏, 𝑎𝑏1) do not belong to 𝑉 (𝐺). Thus, there is no poidge in 𝐺 containing 𝑎 and 𝑏, 
6

contrary to the poidge-convexity of 𝐺. □
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Fig. 16. conv{𝑎, 𝑎1 , 𝑏, 𝑏1}.

Fig. 17. set(𝐶) = 𝑎𝑏 ∪ 𝑏𝑐 ∪ 𝑐𝑎.

Fig. 18. The grid graph 𝐺.

Fig. 19. set(𝐶) ⊂ conv{𝑎, 𝑏, 𝑐}.

Lemma 5. Let 𝐺 be a grid graph, such that set(𝐶) is a convex polygon having two neighbouring vertices 𝑎, 𝑏 with acute angles. If 𝐺 is 
poidge-convex, then 𝛿(𝑎, 𝑏) is even.

Proof. On the contrary, suppose that 𝛿(𝑎, 𝑏) is odd. By Propositions 1 and 2, 𝜋(𝑎, 𝑏𝑐), 𝜋(𝑏, 𝑎𝑐) are not in 𝑉 (𝐺), see Fig. 17. On the 
other hand, since the angles at 𝑎, 𝑏 are acute, there exists no vertex 𝑢 ∈ 𝑉 (𝐺) such that ∠𝑢𝑎𝑏 = 𝜋2 or ∠𝑢𝑏𝑎 = 𝜋2 . Therefore, no poidge 
in 𝐺 contains 𝑎 and 𝑏, and this is not possible. □

Theorem 2. Suppose that 𝐺 is a grid graph, such that set(𝐶) is a convex polygon having at least two vertices 𝑎, 𝑏 with acute angles. Then 𝐺
is poidge-convex if and only if set(𝐶) is an equilateral triangle with side length 2 (see Fig. 18).

Proof. Let 𝑎, 𝑏 be two vertices of set(𝐶), such that the angles at 𝑎, 𝑏 are acute. We now claim that 𝛿(𝑎, 𝑏) = 2. Suppose, contrary to 
our claim, that 𝛿(𝑎, 𝑏) ≥ 3.

According to Lemma 4, the vertices 𝑎, 𝑏 are neighbours in set(𝐶); thus, there exists a lattice point 𝑐 such that set(𝐶) ⊂ conv{𝑎, 𝑏, 𝑐}, 
see Fig. 19. Let 𝑎1 ∈ 𝑎𝑐 ∩ 𝑉 (𝐶) and 𝑏1 ∈ 𝑏𝑐 ∩ 𝑉 (𝐶) such that 𝛿(𝑎, 𝑎1) = 𝛿(𝑏, 𝑏1) = 1. Then ∠𝑐𝑎1𝑏1 <

𝜋

2 and ∠𝑐𝑏1𝑎1 <
𝜋

2 . Thus, there 
exists no vertex 𝑢 ∈ 𝑉 (𝐺) such that ∠𝑢𝑎1𝑏1 =

𝜋

2 or ∠𝑢𝑏1𝑎1 =
𝜋

2 . Since, by Lemma 5, 𝛿(𝑎, 𝑏) is even, 𝛿(𝑎1, 𝑏1) is odd. Then, by 
Propositions 1 and 2, 𝜋(𝑎1, 𝑏𝑐) and 𝜋(𝑏1, 𝑎𝑐) are not in 𝑉 (𝐺). Therefore, no poidge in 𝐺 contains 𝑎1 and 𝑏1, a contradiction. □

Lemma 6. Let 𝐺 be a grid graph such that set(𝐶) is a convex pentagon [𝑎𝑏𝑐𝑑𝑒], 𝛿(𝑎, 𝑒) ≥ 𝛿(𝑎, 𝑏) and the angle at 𝑎 is acute. If 𝛿(𝑎, 𝑒) is 
odd, then 𝐺 is not poidge-convex.

Proof. We first suppose that 𝛿(𝑑, 𝑒) > 1. Let 𝑓 ∈ 𝑒𝑑 ∩ 𝑉 (𝐺) such that 𝛿(𝑒, 𝑓 ) = 2. Assume that 𝑎𝑎′, 𝑒𝑒′ and 𝑓𝑓 ′ are three lattice lines 
7

parallel to 𝑐𝑑, and 𝑓𝑓 ′′ is a lattice line parallel to 𝑏𝑐, where 𝑒′, 𝑓 ′ and 𝑓 ′′ belong to 𝑉 (𝐶), see Fig. 20.
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Fig. 20. 𝛿(𝑑, 𝑒)> 1.

Fig. 21. 𝑔 ∈ 𝑎𝑏 ∩ 𝑉 (𝐺) and 𝛿(𝑎, 𝑔) = 1.

Since 𝛿(𝑎, 𝑒) is odd, 𝜌(𝑎𝑏, 𝑑𝑒) is odd, according to Proposition 2. By Proposition 1, 𝜋(𝑓, 𝑎𝑏) and 𝜋(𝑎, 𝑑𝑒) do not belong to 𝑉 (𝐺). 
Because 𝜌(𝑎𝑎′, 𝑓𝑓 ′) = 𝜌(𝑎𝑎′, 𝑒𝑒′) + 𝜌(𝑒𝑒′, 𝑓𝑓 ′), 𝜌(𝑎𝑎′, 𝑓𝑓 ′) is odd. According to Proposition 1, 𝜋(𝑓, 𝑎𝑎′) and 𝜋(𝑎, 𝑓𝑓 ′) do not belong 
to 𝑉 (𝐺). Since 𝑎𝑒𝑓 and 𝑎𝑓 ′′𝑓 are obtuse, 𝜋(𝑓, 𝑎𝑒) and 𝜋(𝑎, 𝑓𝑓 ′′) do not belong to 𝑉 (𝐺). Thus, no poidge in 𝐺 contains 𝑓 and 𝑎.

Now, assume 𝛿(𝑑, 𝑒) = 1.

Let 𝑔 ∈ 𝑎𝑏 ∩ 𝑉 (𝐺) such that 𝛿(𝑎, 𝑔) = 1. Assume that 𝑔𝑔′ is a lattice line parallel to 𝑐𝑑, while 𝑑𝑑′ and 𝑔𝑔′′ are orthogonal to 𝑑𝑔, 
see Fig. 21.

As before, 𝜌(𝑎𝑏, 𝑑𝑒) is odd. By Proposition 1, 𝜋(𝑔, 𝑑𝑒) and 𝜋(𝑑, 𝑎𝑏) do not belong to 𝑉 (𝐺). Since 𝛿(𝑔, 𝑑) = 𝛿(𝑎, 𝑒) is odd, 𝜌(𝑔𝑔′, 𝑐𝑑)
is odd. According to Proposition 1, 𝜋(𝑑, 𝑔𝑔′) and 𝜋(𝑔, 𝑐𝑑) do not belong to 𝑉 (𝐺). Since 𝑎𝑔𝑑 is obtuse and 𝑑(𝑎, 𝑔) = 1, 𝑔𝑔′′ ∩ (𝑉 (𝐺) ⧵
{𝑔}) = ∅. Since 𝑐𝑑𝑒 is obtuse, 𝑑𝑑′ ∩ (𝑉 (𝐺) ⧵ {𝑑}) = ∅. Thus, no poidge in 𝐺 contains 𝑑 and 𝑔. □

Lemma 7. Let 𝐺 be a grid graph and set(𝐶) a convex pentagon [𝑎𝑏𝑐𝑑𝑒], such that 𝛿(𝑎, 𝑒) ≥ 𝛿(𝑎, 𝑏) and the angle at 𝑎 is acute. If 𝐺 is 
poidge-convex, then 1 ≤ 𝛿(𝑑, 𝑒) ≤ 2.

Proof. Set 𝛿(𝑎, 𝑒) = 𝑛. Since set(𝐶) is a convex pentagon 𝑎𝑏𝑐𝑑𝑒, 1 ≤ 𝛿(𝑑, 𝑒). Now we claim that 𝛿(𝑑, 𝑒) ≤ 2. Suppose, contrary to 
our claim, that 𝛿(𝑑, 𝑒) ≥ 3. Let 𝑝 ∈ 𝑒𝑑 ∩ 𝑉 (𝐺) such that 𝛿(𝑒, 𝑝) = 3. Suppose 𝑝𝑞 is a lattice line parallel to 𝑐𝑑 such that 𝑞 ∈ 𝑉 (𝐺)
and 𝛿(𝑝, 𝑞) = 1, see Fig. 22. Since 𝛿(𝑎, 𝑒) = 𝑛 is even by Lemma 6, and 𝛿(𝑒, 𝑝) = 3 by Proposition 2, 𝜌(𝑎𝑎′, 𝑝𝑞) is odd. According to 
Proposition 1, 𝜋(𝑞, 𝑎𝑎′) and 𝜋(𝑎, 𝑝𝑞) are not vertices of (𝐺). Because 𝛿(𝑝, 𝑞) = 1, 𝜌(𝑎𝑏, 𝑞𝑞′) = 𝜌(𝑎𝑏, 𝑒𝑑) − 𝜌(𝑒𝑑, 𝑞𝑞′) = 𝑛 − 1 is odd. 
According to Proposition 1, 𝜋(𝑎, 𝑞𝑞′) and 𝜋(𝑞, 𝑎𝑏) are not in 𝑉 (𝐺). Since 𝑒𝑎𝑏 is acute, 𝜋(𝑎, 𝑞𝑞′′) ∉ 𝑉 (𝐺). Since 𝛿(𝑒, 𝑞) = 3 and 𝛿(𝑝, 𝑞) =
1, 𝜌(𝑎𝑒, 𝑞𝑞′′) = 4. Thus, 𝜋(𝑞, 𝑎𝑒) ∉ 𝑉 (𝐺). Therefore, there is no poidge in 𝐺 containing 𝑎 and 𝑞, a contradiction. Hence, 𝛿(𝑑, 𝑒) ≤ 2. □

Lemma 8. Let 𝐺 be a grid graph such that set(𝐶) is a convex pentagon [𝑎𝑏𝑐𝑑𝑒], 𝛿(𝑎, 𝑒) ≥ 𝛿(𝑎, 𝑏), and the angle at 𝑎 is acute. If 𝐺 is 
poidge-convex, then 𝛿(𝑎, 𝑏) = 𝛿(𝑎, 𝑒).

Proof. By Lemma 6, 𝛿(𝑎, 𝑒) is even. We first suppose that 𝛿(𝑎, 𝑏) is odd. Then 𝛿(𝑏, 𝑐) ≥ 2. Let 𝑓 ∈ 𝑏𝑐 ∩ 𝑉 (𝐺) such that 𝛿(𝑏, 𝑓 ) = 2. 
Assume that 𝑎𝑎′, 𝑓𝑓 ′ and 𝑏𝑏′ are three lattice lines parallel to 𝑐𝑑, and 𝑓𝑓 ′′ is a lattice line parallel to 𝑎𝑏, where 𝑏′, 𝑓 ′ and 𝑓 ′′ belong 
8

to 𝑉 (𝐶), see Fig. 23.
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Fig. 22. 𝛿(𝑑, 𝑒)≥ 3.

Fig. 23. 𝑓 ∈ 𝑏𝑐 ∩ 𝑉 (𝐺) and 𝛿(𝑏, 𝑓 ) = 2.

By Proposition 1, 𝜋(𝑎, 𝑏𝑐) and 𝜋(𝑓, 𝑎𝑒) are not vertices of 𝐺. Moreover, 𝜌(𝑎𝑎′, 𝑓𝑓 ′) = 𝜌(𝑎𝑎′, 𝑏𝑏′) + 𝜌(𝑏𝑏′, 𝑓𝑓 ′) = 𝛿(𝑎, 𝑏) = 2 is odd. 
Again by Proposition 1, 𝜋(𝑎, 𝑓𝑓 ′) and 𝜋(𝑓, 𝑎𝑎′) do not belong to 𝑉 (𝐺). Since 𝑒𝑎𝑏 is acute and 𝑎𝑏𝑐 obtuse, 𝜋(𝑓, 𝑎𝑏), 𝜋(𝑎, 𝑓𝑓 ′′) ∉ 𝑉 (𝐺). 
Thus, there is no poidge in 𝐺 containing 𝑓 and 𝑎. Therefore, 𝛿(𝑎, 𝑏) is even.

Next we suppose that 𝛿(𝑎, 𝑏) < 𝛿(𝑎, 𝑒) − 2. Since 𝛿(𝑎, 𝑏) and 𝛿(𝑎, 𝑒) are even, 𝛿(𝑎, 𝑏) ≤ 𝛿(𝑎, 𝑒) − 4. Let 𝑔 ∈ 𝑒𝑑 ∩ 𝑉 (𝐺) and ℎ ∈
𝑎𝑏 ∩𝑉 (𝐺) such that 𝛿(𝑒, 𝑔) = 1 and 𝛿(𝑎, ℎ) = 2. Assume that 𝑔𝑚, 𝑒𝑒′ and ℎ𝑘 are three lattice lines parallel to 𝑐𝑑, where 𝑚 ∈ 𝑉 (𝐶) and 
𝑘 ∈ 𝑔𝑘 ∩ 𝑉 (𝐺), see Fig. 24. Suppose that 𝑘𝑘′ and 𝑚𝑚′ are two lattice lines parallel to 𝑎𝑏, where 𝑚′ and 𝑘′ belong to 𝑉 (𝐶).

Since 𝛿(𝑎, 𝑏) is even and 𝛿(𝑒, 𝑔) = 1, 𝜌(𝑏𝑐, 𝑔𝑘) = 𝜌(𝑏𝑐, 𝑎𝑒) − 𝜌(𝑎𝑒, 𝑔𝑘) = 𝜌(𝑏𝑐, 𝑎𝑒) − 1 is odd. According to Proposition 1, 𝜋(𝑚, 𝑔𝑘)
and 𝜋(𝑘, 𝑏𝑐) are not in 𝑉 (𝐺). By Proposition 2, since 𝛿(𝑎, 𝑒) is even, 𝜌(ℎ𝑘, 𝑚𝑔) = 𝜌(𝑎𝑎′, 𝑒𝑒′) − 𝜌(𝑎𝑎′, ℎ𝑘) + 𝜌(𝑒𝑒′, 𝑚𝑔) = 𝜌(𝑎𝑎′, 𝑒𝑒′) − 1 is 
odd. Again by Proposition 1, 𝜋(𝑚, ℎ𝑘) and 𝜋(𝑘, 𝑚𝑔) do not belong to 𝑉 (𝐺). Due to ∠𝑎𝑏𝑐 > 𝜋2 and 𝑘′ ∈ 𝑎𝑏, we have ∠𝑘𝑘′𝑚 > 𝜋2 and 
𝜋(𝑚, 𝑘𝑘′) ∉ 𝑉 (𝐺). Since 𝛿(𝑎, 𝑏) ≤ 𝛿(𝑎, 𝑒) − 4, 𝛿(𝑚, 𝑏) ≥ 4 + 1 = 5 and 𝜌(𝑚𝑚′, 𝑘𝑘′) ≥ 4. Thus, 𝜋(𝑘, 𝑚𝑚′) ∉ 𝑉 (𝐺). Therefore, there is no 
poidge in 𝐺 containing 𝑚 and 𝑘, a contradiction. Hence, 𝛿(𝑎, 𝑏) ≥ 𝛿(𝑎, 𝑒) − 2.

Now we claim that 𝛿(𝑎, 𝑏) ≠ 𝛿(𝑎, 𝑒) −2. Suppose, contrary to our claim, that 𝛿(𝑎, 𝑏) = 𝛿(𝑎, 𝑒) −2. According to Lemma 7, 𝛿(𝑑, 𝑒) = 1
or 𝛿(𝑑, 𝑒) = 2.

Case 1. If 𝛿(𝑑, 𝑒) = 1, then 𝛿(𝑏, 𝑐) = 3. Let 𝑝 ∈ 𝑐𝑑 ∩ 𝑉 (𝐺) such that 𝛿(𝑐, 𝑝) = 1. Assume that 𝑝𝑝′ is a lattice line parallel to 𝑎𝑏, and 
𝑝𝑝′′ is a lattice line parallel to 𝑎𝑒, see Fig. 25.

Since 𝛿(𝑎, 𝑒) is even and 𝛿(𝑑, 𝑒) = 1, 𝜌(𝑎𝑎′, 𝑐𝑑) = 𝜌(𝑎𝑎′, 𝑒𝑒′) + 𝜌(𝑒𝑒′, 𝑐𝑑) = 𝜌(𝑎𝑎′, 𝑒𝑒′) +1 is odd. According to Proposition 1, 𝜋(𝑎, 𝑐𝑑)
and 𝜋(𝑝, 𝑎𝑎′) are not in 𝑉 (𝐺). Because 𝛿(𝑎, 𝑏) is even and 𝛿(𝑐, 𝑝) = 1, 𝜌(𝑝𝑝′′, 𝑎𝑒) = 𝜌(𝑏𝑐, 𝑎𝑒) − 𝜌(𝑏𝑐, 𝑝𝑝′′) = 𝜌(𝑏𝑐, 𝑎𝑒) −1 is odd. Again by 
Proposition 1, 𝜋(𝑎, 𝑝𝑝′′) and 𝜋(𝑝, 𝑎𝑒) do not belong to 𝑉 (𝐺). Due to ∠𝑏𝑎𝑒 < 𝜋2 , 𝜋(𝑎, 𝑝𝑝′) does not belong to 𝑉 (𝐺). Because ∠𝑏𝑎𝑒 > 𝜋2
9

and 𝛿(𝑐, 𝑝) = 1, 𝜋(𝑝, 𝑎𝑏) is not a vertex of 𝐺. Therefore, there is no poidge in 𝐺 containing 𝑎 and 𝑝, a contradiction.
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Fig. 24. 𝛿(𝑎, 𝑏) ≤ 𝛿(𝑎, 𝑒) − 4.

Fig. 25. Case 1.

Case 2. If 𝛿(𝑑, 𝑒) = 2, then 𝛿(𝑏, 𝑐) = 4. Since 𝛿(𝑑, 𝑒) = 2 and 𝛿(𝑎, 𝑏) = 𝛿(𝑎, 𝑒) − 2, 𝛿(𝑐, 𝑑) ≥ 2. Let 𝑠 ∈ 𝑎𝑏 ∩ 𝑉 (𝐺) and 𝑡 ∈ 𝑐𝑑 ∩ 𝑉 (𝐺)
such that 𝛿(𝑎, 𝑠) = 1 and 𝛿(𝑐, 𝑡) = 2. Assume that 𝑠𝑠′ is a lattice line parallel to 𝑐𝑑, 𝑡𝑡′ is a lattice line parallel to 𝑎𝑏, and 𝑠𝑠′′ and 𝑡𝑡′′
are lattice lines parallel to 𝑏𝑐, see Fig. 26.

Since 𝛿(𝑎, 𝑠) = 1, 𝜌(𝑎𝑎′, 𝑠𝑠′) = 1 and 𝜌(𝑠𝑠′′, 𝑎𝑒) = 1. Since 𝛿(𝑑, 𝑒) = 2 and 𝛿(𝑎, 𝑒) is even, 𝜌(𝑠𝑠′, 𝑐𝑑) = 𝜌(𝑎𝑎′, 𝑒𝑒′) + 𝜌(𝑒𝑒′, 𝑐𝑑) −
𝜌(𝑎𝑎′, 𝑠𝑠′) = 𝜌(𝑎𝑎′, 𝑒𝑒′) + 1 is odd. According to Proposition 1, 𝜋(𝑠, 𝑐𝑑) and 𝜋(𝑡, 𝑠𝑠′) are not in 𝑉 (𝐺). Since 𝛿(𝑐, 𝑡) = 2 and 𝛿(𝑎, 𝑏)
is even, 𝜌(𝑠𝑠′′, 𝑡𝑡′′) = 𝜌(𝑏𝑐, 𝑎𝑒) − 𝜌(𝑏𝑐, 𝑡𝑡′′) − 𝜌(𝑠𝑠′′, 𝑎𝑒) = 𝜌(𝑏𝑐, 𝑎𝑒) − 3 is odd. Again by Proposition 1, 𝜋(𝑠, 𝑡𝑡′′) and 𝜋(𝑡, 𝑠𝑠′′) do not 
belong to 𝑉 (𝐺). Because 𝑏𝑎𝑒 is acute and 𝛿(𝑎, 𝑠) = 1, 𝜋(𝑠, 𝑡𝑡′) ∉ 𝑉 (𝐺). Since 𝑏𝑐𝑑 is obtuse and 𝛿(𝑐, 𝑡) = 2, 𝜋(𝑡, 𝑎𝑏) ∉ 𝑉 (𝐺). Thus, there 
is no poidge in 𝐺 containing 𝑠 and 𝑡, a contradiction.

Hence, 𝛿(𝑎, 𝑏) = 𝛿(𝑎, 𝑒). □

Theorem 3. Let 𝐺 be a grid graph such that set(𝐶) is a convex pentagon [𝑎𝑏𝑐𝑑𝑒] and the angle at 𝑎 is acute. Then 𝐺 is poidge-convex if 
and only if 𝛿(𝑎, 𝑏) = 𝛿(𝑎, 𝑒) is even and 1 ≤ 𝛿(𝑑, 𝑒) ≤ 2.

Proof. Suppose without loss of generality that 𝛿(𝑎, 𝑒) ≥ 𝛿(𝑎, 𝑏). According to Lemma 6, Lemma 7 and Lemma 8, the necessity of the 
condition in the statement is obvious. Now we prove its sufficiency.

Let 𝑥, 𝑦 belong to 𝑉 (𝐺). We prove the existence of a poidge in 𝐺 containing both 𝑥 and 𝑦.
Case 1. There exists a lattice line 𝐿 containing 𝑥 and 𝑦.
Subcase 1.1. 𝐿 parallel to 𝑐𝑑. Let 𝐿 ∩ (𝑎𝑏 ∪ 𝑏𝑐) = {𝑢} and 𝐿 ∩ (𝑎𝑒 ∪ 𝑒𝑑) = {𝑣}. If 𝑢 = 𝑏, then 𝐿 ∩ set(𝐶) = {𝑏, 𝑒} and 𝑏𝑒 is a linear 
10

path in 𝐺 containing 𝑥 and 𝑦. Since 𝛿(𝑎, 𝑒) is even and the angles 𝑏𝑎𝑒 and 𝑎𝑏𝑒 are acute, 𝜋(𝑒, 𝑎𝑏) ∈ 𝑉 (𝐺). Thus, {𝜋(𝑒, 𝑎𝑏)} ∪ 𝑏𝑒 is a 
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Fig. 26. Case 2.

Fig. 27. Subcase 1.1.

poidge in 𝐺 containing 𝑥 and 𝑦, see Fig. 27. In case 𝑢 ≠ 𝑏, let 𝑃 be the linear path between 𝑢 and 𝑣. It is easily seen that there exists 
𝑧 ∈ 𝑉 (𝐺) such that 𝛿(𝑢, 𝑧) = 2 and ∠𝑧𝑢𝑣 = 𝜋2 . Thus, {𝑧} ∪ 𝑃 is a poidge in 𝐺 containing 𝑥 and 𝑦, see Fig. 27.

Subcase 1.2. 𝐿 parallel to 𝑎𝑏. Let 𝐿 ∩(𝑏𝑐∪ 𝑐𝑑) = {𝑢} and 𝐿 ∩𝑎𝑒 = {𝑣}; then, 𝑢, 𝑣 ∈ 𝑉 (𝐺). Assume that 𝑃 is the linear path between 
𝑢 and 𝑣.

If 𝑢 ∈ 𝑏𝑐, then {𝜋(𝑢, 𝑎𝑒)} ∪ 𝑃 is a poidge in 𝐺 containing 𝑥 and 𝑦, because 𝜌(𝑏𝑐, 𝑎𝑒) is even, which implies 𝜋(𝑢, 𝑎𝑒) ∈ 𝑉 (𝐺), see 
Fig. 28.

If 𝑢 ∈ (𝑐𝑑 ⧵ {𝑐}), then there exists a vertex 𝑧 ∈ 𝑉 (𝐺) such that 𝛿(𝑢, 𝑧) = 2 and ∠𝑧𝑢𝑣 = 𝜋2 . Thus, {𝑧} ∪𝑃 is a poidge in 𝐺 containing 
𝑥 and 𝑦, see Fig. 29.

Subcase 1.3. 𝐿 parallel to 𝑎𝑒. This is symmetric to Subcase 1.2.

Case 2. There exist no lattice line containing 𝑥 and 𝑦. Then there will exist two distinct parallel lattice lines 𝐿1 and 𝐿2 such that 
𝑥 ∈𝐿1, 𝑦 ∈𝐿2 and 𝜌(𝐿1, 𝐿2) is even. Let 𝐿𝑖 ∩ set(𝐶) = {𝑢𝑖, 𝑣𝑖}, then 𝑢𝑖, 𝑣𝑖 ∈ 𝑉 (𝐺), where 𝑖 = 1, 2. Suppose without loss of generality 
that 𝛿(𝑢1, 𝑣1) ≤ 𝛿(𝑢2, 𝑣2).

Subcase 2.1. If set(𝐶) ∩ (𝐿1 ∪ 𝐿2) is a trapezoid or a hexagon, then 𝜋(𝑢1𝑣1, 𝐿2) ⊂ 𝑢2𝑣2 (see Fig. 30). Since 𝜌(𝐿1, 𝐿2) is even, 
𝜋(𝑥, 𝐿2) ∈ 𝑉 (𝐺), by Proposition 1. Let 𝑧 = 𝜋(𝑥, 𝐿2), 𝑃 be the linear path between 𝑧 and 𝑢2, and 𝑄 is the linear path between 𝑧 and 
𝑣2, then 𝑦 ∈ 𝑃 or 𝑦 ∈𝑄. Therefore, {𝑥} ∪ 𝑃 or {𝑥} ∪𝑄 is a poidge in 𝐺 containing 𝑥 and 𝑦.

Subcase 2.2. If set(𝐶) ∩ (𝐿1 ∪𝐿2) is a parallelogram, then 𝛿(𝑏, 𝑐) = 𝛿(𝑑, 𝑒) = 2, and 𝑎𝑏 ⊂ (𝐿1 ∪𝐿2) or 𝑐𝑑 ⊂ (𝐿1 ∪𝐿2). Let 𝑎𝑎′ be a
lattice line parallel to 𝑐𝑑.

Subcase 2.2.1. If 𝑎𝑏 ⊂ (𝐿1 ∪𝐿2), then 𝑐 ∈ (𝐿1 ∪𝐿2). Assume without loss of generality that 𝑎𝑏 ⊂ 𝐿1, 𝑐 ∈𝐿2 and 𝐿2 ∩ 𝑎𝑒 = 𝑐′ (see 
11

Fig. 31).
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Fig. 28. 𝑢 ∈ 𝑏𝑐.

Fig. 29. 𝑢 ∈ (𝑐𝑑 ⧵ {𝑐}).

Fig. 30. Subcase 2.1.

If 𝑥 = 𝑎 and 𝑦 = 𝑐, then 𝜋(𝑥, 𝐿1) ∉ 𝑉 (𝐺) and 𝜋(𝑦, 𝐿2) ∉ 𝑉 (𝐺). Since 𝛿(𝑎, 𝑏) and 𝛿(𝑏, 𝑐) are even, 𝜌(𝑎𝑎′, 𝑐𝑑) = 𝜌(𝑎𝑎′, 𝑏𝑒) + 𝜌(𝑏𝑒, 𝑐𝑑)
is even. According to Proposition 1, 𝜋(𝑎, 𝑐𝑑) ∈ 𝑉 (𝐺). Let 𝑃1 be the linear path between 𝜋(𝑎, 𝑐𝑑) and 𝑐, then {𝑎} ∪ 𝑃1 is a poidge in 
𝐺 containing 𝑥 and 𝑦.

If 𝑥 ≠ 𝑎, then 𝜋(𝑥, 𝐿2) ∈ 𝑉 (𝐺). Let 𝑃2 be the linear path between 𝜋(𝑥, 𝐿2) and 𝑐, and 𝑃3 be the linear path between 𝜋(𝑥, 𝐿2) and 
𝑐′, then 𝑦 ∈ 𝑃3 or 𝑦 ∈ 𝑃4. Therefore, {𝑥} ∪ 𝑃3 or {𝑥} ∪ 𝑃4 is a poidge in 𝐺 containing 𝑥 and 𝑦.

If 𝑦 ≠ 𝑐, then 𝜋(𝑦, 𝐿1) ∈ 𝑉 (𝐺). Let 𝑃5 be the linear path between 𝜋(𝑦, 𝐿1) and 𝑎, and 𝑃6 be the linear path between 𝜋(𝑦, 𝐿1) and 
𝑏, then 𝑥 ∈ 𝑃5 or 𝑥 ∈ 𝑃6. Therefore, {𝑦} ∪ 𝑃5 or {𝑦} ∪ 𝑃6 is a poidge in 𝐺 containing 𝑥 and 𝑦.

Subcase 2.2.2. If 𝑎𝑒 ⊂ (𝐿1 ∪𝐿2), then 𝑑 ∈ (𝐿1 ∪𝐿2). From the analysis of the symmetric Subcase 2.2.1, it follows that there exists 
12

a poidge in 𝐺 containing 𝑥 and 𝑦. □
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Fig. 31. Subcase 2.2.1.

Fig. 32. 𝜌(𝑎𝑏, 𝑑𝑒) and 𝜌(𝑏𝑐, 𝑒𝑓 ) are odd.

Lemma 9. Let 𝐺 be a grid graph and set(𝐶) be a convex hexagon [𝑎𝑏𝑐𝑑𝑒𝑓 ]. If 𝐺 is poidge-convex, then at most one of the three numbers 
𝜌(𝑎𝑏, 𝑑𝑒), 𝜌(𝑏𝑐, 𝑒𝑓 ) and 𝜌(𝑐𝑑, 𝑓𝑎) is odd.

Proof. Suppose the assertion of the lemma is false. Assume without loss of generality that 𝜌(𝑎𝑏, 𝑑𝑒) and 𝜌(𝑏𝑐, 𝑒𝑓 ) are odd and 
𝜌(𝑎𝑏, 𝑑𝑒) ≤ 𝜌(𝑏𝑐, 𝑒𝑓 ). Since 𝜌(𝑎𝑏, 𝑑𝑒) is odd, 𝜋(𝑏, 𝑑𝑒) and 𝜋(𝑒, 𝑎𝑏) are not vertices of 𝐺, by Proposition 1. On the other hand, 𝜌(𝑏𝑐, 𝑒𝑓 )
is odd implies 𝜋(𝑏, 𝑒𝑓 ) and 𝜋(𝑒, 𝑏𝑐) do not belong to 𝑉 (𝐺).

If 𝜌(𝑎𝑏, 𝑑𝑒) = 𝜌(𝑏𝑐, 𝑒𝑓 ), then there exists a lattice line containing 𝑏 and 𝑒. Because all of the four angles 𝑎𝑏𝑒, 𝑐𝑏𝑒, 𝑑𝑒𝑏 and 𝑓𝑒𝑏
are acute, there exists no vertex of 𝐺, say 𝑢, such that ∠𝑢𝑏𝑒 = 𝜋2 or ∠𝑢𝑒𝑏 = 𝜋2 . Thus, there is no poidge in 𝐺 containing 𝑏 and 𝑒, a 
contradiction.

If 𝜌(𝑎𝑏, 𝑑𝑒) < 𝜌(𝑏𝑐, 𝑒𝑓 ), then there exist two distinct lattice lines parallel to 𝑐𝑑, say 𝑏𝑏′ and 𝑒𝑒′, such that 𝑏 ∈ 𝑏𝑏′ and 𝑒 ∈ 𝑒𝑒′, 
where 𝑏′ and 𝑒′ belong to 𝑉 (𝐶), see Fig. 32. Since the angles 𝑏𝑎𝑓 and 𝑐𝑑𝑒 are obtuse and the lattices lines 𝑏𝑏′ and 𝑒𝑒′ are parallel to 
𝑐𝑑, 𝜋(𝑏, 𝑒𝑒′) and 𝜋(𝑒, 𝑏𝑏′) are not in 𝑉 (𝐺). Thus, there is no poidge in 𝐺 contains 𝑏 and 𝑒, a contradiction. □

Theorem 4. Let 𝐺 be a grid graph with set(𝐶) a convex hexagon [𝑎𝑏𝑐𝑑𝑒𝑓 ] such that 𝜌(𝑎𝑏, 𝑑𝑒) is odd. If 𝐺 is poidge-convex, then 𝜌(𝑎𝑏, 𝑑𝑒) −
𝜌(𝑏𝑐, 𝑒𝑓 ) = ±1 and 𝜌(𝑎𝑏, 𝑑𝑒) − 𝜌(𝑐𝑑, 𝑓𝑎) = ±1.

Proof. Since 𝜌(𝑎𝑏, 𝑑𝑒) is odd, both 𝜌(𝑏𝑐, 𝑒𝑓 ) and 𝜌(𝑐𝑑, 𝑓𝑎) are even, according to Lemma 9. Let 𝑑1, 𝑑2 ∈ 𝑉 (𝐶) be the two neighbours 
of 𝑑 and 𝑒1, 𝑒2 ∈ 𝑉 (𝐶) the two neighbours of 𝑒, such that 𝑑1, 𝑒1 ∈ 𝑑𝑒. Suppose that 𝑑1𝑑′1 is a lattice line parallel to 𝑐𝑑 and 𝑒1𝑒′1
a lattice line parallel to 𝑏𝑐. By Proposition 1, since 𝜌(𝑎𝑏, 𝑑𝑒) is odd, 𝜋(𝑎, 𝑑𝑒), 𝜋(𝑏, 𝑑𝑒), 𝜋(𝑑1, 𝑎𝑏) and 𝜋(𝑒1, 𝑎𝑏) are not in 𝑉 (𝐺), see 
Fig. 33.

Since 𝛿(𝑑, 𝑑1) = 1, 𝜌(𝑑1𝑑′1, 𝑓𝑎) = 𝜌(𝑐𝑑, 𝑓𝑎) − 1 is odd, by Proposition 2. According to Proposition 1, 𝜋(𝑎, 𝑑1𝑑′1) and 𝜋(𝑑1, 𝑓𝑎) are 
not in 𝑉 (𝐺). On the other hand, 𝑑1𝑑2 is orthogonal to 𝑏𝑐 and 𝑑1𝑑2 ∩ 𝑉 (𝐺) = {𝑑1, 𝑑2}. By the poidge-convexity of 𝐺, there exists a 
poidge in 𝐺 containing 𝑎 and 𝑑1, which means that 𝑎𝑑1 or 𝑎𝑑2 must be a lattice line. Similarly, 𝑏𝑒1 or 𝑏𝑒2 must be a lattice line.

If 𝑎𝑑1 is a lattice line, then 𝜌(𝑑1𝑑′1, 𝑓𝑎) = 𝜌(𝑎𝑏, 𝑑𝑒) and 𝜌(𝑎𝑏, 𝑑𝑒) − 𝜌(𝑐𝑑, 𝑓𝑎) = −1. Otherwise, 𝑎𝑑2 is a lattice line, which implies 
that 𝜌(𝑐𝑑, 𝑓𝑎) = 𝜌(𝑎𝑏, 𝑑2𝑒2) and 𝜌(𝑎𝑏, 𝑑𝑒) − 𝜌(𝑐𝑑, 𝑓𝑎) = 1.
13

Simmetrically, if 𝑏𝑒1 is a lattice line, then 𝜌(𝑎𝑏, 𝑑𝑒) − 𝜌(𝑏𝑐, 𝑒𝑓 ) = −1, and if 𝑏𝑒2 is a lattice line, then 𝜌(𝑎𝑏, 𝑑𝑒) − 𝜌(𝑏𝑐, 𝑒𝑓 ) = 1. □
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Fig. 33. 𝜌(𝑎𝑏, 𝑑𝑒) is odd.

Fig. 34. Theorem 5.

Theorem 5. Let 𝐺 be a grid graph such that set(𝐶) is a convex hexagon [𝑎𝑏𝑐𝑑𝑒𝑓 ] and 𝜌(𝑎𝑏, 𝑑𝑒), 𝜌(𝑏𝑐, 𝑒𝑓 ) and 𝜌(𝑐𝑑, 𝑓𝑎) are all even. If 𝐺
is poidge-convex, then any pair of these numbers are either equal or consecutive even numbers.

Proof. Let 𝑐′, 𝑑′, 𝑒′ ∈ 𝑉 (𝐺) ⧵ 𝑉 (𝐶) such that 𝛿(𝑐, 𝑐′) = 𝛿(𝑑, 𝑑′) = 𝛿(𝑒, 𝑒′) = 1. Then 𝑐′𝑑′ and 𝑑′𝑒′ will be two lattice lines parallel to 
𝑐𝑑 and 𝑑𝑒, respectively, see Fig. 34.

Let 𝑑1 ∈ 𝑑𝑒 and 𝑑2 ∈ 𝑐𝑑 such that 𝛿(𝑑, 𝑑1) = 𝛿(𝑑, 𝑑2) = 2. Now we show that the poidge-convexity of 𝐺 implies that one of the 
three lines 𝑎𝑑, 𝑎𝑑1 and 𝑎𝑑2 is a lattice line. Since 𝛿(𝑑, 𝑑′) = 1 and 𝜌(𝑎𝑏, 𝑑𝑒) is even, 𝜌(𝑎𝑏, 𝑑′𝑒′) = 𝜌(𝑎𝑏, 𝑑𝑒) − 1 is odd. It follows 
that 𝜋(𝑎, 𝑑′𝑒′) and 𝜋(𝑑′, 𝑎𝑏) do not belong to 𝑉 (𝐺). By a similar argument, 𝛿(𝑑, 𝑑′) = 1 and 𝜌(𝑐𝑑, 𝑓𝑎) even imply that 𝜋(𝑎, 𝑐′𝑑′) and 
𝜋(𝑑′, 𝑓𝑎) are not in 𝑉 (𝐺). Obviously, 𝑑1𝑑2 is orthogonal to 𝑏𝑐 and 𝑑1𝑑2 ∩ 𝑉 (𝐺) = {𝑑1, 𝑑′, 𝑑2}. By the poidge-convexity of 𝐺, there is 
a poidge in 𝐺 containing 𝑎 and 𝑑′, which means that one of the three lines 𝑎𝑑, 𝑎𝑑1 and 𝑎𝑑2 must be a lattice line.

Suppose 𝑑1𝑑′1 is a lattice line parallel to 𝑐𝑑. If 𝑎𝑑1 is a lattice line, then 𝜌(𝑎𝑏, 𝑑𝑒) = 𝜌(𝑑1𝑑′1, 𝑓𝑎). Because 𝛿(𝑑, 𝑑1) = 2, 𝜌(𝑐𝑑, 𝑓𝑎) =
𝜌(𝑎𝑏, 𝑑𝑒) + 2. If 𝑎𝑑 is a lattice line, then 𝜌(𝑎𝑏, 𝑑𝑒) = 𝜌(𝑐𝑑, 𝑓𝑎). Otherwise, 𝑎𝑑2 is a lattice line and 𝜌(𝑐𝑑, 𝑓𝑎) = 𝜌(𝑎𝑏, 𝑑𝑒) − 2.

Similar arguments apply to 𝑏 and 𝑒′, 𝑓 and 𝑐′, respectively; thus, if 𝐺 is poidge-convex, then |𝜌(𝑎𝑏, 𝑑𝑒) − 𝜌(𝑏𝑐, 𝑒𝑓 )| ≤ 2 and 
|𝜌(𝑏𝑐, 𝑓𝑒) − 𝜌(𝑐𝑑, 𝑓𝑎)| ≤ 2. □

We arrive at the following characterization.

Theorem 6. Let 𝐺 be a grid graph such that set(𝐶) is a convex hexagon, and 𝑝, 𝑞, 𝑟 are the intrinsic distances of its opposite sides. 𝐺 is 
poidge-convex if and only if at most one of the numbers 𝑝, 𝑞, 𝑟 is odd, and the difference between any two of them is at most 2.

Proof. For the “only if” implication, combine Theorems 4 and 5. The verification of the “if” implication is a routine matter. □

To summarize the results of this section, a grid graph with boundary cycle 𝐶 is poidge-convex, if and only if set(𝐶) is an equilateral 
triangle with side length 2 or a pentagon, as described in Theorem 3, or a hexagon, as described in Theorem 6.
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