
CONVOLUTION ENCODER FOR FORWARD ERROR CORRECTION

AHMAD TERMIZI BIN MOHD AZMI

UNIVERSITI MALAYSIA PAHANG

 UNIVERSITI MALAYSIA PAHANG

BORANG PENGESAHAN STATUS TESIS

 JUDUL:

SESI PENGAJIAN:________________

Saya __

(HURUF BESAR)

 mengaku membenarkan tesis (Sarjana Muda/Sarjana /Doktor Falsafah)* ini disimpan di
 Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hakmilik Universiti Malaysia Pahang (UMP).
2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi

 pengajian tinggi.
4. **Sila tandakan (√)

 (Mengandungi maklumat yang berdarjah keselamatan
 SULIT atau kepentingan Malaysia seperti yang termaktub
 di dalam AKTA RAHSIA RASMI 1972)

 TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan
 oleh organisasi/badan di mana penyelidikan dijalankan)

 √ TIDAK TERHAD

 Disahkan oleh:

 ___________________________ _________________________
 (TANDATANGAN PENULIS) (TANDATANGAN PENYELIA)

Alamat Tetap:

594 BENDANG KERAJAAN, NOR FARIZAN BINTI ZAKARIA
33300, GERIK (Nama Penyelia)

 PERAK DARUL RIDZUAN

Tarikh: 30 NOVEMBER 2010 Tarikh: : 30 NOVEMBER 2010

CATATAN: * Potong yang tidak berkenaan.
 ** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak
 berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh tesis ini perlu
 dikelaskan sebagai atau TERHAD.

♦ Tesis dimaksudkan sebagai tesis bagi Ijazah doktor Falsafah dan Sarjana secara
Penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan
penyelidikan, atau Laporan Projek Sarjana Muda (PSM).

2010/2011

 AHMAD TERMIZI BIN MOHD AZMI (880222-08-6611)

CONVOLUTION ENCODER FOR FORWARD ERROR
CORRECTION

CONVOLUTION ENCODER FOR FORWARD ERROR CORRECTION

AHMAD TERMIZI BIN MOHD AZMI

This thesis is submitted as partial fulfillment of the requirement for the
award of the Bachelor of Electrical Engineering (Hons.) (Electronics)

Faculty of Electrical & Electronic Engineering

University Malaysia Pahang

NOVEMBER, 2010

 ii

“All the trademark and copyrights use herein are property of their respective owner.

References of information from other sources are quoted accordingly; otherwise the

information presented in this report is solely work of the author.”

Signature :

Author : AHMAD TERMIZI BIN MOHD AZMI

Date : 30 NOVEMBER 2010

iii

“Specially dedicated to

My beloved parents, brothers, sister, and all friends”

iv

“I hereby acknowledge that the scope and quality of this thesis is qualified for the

award of the Bachelor Degree of Electrical Engineering

(Electronic)”

 Signature : __

 Name : NOR FARIZAN BINTI ZAKARIA

 Date : 30 NOVEMBER 2010

v

ACKNOWLEDGMENT

Alhamdulillah, the highest thanks to God because with His Willingness I can

complete the final year project in time.

I would like to express my gratitude to my dedicated supervisor, Madam Nor

Farizan binti Zakaria for guiding this project with clarity and that priceless gift of

getting things done by sharing her valuable ideas as well as her knowledge.

I also would like to thank to my family, UMP lecturers, electrical technicians,

and my best colleagues at that have provide assistance at various occasions. Their views

are useful indeed.

The great cooperation, kindheartedness and readiness to share worth experiences

that have been shown by them will be always appreciated and treasured by me. Once

again, thank you very much.

vi

ABSTRACT

Nowadays bandwidth demands are totally increase and the tolerance for errors

and latency decreases, designers of data-communication systems are looking for new

ways to expand available bandwidth and improve the quality of transmission. One

solution isn't actually new, but has been around for a while. Nevertheless, it could prove

quite useful. Called forward error correction (FEC), this design technology has been

used for years to enable efficient, high-quality data communication over noisy channels,

such as those found in satellite and digital cellular-communications applications. The big

attraction of FEC technology is how it adds redundant information to a data stream. This

enables a receiver to identify and correct errors without the need for retransmission and

the data will be transfer faster than ever.

vii

ABSTRAK

Pada zaman serba canggih sekarang ini keperluan jalur lebar yang benar-benar

meningkat dan kesungguhan untuk mengurangkan kesalahan dan latensi, pereka sistem

komunikasi data telah mencari cara baru untuk memperluaskan jalur lebar yang telah

sedia ada dan mempertingkatkan lagi kualiti penghantaran maklumat. Salah satunya

adalah kaedah yang lama tetapi telah di pertingkatkan penggunaanya untuk kemudahan

yang lebih luas. Kaedah yang digunakan adalah telah terbukti sangat berguna. “Forward

Error Correction” (FEC), adalah teknologi yang telah dicipta dan telah digunakan

selama bertahun-tahun untuk membolehkan penghantaran komunikasi yang lebih cekap,

data komunikasi yang lebih berkualiti tinggi apabila melalui gangguan saluran, seperti

yang ditemui dalam satelit dan digital-aplikasi komunikasi bimbit. Kelebihan utama

yang terdapat pada teknologi FEC ini adalah bagaimana ia dapat menambah maklumat

secara berlebihan untuk satu aliran data. Hal ini membolehkan penerima untuk mengenal

pasti dan memperbaiki kesalahan tanpa memerlukan penghantaran semula dan

pemindahan data akan lebih cepat daripada sebelumnya.

viii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

1

TITLE

DECLARATION

DEDICATION

ACKNOWLEDGMENT

ABSTRACT

ABSTRAK

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF ABBREVIATIONS

LIST OF TABLES

INTRODUCTION

1.1 Introduction

1.2 Problem Statement

1.3 Project Objective

1.4 Project Scopes

1.5 Thesis Outline

i

ii

iii

iv

vi

vii

viii

xi

xiii

xiv

1

3

4

4

5

ix

2

3

LITERATURE REVIEW

2.1 Introduction

2.2 Forward Error Correction

 2.2.1 Convolution Encoder

 2.2.2 Error - Control Coding

2.3 VHDL

 2.3.1 Basic of VHDL

 2.3.2 Operators in VHDL

2.4 MATLAB

 2.4.1 Simulink

 2.4.2 Communication Blocksets

METHDOLOGY

3.1 Introduction

3.2 Work Methodology

3.3 Flow Chart

3.4 Block Diagram

3.5 Convolution encoder system design

3.6 Verification of parameter model design

 3.6.1 Bernoulli Binary Generator

 3.6.2 Poly2trellis

 3.6.3 Generator polynomials

 3.6.4 Constraint length

3.7 Modeling of convolution encoder block in MATLAB

Toolbox

3.8 Develop the convolution encoder model using MATLAB

Simulink

 3.8.1 XOR Logical Operator

6

6

7

9

11

14

15

16

 11

17

18

18

19

21

22

22

23

26

26

27

27

29

31

x

4

 5

RESULT AND DISCUSSION

4.1 Introduction

4.2 Result using Convolution Encoder in MATLAB Toolbox

4.3 Result using the developing convolution encoder model

using MATLAB Simulink

4.4 Result analysis

CONCLUSION

5.1 Conclusion

5.2 Limitation of the Project

5.3 Future work Recommendation

REFRENCE

APPENDIX

Appendix A-

Appendix B-

33

33

37

39

 41

42

42

43

xi

LIST OF FIGURES

FIGURE NO. TITLE PAGE

 2.0 Proces flow data transmit and receive 7

 2.1 Convolution rate ½, constaint length 3 9

 2.2 Synthesis design flow 13

 2.3 VHDL design entity 15

 3.1 Flow chart 20

 3.2 Simulink browser 21

3.3 Bernoulli binary generator parameter 23

3.4 Random input Bernoulli Binary Generator 24

3.5 convolution encoder parameter 27

3.6 MATLAB Convolution Block 29

3.7 Convolution encoder design using MATLAB 30

3.8 Configuration of Logical XOR 31

4.1 Output response for generator polynomial [171] 34

4.2 Output response for generator polynomial [133] 35

4.3 poly2trellis (7, [171 133]) 36

xii

4.4 Output response from Simulink [171] 37

4.5 Output response from Simulink [133] 38

 4.6 Combination of Figure 4.4 and 4.5 39

xiii

LIST OF ABBREVIATIONS

FEC - Called Forward Error Correction

VHDL - Very High Speed Integrated Circuit Hardware Description

QoS - Quality of Service

ARQ - Automatic Repeat Request

XOR - Exclusive OR, XOR-gates

CAD - Computer-Aided Design

AWGN - Additive White Gaussian Noise

𝐺1 - Generator Polynomial 1

𝐺2 - Generator Polynomial 2

𝑅 - Rate

𝑘 - Input

𝑛 - Output

𝐿 - Constraint Length

𝑚 - Memory Register

xiv

LIST OF TABLES

TABLE NO TITLE PAGE

2.0

2.1

3.0

3.1

List of main keywords of VHDL

The VHDL operators

Properties of MATLAB Convolution block

Logical XOR

12

15

23

31

CHAPTER 1

INTRODUCTION

1.1 Overview

Convolution encoder is a code that have been widely used in numerous

applications in order to achieve reliable data transfer, including digital video

broadcasting, digital audio broadcasting, satellite communication, cellular mobile, and

satellite communication. As the capabilities of FEC increase, the number of errors that

can be corrected also increases. The advantage is obvious. Noisy channels create a

relatively large number of errors. The ability to correct these errors means that the noisy

channel can be used reliably. This enhancement can be parlayed into several system

improvements, including bandwidth efficiency, extended range, higher data rate, and

greater power efficiency, as well as increased data reliability.

2

Convolution code is a type of error correcting code that is normally used in

telecommunication. On the other hand, this convolution encoding is used to encode data

prior to transmission over a channel. The received data is decoded by the classic Viterbi

decoder. In a basic convolution encoder, two or three bits (depending on the encoder

output rate) are transmitted over the channel for every input bit.

Its popularity of using the convolution encoder for forward error correction is

came from the structure and availability that is easy and simple to implement. The

purposes of convolution code are to improve channel capacity during the transmission

and the other is to mitigate burst error occurs the transmission.

In developing digital system design, a main techniques use is by using Very High

Speed Integrated Circuit Hardware Description Language (VHDL) in order to

programmed it in software where simulation can be perform to do analysis and then the

result will be compared to the analysis result that have been perform by using MATLAB

software. Xilinx ISE 10.1 and MATLAB software are use in order to encode the data

and develop a convolution encoder.

3

1.2 Problem Statement

Modern digital communication system requirements are becoming more and

more stringent with respect to error-free transmission. Next generation systems would

likes to offer Quality of Service (QoS) guarantees to users, this cannot be done unless

more efficient error correction schemes can be implemented. There is also exponential

growth in the Wireless industry for the same demands but that require less power.

The Convolution Encoder for Forward Error Correction (FEC) is used to

implement and solve this problem. This method will allow the receiver to detect and

correct the errors (within some bound) without the need to ask the sender for additional

data, compared to Automatic Repeat Request (ARQ) method which is if the sender does

not receive an acknowledgment before the timeout, it will re-transmits the frame/packet

data until the sender receives an acknowledgment or exceeds a predefined number of re-

transmission

http://en.wikipedia.org/wiki/Retransmission_%28data_networks%29

4

1.3 Objectives of the project

The objectives of this project:

i) To developed and design the convolution encoder by using Very High

Speed Integrated Circuit Hardware Description Language (VHDL) in

Xilinx ISE 10.1 software.

ii) To compare the result with convolution encoder used in MATLAB and

Xilinx software

1.4 Scope of project

The scope of the project has been narrow down from the objective to ensure the

goal target is achieved when the result are conclude. The scope of the project has been

specified as below:

i) The data out that was scramble out by MATLAB software will be

verified again by using Very High Speed Integrated Circuit Hardware

Description Language (VHDL) in Xilinx software to get the same data

output

ii) Basic convolution encoder rate 1/2 with constraint length 7 will be use

iii) Same input data Bernoulli Binary Generator are use in both simulation

process

In other word, these scopes create a basic convolution code that demonstrates the

detection of the error in the transmission of data in communication system.

5

1.5 Thesis Outline

 This section will give an outlines of the structure of the thesis. This thesis will

consist of five chapters including this chapter. The following is an explanation for each

chapter:

Chapter 2 discusses the previous work that been done around the world about the

convolution encoder, in term of definition, algorithm, and modeling system design.

Literature that been done will cover, for instance, history, algorithm design and others.

Chapter 3 explain on methodology of this project. In this chapter, each step in the

work methodology flow chart starting from modelling of the convolution encoder block

was explained.

.

Chapter 4 consists of experimental results and results analysis. Comparison between

each graphically result was done.

 Lastly, Chapter 5 summarizes the overall conclusion for this thesis and a few

suggestion and recommendation for future development.

CHAPTER II

LITERATURE REVIEW

2.1 Introduction

This part will explain the research information that is related to completing this

project. All the research sources are from books, journals, websites and some articles.

2.2 FEC

 Forward error correction (FEC) is techniques that introduce redundancy to allow

for correction of error without transmission. This technique are used in system where a

reverse channel is not available for requesting retransmission, the delay with

7

retransmission would be excessive, the expected number of error would require a large

number of retransmission, or retransmission would be awkward to implement [4].

Figure 2.0: Process Flow Data Transmit and Receive

The FEC code acts on a discrete data channel comprised of all system elements

between the encoder output and decoder input. The encoder maps the source data to q-

ary code symbols that are modulated and transmitted. During the transmission, the signal

can be corrupted, causing errors to arise in the demodulated symbol sequence. The FEC

decoder attempts to correct these errors and restore the original source data [4].

2.2.1 Convolution Encoder

 Shannon’s Noisy Channel Coding Theorem says that “With every channel we

can associate a ‘channel capacity’ C (bits/sec). There exist such error control codes that

information can be transmitted at a rate below C (bits/sec) with an arbitrarily low bit

error rate” [3].

 Convolution codes were first introduced by Elias [14] in 1955. He proved that

redundancy could be added to an information stream through the use of linear shift

Source FEC
encoder

modulator

Sink

FEC
decoder

demodulator channel

8

register. In 1961, Wozencraft and Reiffen describe the first practical decoding algorithm

for convolution codes [15]. The algorithm was based on sequential decoding, however

sub-optimal for decoding convolution codes.

 Several other algorithms were developed off of Wozencraft and Reiffen initial

work. In 1967, Viterbi proposed a maximum likelihood decoding scheme for decoding

convolution codes. The importance of the Viterbi algorithm is that it proved to be

relatively easy to implement given the encoder has a small number of memory elements

[16].

 Channel coding is the process of adding the redundancy information.

Convolution coding and block coding are two major forms of channel coding.

Convolutional codes operate on serial data, one or few bits at a time while the block

codes operate on relatively large message blocks [1].

 The encoding process of convolutional codes is significantly different to that of

block encoding. Block codes are developed through the use of algebraic techniques.

Block encoders group information bits into length k blocks. These blocks are then

mapped into codeword’s of length n. A convolutional encoder converts the entire input

stream into length n codeword’s independent of the length k. The development of

convolutional codes is based mostly on physical construction techniques. The evaluation

and the nature of the design of convolutional codes depends less on an algebraic

manipulation and more on construction of the encoder [3].

 Convolutional codes are described by two parameters: the code rate R=k/n,

expressed as a ratio of the number of input bits of the convolutional encoder (k) to the

number of channel symbols in the output of the convolutional encoder (n), and the

9

constraint length L, indicating how many k-bit stages are available to feed the

combinatorial logic (exclusive OR, XOR-gates) that produces the output symbols [6].

2.2.2 Error - Control Coding

In this section, an example is shown to show how the encoded sequence is by

hand. So that, a clear understanding how the encoded sequence is obtained without using

calculator. The same method shown in [12] can be used to calculate the example below:

Figure 2.1: Constraint Length 3, and 1/2 convolution rate

Example:

Consider the convolution encoder figure 2.1 which has two paths numbered 1

and 2 for convenience of reference. The impulse response of path 1 is (1,1,1). Hence the

corresponding generator polynomial is given by

𝑔(1)(𝐷) = 1 + 𝐷 + 𝐷2

Input

Flip-flop

Path 1

output

Path 2

10

The impulse response of path 2 is (1,0,1). Hence the corresponding generator

polynomial is given by

𝑔(2)(𝐷) = 1 + 𝐷2

For the message sequence (10011), say we have the polynomial representation

𝑚(𝐷) = 1 + 𝐷3 + 𝐷4

As with Fourier transformation, convolution in the domain is transformed into

multiplication in the D-domain. Hence the output polynomial of path 1 is given by

𝑐(1)𝐷 = 𝑔(1)(𝐷)𝑚(𝐷)

 = (1 + 𝐷 + 𝐷2)(1 + 𝐷3 + 𝐷4)

 = 1 + 𝐷 + 𝐷2 + 𝐷3 + 𝐷6

From this we immediately deduce that the output sequence of path 1 is (1111001).

Similarly, the output polynomial of path 2 is given by

𝑐(2)(𝐷) = 𝑔(2)(𝐷)𝑚(𝐷)

 = (1 + 𝐷2)(1 + 𝐷3 + 𝐷4)

 = 1 + 𝐷2 + 𝐷3 + 𝐷4 + 𝐷5 + 𝐷6

The output sequence of path 2 is therefore (1011111). Finally, multiplexing the two

output sequences path 1and 2, we get the encoded sequence

𝑐 = (11,10,11,11,01,01,11)

11

2.3 VHDL

 VHDL is an industry standard language for modeling digital circuits. The

original version, adopted in 1987, called IEEE standard 1076. IEEE 1164, a revised

standard, was adopted 1n 1993. Although originally intended for design documentation

and simulation, today VHDL is also used in computer-aided design (CAD) design entry

[13].

The first step is to consider the specification of requirement that the algorithm is

satisfy. In other word, the developers have to consider the limitation of the input for

instants the same rate, memory register, and the constraint length so that the designed

system is capable to operate [2].

VHDL is one of three popular modern HDL languages. A second HDL is

Verilog, it was developed to have syntax similar to the C programming language. The

third HDL is system C which has developed on 2000’s by several companies [5].

VHDL stands for Very High Speed Integrated Circuit Hardware Description

Language. This VHDL language can be used in several goals in mind. It may be used for

the system description and documentation, synthesis of digital circuits, simulation of

digital system, or verification and validation of digital systems [2].

12

Table 2.0: List of main keywords of VHDL

Constructs for VHDL
Entity declaration Entity circuit is port (

 a: in std_logic;
 b: out std_logic;
 c: in std_logic_vector (3 downto 0);
 d: out std_logic_vector (0 to 7);
end circuit;

Internal signals, variables,
constant

Signal inta: std_logic;
Signal intb: std_logic_vector (3 downto 0);
Signal counter: integer range
 -127 to 127;
Variable temp: std_logic_vector (0 to 7)
Constant C: std_logic_vector (3 downto 0):= “000”;

Component instantiations Architecture sys_arch of system 1 is
 Component comp1 port(
 a: std_logic;
 b: std_logic);
 end component;
begin
U_comp1: comp1 port map (A,B);
End sys_arch:

Concurrent signal
assignment

Dataout <= Datain;

Sequential block Process (a)
Begin
 ……
End process;

Control flow
a) If
b) If … else

c) Case

If (en = ‘1’) then f <= x1; end if;
If (sel = ‘0’) then f <= x1; g <= x2;
Else f<= x2; g <= x1;
End if;
Case y is
 When “00” => f <= state A;
 When “01” => f <= state B;
 When others => f <= state C;
End case;

13

VHDL offer several advantages to the designer, which it used a standard

language, already have an available tools, powerful and versatile description language,

have an multiple mechanism to support design hierarchy and also allow the behavior of

the required system to be destined and verified before translate into the real hardware

[8].

Figure 2.2: A Synthesis Design Flow

Requirements

Place and Route

Synthesis

Timing Extraction

Register Transfer
Level Design

Functional Design

Behavioral Simulation
(VHDL)

VHDL MODEL

VHDL MODEL

Logic Simulation

14

2.3.1 Basic of VHDL

 Three data objects are used to represent information in VHDL programs. These

are signals, variables, and constants. Signals are very common in logic circuits since

they provide wires (connections) in the circuit. Input and output signals are attached to

the input and output ports, respectively. Input signals are used inside the modules,

whereas output signals are assigned values inside the modules. In particular, architecture

assigns value to an output signal through a signal assignment statement denoted by the

symbol “ <= ” [13]. For example,

𝑥 ≤′ 1′; 𝑏𝑖𝑛𝑎𝑟𝑦 𝑣𝑎𝑙𝑢𝑒 1 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑥

𝑥 ≤ 𝑢 + 𝑦; 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓(𝑢 + 𝑦)𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑥

 The values of signals can correspond to different data types, such as INTEGER,

REAL, BIT, and nonnumeric sets. Data types are characterized by a name, a set of

values, and a set of operations [13]. VHDL data types that are predefined include:

• TYPE INTEGER IS RANGE -2, 147,483, 647, to 2, 147, 483, 647

• TYPE REAL IS RANGE -1.0E + 38 to 1.0E + 38

• TYPE BOOLEAN IS (FALSE, TRUE)

• TYPE BITE IS (‘0’, ‘1’)

• TYPE CHARACTER IS (…, ‘A’, ‘B’, ‘C’, …, ‘a’, ‘b’, ‘c’, …, ‘0’, ’1’,...)

A digital circuit or system describe in VHDL is called a design entity, or just

entity. It has two blocks: the entity declaration, which specifies the input and output

connections (ports) to the hardware, and the architecture, which defines the behavior of

15

the hardware entity being designed. The general structure of a VHDL design entity

modeling a digital circuit is shown in figure 2.3 [13].

 Entity entity_name is

 Port (signal_name: [mode] type_name);

 End entity_name;

 Architecture architecture_name of entity_name is

 [type; signal; constant; component declarations]

 [attribute specifications]

 Begin

{component instantiation statement;}

{concurrent assignment statement;}

{Process statement;}

{generate statement;}

 End [architecture_name];

Figure 2.3: A typical VHDL Design Entity

2.3.2 Operators in VHDL

Table 2.1: The VHDL operators (used for synthesis)

Operator Class Operator
Miscellaneous NOT
Multiplying *, /

Sign +, -
Adding +, -, & (concatenate)

Relational =, /=, <, <=, >, >=
Logic AND, OR, NAND, NOR,

XOR, XNOR

Entity

 Entity
declaration

Architecture

16

VHDL provides a usual range of operators useful for synthesizing logic circuits [13],

which includes:

i) Logical operators,

ii) Relational operators,

iii) Arithmetic operators,

iv) Concatenate operator,

v) Shift and rotate operators

They are categorized in an unusual way, as shown in table 2.1, according to the

precedence of the operators. Note that operators in the same category do not have

precedence over one another. Thus, consider the VHDL expression,

𝑥1 𝐴𝑁𝐷 𝑥2 𝐴𝑁𝐷 𝑥3 𝑂𝑅 𝑥4

Since there is no precedence among any Boolean operators, this can be imply to the

𝑥1𝑥2𝑥3 + 𝑥4 expression. But to be legal and have desired meaning, this VHDL

expression should be written as:

(𝑥1 𝐴𝑁𝐷 𝑥2 𝐴𝑁𝐷 𝑥3)𝑂𝑅 𝑥4

2.4 MATLAB

 MATLAB is software for mathematical computation, analysis, visualization, and

algorithm development. Its flexible language is interactive and lets the problems, ideas,

and solution be express naturally and more quickly than traditional languages. It can

access more than 600 mathematical, scientific, and engineering functions [7].

17

 Other than that the MATLAB also can create and interactively edit 2-D and 3-D

plots, images, surfaces, volume and vector visualization, color and rendering, animation,

camera control, sound, and lightning control [7].

2.4.1 Simulink

 Simulink can be used an interactive block diagram environment with extensive

predefined blocks that can be used for building graphical model of systems using the

drag and crop option. This tool also capable to build and customize block diagrams of

embedded systems, signal processing algorithms, mechanical systems, power systems,

and wireless systems with blocksets [7].

2.4.2 Communication Blocksets

 This communication blockset contain a block and convolutional coding

supporting Reed-Solomon, Hamming, a posteriori probability (APP), and Viterbi

decoder. The specification also includes block and convolutional interleaving libraries,

channels models includes additive white Gaussian Noise (AWGN), Rayleigh, and Rician

fading [7].

CHAPTER III

METHODOLOGY

3.1 Introduction

 This chapter discuss about the convolution encoder design by using Very High

Speed Integrated Circuit Hardware Description Language (VHDL) method to complete

the project. This chapter also includes the overview of the whole method used like the

block diagram building by using MATLAB software.

3.2 Work Methodology

The project planning was dividing into 3 major parts:

i. Develop the flow chart

ii. Develop the block diagram algorithm model

iii. Verify the algorithm

19

3.3 Flow Chart

For this project, there were some steps or stage must be done to make it happen

follow the path. When the program is executed, random input data signal Bernoulli

Binary Generator will be inserted into the convolution encoder to encode the data by

using a VHDL language with specific algorithm equation.

The algorithm equation was created by using a parameter rate 1/2 with input, k=1

and output, n = 2, a constraint length, L=7 and the generator polynomial g1= 171 and

g2=133. Then the data will be scrambled out as output data signal, so the result will be

compared with the output data produced by convolution in MATLAB. These procedures

are make to justify whether the algorithm that are used with VHDL language in Xilinx

ISE 10.1 are compatible with the convolution that have been coded in MATLAB to

produce the same output data signal with the same rate and input signal.

Hence, if the output data signals produced are not equivalent for both techniques,

some error has occurred in the convolution encoder design. Then convolution encoder

must be redesigned by troubleshooting from algorithm equation until the data. Output

signals produced matches, then the convolution encoder are ready to be uses and proved

its effectiveness according to the data sending to the network. The flowchart is as in

Figure 3.1.

20

Flowchart

 Figure 3.1: Convolution Encoder Design Flow Chart

Start
programme

Convolution encoder
ready to use

Input data
Variable

Compare with
MATLAB software

Convolution encoder using VHDL and
MATLAB software

Output scramble out
different data (error)

Output scramble out
the same data

Redesign

21

3.4 Block Diagram

 In order to get the result to be compared with the VHDL language, some stages

need to be done first by using MATLAB Toolbox software. The toolbox to created the

block diagram can be found in the MATLAB > Simulink Library Browser >

Communication Blockset.

Figure 3.2: Simulink browser

22

3.5 Convolution encoder system design

This section described the methods used to develop and design the convolution

encoder by using Very High Speed Integrated Circuit Hardware Description Language

(VHDL) and also to compare the output result with convolution encoder used in

MATLAB software. The methods explained in this chapter are very important procedure

in order to ensure the flow of research move smoothly as planned. The methodology of

this research is divided into five major sections:

i. Verification of parameter model design.

ii. Modeling of convolution encoder block in MATLAB Toolbox

iii. Develop the convolution encoder model using Simulink in MATLAB

communication blockset.

iv. Develop the convolution encoder using VHDL

v. Data collection and analysis of convolution encoder design

3.6 Verification of parameter model design

For this project, modeling is the first step needed to represent the system that

been focused in order to do an analysis and further work. This involves obtaining the

parameter characteristic value of the system. With the parameter analysis, it can be used

to generate and develop the algorithm that will be verified with MATLAB Simulink and

VHDL at the next stage. This process is needed to determine the right rate 𝑅 = 𝑘 𝑛� ,

(𝑘 = 𝑖𝑛𝑝𝑢𝑡 and 𝑛 = 𝑜𝑢𝑡𝑝𝑢𝑡) that must be used to build the right algorithm.

From the parameters that have been analyzed with the convolution block in

communication blockset, the parameter values shown as in table 3.0.

23

Table 3.0: Properties of MATLAB Convolution block

Input, 𝑘 Output, 𝑛 Generator
Polynomial, g1

Generator
Polynomial, g2

𝐿 = (𝑚 + 1)

1 2 1111001 1011011 7

The parameters properties:

i. Rate using, 𝑅 = 1
2�

ii. Random input data = Bernoulli binary generator

iii. Convolution encoder function block parameter: Poly2trellis (7, [171 133])

iv. Generator polynomial 1 = 171

v. Generator polynomial 2 = 133

vi. Constraint length = 7

3.6.1 Bernoulli Binary Generator

Figure 3.3: Bernoulli binary generator parameter

24

Figure 3.4 below show the input data for Bernoulli binary generator in graphically.

These inputs will used in order to get the same data when inserted to the convolution

encoder that have been developed.

Figure 3.4: Random input Bernoulli Binary Generator

The functions of the source block parameters for Bernoulli binary generator are as

below:

• Probability of a zero

- The probability with which a zero output occurs.

25

• Initial seed

- The initial seed value for the random number generator. The seed can be

either a vector of the same length as the Probability of a zero parameter, or a

scalar.

• Sample time

- The period of each sample-based vector or each row of a frame-based matrix.

• Frame-based outputs

- Determines whether the output is frame-based or sample-based. This box is

active only if Interpret vector parameters as 1-D are unchecked.

• Samples per frame

- The number of samples in each column of a frame-based output signal. This

field is active only if Frame-based outputs are checked.

• Interpret vector parameters as 1-D

- If this box is checked, then the output is a one-dimensional signal. Otherwise,

the output is a two-dimensional signal. This box is active only if Frame-based

outputs are unchecked.

• Output data type

- The output type of the block can be specified as a Boolean, int8, uint8, int16,

uint16, int32, uint32, single, or double. By default, the block sets this to

double. Single outputs may lead to different results when compared with

double outputs for the same set of parameters.

26

3.6.2 Poly2trellis

The poly2trellis function accepts a polynomial description of a convolutional

encoder and returns the corresponding trellis structure description. The output of

poly2trellis is suitable as an input to the convolution encoder and viterbi decoder

functions, and as a mask parameter for the Convolutional Encoder, Viterbi Decoder, and

APP Decoder blocks in the Communications Blockset [7].Trellis = poly2trellis

(Constraint Length, Code Generator) performs the conversion for a rate k/n feedforward

encoder. Constraint Length is a 1-by-k vector that specifies the delay for the encoder's k

input bit streams.

The function parameters are as below:

• Trellis structure

- MATLAB structure that contains the trellis description of the convolutional

encoder

• Reset

- Determines whether and under what circumstances the encoder resets to the

all-zeros state before processing the input data. Choices are None, On each

frame, and On nonzero Rst input. The last option causes the block to have a

second input port, labeled Rst

3.6.3 Generator polynomials

Code Generator is a k-by-n matrix of octal numbers that specifies the n output

connections for each of the encoder's k input bit streams [7]. If the encoder diagram has

27

k inputs and n outputs, then the code generator matrix is a k-by-n matrix. The element in

the 𝑖𝑡ℎ row and 𝑗𝑡ℎ column indicates how the 𝑖𝑡ℎ input contributes to the 𝑗𝑡ℎ output [7].

3.6.4 Constraint length

The constraint lengths of the encoder form a vector whose length is the number

of inputs in the encoder diagram. The elements of this vector indicate the number of bits

stored in each shift register, including the current input bits. In the figure 3.5, the

constraint length is seven. It is a scalar because the encoder has one input stream, and its

value is one plus the number of shift registers for that input.

Figure 3.5: convolution encoder parameter

28

3.7 1st Stage: Modeling of convolution encoder block in MATLAB Toolbox

In the first stage of designing the convolution encoder model, the block diagram

was build as shown in figure 3.5. The Bernoulli Binary Generator block generates

random input data binary numbers using a Bernoulli distribution. The Bernoulli

distribution with parameter p produces zero with probability p and one with probability

1-p. The Bernoulli distribution has mean value 1-p and variance p(1-p). The Probability

of a zero parameter specifies p, and can be any real number between zero and one.

Then the input data will be process with the convolution encoder to get the scramble

result. The Convolution Encoder block will encode a sequence of binary input vectors to

produce a sequence of binary output vectors. This block can also process multiple

symbols at a time. The block parameter used in this convolution encoder is set by using

the trellis structure parameter which is poly2trellis (7, [171 133], 171) as refer to table

3.0.

The output data will be presented in graphs figure as shown by the scope block function.

The Scope block will display the input with respect to simulation time. The Scope block

can have multiple axes (one per port), all axes have a common time range with

independent y-axes. The scope allows adjusting the amount of time and the range of

input values displayed.

29

Figure 3.6: MATLAB Convolution Block

3.8 2st Stage: Develop the convolution encoder model using MATLAB Simulink

Based on the parameters verification, all the values were used to develop the next

stage of convolution encoder block. The incoming data is brought into the constraint

register a bit at a time, and the output bits are generated by modulo-2 addition of the

required bits from the constraint register. The bits to be XORed are selected by the

convolution codes with a serial stream of data are shifted into the device, and an

encoded serial data stream is shifted out of the device. Refer to Figure as shown in

Figure 3.7.

30

Figure 3.7: Convolution encoder design using MATLAB

The encoder structure is described by a pair of binary numbers, having the same

length as the code's constraint length, that specify the connections from the delay cells to

modulo-2 addition nodes. The binary number for the upper addition node is 1111001. A

1 indicates that the bit in the corresponding delay cell (reading from left to right) is sent

to the addition node, and a 0 indicates that the bit is not sent. The binary number for the

lower addition node is 1011011. Converting these two binary numbers to octal gives the

pair [171,133].

31

3.8.1 XOR Logical Operator

When a logical XOR is placed between two logical expressions, the result is

TRUE if only one of the expressions on either side of the XOR is TRUE. This is a

bitwise logical operation. The following truth table shows all the possible outcomes of

an XOR operation:

Table 3.1: Logical XOR

A B C

Zero Zero 0

Zero Nonzero 1

Nonzero Zero 1

Nonzero Nonzero 0

32

The configurations of XOR logical operator in Simulink Tool model is shown in figure

3.8.

Figure 3.8: Configuration of Logical XOR

Convolutional coding is a special case of error-control coding. Unlike a block

coder, a convolutional coder is not a memoryless device. Even though a convolutional

coder accepts a fixed number of message symbols and produces a fixed number of code

symbols, its computations depend not only on the current set of input symbols but on

some of the previous input symbols.

3.9 3st Stage: Develop the convolution encoder model using VHDL

To developed the top level VHDL file that completes a hierarchical design, the

design must uses a package that contain all the component declarations that has

completed as part of the architecture.

33

3.9.1 XOR Architecture

The architecture for the Exclusive OR gates connections has shown in Figure 3.9

below. The coding can be referring in appendix B.

Figure 3.9: Exclusive OR gates

 The test bench waveforms of the exclusive OR were done in a simulation as

shown in figure 3.9.1.

Figure 3.9.1: XOR result simulation

34

3.9.2 D Flip - Flop Architecture

The architecture for the D flip – flop connections has shown in Figure 3.9 below.

The coding can be referred in appendix B.

Figure 3.9.2: D Flip – Flop Architecture

35

The test bench waveforms of the exclusive OR were done in a simulation as

shown in figure 3.9.1.

Figure 3.9.3: D Flip – Flop simulation

36

The D flip-flop was combined with the XOR gate architecture in the TOP level

module to get the whole combination architecture as shown in figure 3.9.1. The coding

can be referred in appendix B.

Figure 3.9.4: Top Level Combination D flip-flop and XOR gates

CHAPTER IV

RESULTS AND ANALYSIS

4.1 Introduction

This chapter will discuss all the results that have been simulated. Each of the

results were presented and analyzed. The simulation studies were done by using

MATLAB 7.1 and Xilinx ISE 10.1.

4.2 Result using Convolution Encoder in MATLAB Toolbox

As refer from the previous chapter, the random input data taken from Bernoulli

Binary Generator (1011011100) was used with poly2trellis (7, [171 133]) function to

construct the output response value from the Convolution Encoder toolbox block.

36

As refer to Figure 4.1, after the inputs have been inserted, the output response

values were shown by 1101010101.

Figure 4.1: Output response for generator polynomial [171]

37

As refer to Figure 4.2, after the inputs have been inserted, the output response

values were shown by 1101010101.

Figure 4.2: Output response for generator polynomial [133]

Figure 4.3 shows the output response of a MATLAB toolbox blocks build with

poly2trellis (7, [171 133]) and constant rate 1/2. The final result was a combination of

the two output response as get in Figure 4.1 and Figure 4.2. The two graphs were

multiplexed to get the combination of the output response.

38

Figure 4.3: Combination of output response G1 and G2

• Blue line = generator polynomial 1, g1= [171]

• Green line = generator polynomial 2, g2 = [133]

.

39

4.3 Result of developing convolution encoder model using MATLAB Simulink

 By refer from the previous chapter, the incoming data taken from Bernoulli

Binary Generator which is 1011011100 (refer Figure 3.4) was brought into the constraint

register a bit at a time, and the output bits are generated by using modulo-2 addition of

the required bits from the constraint register which is 1111001 and 1011011 (refer

Figure 3.5). The bits to be XORed are selected by the convolution codes as shown in

Figure 3.7.

As refer to Figure 4.4, after the inputs have been XORed by the constraint

register 1111001, the output response values were shown by 1101010101

Figure 4.4: Scope 1 (generator polynomial 1)

40

As refer to Figure 4.5, after the inputs have been XORed by the constraint

register 1111001, the output response values were shown by 1101010101.

Figure 4.5 Scope 2 (generator polynomial 2)

Figure 4.6, show the combination of output response in Figure 4.4 and Figure 4.5

after it have been multiplexed together. The outputs response were encoded by using the

block diagram that has been developed using MATLAB Simulink.

41

Figure 4.6: Scope 3 (combination g1and g2)

• Blue line = output response for XORed generator1polynomial 1

• Green line = output response for XORed generator polynomial 2

4.4 Result analysis

 From observation on Figure 4.4, 4.5, and Figure 4.6, the similarity can be seen

between this graphs and the previous technique used to get the output graph as in Figure

4.1, 4.2 and 4.3. Based on the parameters that have been verified, the new block diagram

was able to be developed to get the same output response. As discussion, the similarity

between these two output response from each block diagram has confirm that the

42

algorithm was developed by using MATLAB Simulink is obviously successful and

ready to be develop again by using Very High Speed Integrated Circuit Hardware

Description Language (VHDL).

The output response will be used as a reference to get the output response by

using Very High Speed Integrated Circuit Hardware Description Language (VHDL)

method. The two output response will be compared each other by using the convolution

encoder design in Simulink and VHDL in Xilinx ISE 10.1

4.5 Result of developing convolution encoder by using VHDL

On order to developed the top level hierarchy of convolution encoder using

VHDL, some part of package that contain all the component declarations that has

completed as part of the architecture need to be done. Below is the part for the exclusive

or gates result simulation.

Figure 4.7: Exclusive OR result

CHAPTER V

CONCLUSION

5.1 Conclusion

 The algorithm has been successfully developed to design the convolution

encoder. The objectives set in this project had been half successful fulfilled such that a

developing the convolution encoder using MATLAB Simulink was finished and ready to

be compared. Besides, the progress to developing the convolution encoder using Very

High Speed Integrated Circuit Hardware Description Language (VHDL) is still on

progress. The comparison has been made so that the algorithm in MATLAB Simulink is

verified to be used as the correct algorithm that can be used in VHDL.

44

 From the simulation result obtained and discussion, some conclusion has been

made. The scope of the project was achieved which is by using the rate 1/2 and

constraint length 7, the algorithm are able to be develop with combination of random

input data, Bernoulli binary generator block.

5.2 Limitation of the Project

In developing this project, there are some problems occur that make this project

slow and did not flow smooth according to the schedule. The problems occur around the

bits that need to be XORed into the constraint register. There are a few Boolean

expressions that need to be configured so that the output graph of development

algorithm is similar with the output response produce by MATLAB convolution encoder

block.

5.3 Future work Recommendation

For future work, the constraint length can be added to be longer, because if

longer constraint lengths, it will produce more powerful codes.

The encoder also can use the punctured bit set. Since the complexity of Viterbi

decoding is exponential in the number of input symbols as constraint length gets large

implementation complexity becomes difficult. By periodically deleting bits via a

puncturing matrix these codes allow for higher rate codes, which give a higher coding

gain while not suffering the implementation penalty from a large value of constraint

length, l.

45

REFFERENCES

[1] A Tutorial on Convolutional Coding with Viterbi Decoding by Chip Fleming

of Spectrum Applications Updated 2006-11-02

[2] Sudhakar Yalamanchili, (2005). VHDL a Starter’s Guide, Pearson Prentice Hall

[3] Punctured Convolutional Coding Scheme for Multi-Carrier Multi- Antenna Wireless

Systems by Christopher Lamont Taylor

[4] Jerry D.Gibson, (2005). The Communication Handbook Second Edition

[5] Frank Vahid, Roman Lysecky (2007). VHDL for Digital Design, Wiley

[6] International Scientific Conference Computer Science’2008, Software Tool for

Simulating Convolutional Encoding and Decoding Used in Communication Systems,

Adriana Borodzhieva, Plamen Manoilov Rousse, University “Angel Kanchev”, Rousse,

Bulgaria

[7] The MathWorks Family Of Products

[8] Charles H.Ruth, Jr. (1998). Digital System Design Using VHDL, PWS Publishing

Company

[9] P. Elias, “Coding for Noisy Channels”, IRE Conv. Record, Part 4, pp. 37-47, 1955

http://home.netcom.com/%7Echip.f/viterbi/tutorial.html%23specapps

46

[10] J. Wozencraft and B. Reiffen, Sequential Decoding, MIT Press, Cambridge, Mass.,

1961

[11] A. Viterbi, “Error Bounds for Convolutional and an Asymptotically Optimum

Decoding Algorithm”, IEEE Transactions on Information Theory, Vol. IT-13, pp. 260-

269, Apr. 1967

[12] Communication System, 4th Edition by Simon Haykin

[13] Starter’s Guide to Digital Systems VHDL and Verilog Design

47

APPENDIX A

Data Sheets

72

APPENDIX B

Program Listing

73

1.0 XOR GATE

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating

---- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

--XOR file

entity cube is

 Port (a : in STD_LOGIC;

 b : in STD_LOGIC;

 outp : out STD_LOGIC);

end cube;

architecture Behavioral of cube is

begin

outp <= a xor b;

end Behavioral;

74

1.2 D FLIP – FLOP

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating

---- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

--D Flip – flop file

entity plop is

 Port (d : in STD_LOGIC;

 clk : in STD_LOGIC;

 clr : in STD_LOGIC;

 ce : in STD_LOGIC;

 q1 : out STD_LOGIC;

 q2 : out STD_LOGIC);

end plop;

architecture Behavioral of plop is

begin

 process (clk)

 begin

 if (rising_edge(clk))then

 if clr = '1' then

75

 q1 <= '0';

 q2 <= '0';

 elsif

 ce = '1' then

 q1 <= d;

 q2 <= d;

 end if;

 end if;

 end process;

end Behavioral;

1.3 Combination of XOR and D flip – flop

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating

---- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity diatas is

 Port (z : in STD_LOGIC;

 clk : in STD_LOGIC;

 clr : in STD_LOGIC;

 ce : in STD_LOGIC;

 o : out STD_LOGIC);

76

end diatas;

architecture Behavioral of diatas is

component cube is

 Port (a : in STD_LOGIC;

 b : in STD_LOGIC;

 outp : out STD_LOGIC);

end component;

component plop is

 Port (d : in STD_LOGIC;

 clk : in STD_LOGIC;

 clr : in STD_LOGIC;

 ce : in STD_LOGIC;

 q1 : out STD_LOGIC;

q2 : out STD_LOGIC);

end component;

signal D1: std_logic;

signal Q3: std_logic;

begin

 D1 <= z;

 u1: cube port map (a=>D1, b=>Q3, outp=>o);

 u2: plop port map (d=>z, clk=>clk, clr=>clr, ce=>ce, q2=>Q3);

end Behavioral;

Bernoulli Binary Generator

	JUDUL:
	594 BENDANG KERAJAAN, NOR FARIZAN BINTI ZAKARIA
	LITERATURE REVIEW

