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Abstract— This paper considers the problem of obtaining in situations where the GPS signal is unreliable, eg. insloor
high quality pose estimation (position and orientation) from  yrban canyon environments or in military environments,
a combination of low cost sensors, such as an inertial mea- g there is considerable interest in algorithms that do

surement unit and vision sensor. A non-linear complementary t ire GPS. Inertial Visi t ¢ that
filter is proposed that evolves on the Special Euclidean Group MO €quire - Inertial vision systems are systems tha

SE(3). Exponential stability of the filter is proved. Simulation ~ combine IMU and on-board camera measurements for pose
results are presented to illustrate simplicity and demonstrate the estimation [11], [7]. Two recent international conferesice
performance of the proposed approach. Experimental results have had workshops on inertial vision systems [18], [4].

reinforce the convergence of the filter. _ Classical approaches, such as linear and extended Kalman

Index Terms— Non-linear Filter, Complementary Filter, Spe- filter techni 91 1121 h difficult t |

cial Euclidean Group. ilter techniques [9], _[ ] have proven difficult to apply
robustly with low quality sensor systems [13]. Neverthgjes

. INTRODUCTION most of the recent examples of autonomous aerial robotic

A fund tal bl . N flight rol fvehicles over the last few years have relied heavily on the

un 3men'al prc;]' ?m n 3? (t)nofm%L:s' 'ght controt Ol pination of inertial sensor and vision systems [5], [1],
unmanned aerial Venicies 1S that ot oblaining an accura 'f5] and there is significant interest in developing simple
estimate of the position and orientation, or pose, of th

. X L : obust estimators that use inertial and visual sensor Egste
vehicle. The underlying pose estimation problem is commop pose estimation
s s o e s i gt 1 1 paper v Sty the desin o complemertary lor
. . onth ial Euclidean gr rovi imat
often rely on data obtained from military grade Inertlal0 the special Euclidean grouji(s) to provide estimates

. ; . of the pose and velocity of a rigid body. The work is
Measurement Units (IMU) and high quality camera system . " ,
with associated cost and export restrictions that proshibitg n extension of the passive complementary filter developed

commercial applications. By comparison, cheaper commeo-n the orthogonal grouSO(3) [8], [6]. The work draws
pp - BY P ' P from earlier work on attitude estimation that exploited the

O o e e ot " uatermion ormulton (14], (17, 15]. vie propse e
gy ers; a direct complementary filter, and a non-linear jpass

surements that often leads to instability of classical kaim complementary filter. The passive filter has a number of

and ex_tended K_alman filter algorithms. . dvantages over the direct filter in its stability and noise
In prior work it has been shown that angular velocity an(il

orientation (or attitude) can be estimated from the outfut %?:\fingw. Simulations of the performance of the filters a
a low cost IMU [13], [8], [6] for a vehicle that is in quasi- '

. . . o Section Il reviews the structure and propertiesSaf(3).
stanonary,_ or hover, flight. C_:onversely, translationasifion Section 1ll describes the proposed target system, inctudin
?nno?evil](;ﬂtg ?:vc Qgéot:]e(jgsdt:]n;igeﬂ:[ggnzelzw ::o?litth”\c/)lfue?r)ortrhse analysis framework and sensor characteristics. A tdirec

L 9 %)mplementary filter is developed in section IV, followed
[2]. Global Positioning System (GPS) can be used to bourb

error growth. However, such a strategy cannot be employed. the development of a passive complementary filter in
9 ' ' 9 PIOY&Rction V. Section VI discusses the practical concerns of
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as a point in the inertial frame. The attitude of the vehisle i



given by a rotation matrix? that represents the attitude ofblock and bottom row zero. The correspondence of body-
{B} with respect tof A}. Positions and vectors expressed irfixed-frame velocities(2, V') to an elementA € se(3) is

the inertial frame{ A}, will be denoted by lower case letters denoted by a wedge operator

while positions and vectors expressed in other frames will b A

denoted by upper case letters. ket { A} denote the linear A=(QV) (8)

velocity and2 € {B} denote the angular velocity of the Note that the wedge operator associates an elemeni(
body-fixed-frame. Note that it is common to work with theyith a particular frame of reference. Thua, in Eq. 8 is

linear velocity in the inertial frame and the angular vetpci associated with the body-fixed-franfe3} since Q and V

in the body-fixed-frame. _ . _ are expressed ifiB}. The adjoint operatorAdy : se(3) —
The standard expression for the kinematics{ 8f} is s¢(3) is defined as
p=v, (1a) Adp A :=TAT . 9)
R = R (1b) The adjoint operator acts to change the frame of reference
where(), is the skew symmetric matrix associated with an element of the Lie-algebra. Thus,
0 —Qg QQ AdT (Q, V)/\ = (w, ’U)/\.
Qe=1 9 0 - , . : :
—Q, O 0 2 We define an inner product and induced matrix norm on

the set ofR™"*™ matrices
(A,B):= 1tr(ATB)

In this paper we will also need to work with the full body (A, A) Lip(ATA) = ||A||2
’ 2 - F

fixed-frame-representation of the body-fixed-frame kinema
ics. Let where||(-)||  is the classical Frobenius norm.
Let P, and P, be projection operators decomposing an
_ _pT _ pT _ T a s
P=—-Fp, V=~ wx = (R€) matrix M € R™ "™ into an anti-symmetric component
denote the position and translational velocity of the viehic Po(}M) and a symmetric componenis (1), given by

(10)

in the body fixed frame. Note that the position is the origin 1 1
of {A} expressed i B}. Equation 1a becomes Po(M) = 5(M = M), Py(M)=(M+M)
P=QP-V. 3) I1l. FILTER DESIGN AND ERROR CRITERIA FOR

] ] ESTIMATION ON SE(3)
The pose of the body-fixed-framéR, p), comprises both

the attitude and position dfB} relative to an inertial frame. N this section, a detailed analysis of the natural error
The pose can interpreted as an element of the Specpé?ordmates and cost functions are presented for an egiimat

Euclidean group of dimension threSE(3). We represent Problem onSE(3). _
an element 0SE(3) by a matrix Let {E'} denote a new frame of reference representing the

best estimate of B}. We represent the framgE} by an

T_ (R p) c RAX4 @) element A P
T = <0 ?1’> € SE(3)
This format, commonly known as homogenous coordinates,

0 1
preserves the group structureSit(3) with the GL(4) opera-  The kinematics ofl’ are given by
tion of matrix multiplication. The inverse element asstaih R R A
with T is T=TA="7 (Q V) (11)

T _pT T
(T ()

whereV € {E} andQ € {E} denote the linear and angular
velocities of frame{E}. The goal of the estimator design
P TA (6) S to choose suitable values féf2, V), as functions of the
measured variables, to ensures thét) — T'(¢).
whereA denotes the body-fixed-frame velocity of the system
A. System Measurements
A= ( QOX ‘(; ) € se(3) @) The sensor suite considered consists of an inertial mea-
surement unit (IMU) along with a camera. The IMU provides
It is easily verified that Eq. 7 is a matrix representation oflirect measurement of angular velocity of the body-fixed-
the kinematics Eqn’s. 1. frame {B}. We assume that the camera is observing a
We think of A as an element of the Lie-algebra®if(3) known target and use a classical pose estimation algorithm
denotedA € se(3), wherese(3) is identified with the subset to estimate the pose ofB}. Linear velocity, though not
of 4 x 4 matrices with an upper left skew symmetfick 3 measured directly, can be reconstructed from the integral

The kinematics ofl" € SE(3) in matrix form are



of acceleration measurements and the derivative of positiovhere (R,, P,, €,, V) are noise free measurements of

component of pose measurements, the true system in the body fixed frame, wiit) = R R.
Since the present paper is an initial investigation we wilThen, for any initial condition such that

assume a simple measurement model that does not include _

bias terms and calibration errors that commonly occur for tr(R(0)) # -1

low-cost sensor systems. The measurement model used |ﬁ1 TH converges exponentially to zero. It follows that

Q, = Q+ ng(t), T — I exponentially and? — R andp — p.
V, =V +ny(t), ; Proof: [Theorem 1] Recall the dynamics of the deviation
R, =Rl R, T =TA — AT

Py =P+ m(t), Define the following candidate Lyapunov functidh

where n(.)(t) denotes a centred Gaussian noise process. L _ 9

The pose estimate algorithms used for the reconstruction of L= 3 HI - THF ) )

(R,, P,) are computationally demanding and these estimates tr(I — R) + 3 [Ipll5

are low bandwidth. The IMU data is high bandwidth while a = Lr+Lp,

high-bandwidth estimate of the linear velocity must also be — 2
g y Where £, = tr(I — R) and Cp = 4 ||p]2 = £ || P[}3.

estimated to ensure good properties of the resulting filter.
Taking the time derivative of g, substituting for2 from

IV. DIRECT FILTER Eg. 17 and settingz, = R andQ,, = ( yields
The coordinateg” of {B} relative to{A} may be inter-
preted as a coordinate transformation r= —tr( )A
= —tr(R(Qx — Adpr Qx))
T:{B} — {A}: (f) e T (”1”) = (Rxfp) = —tr(R(Adgr Qx + KpPo(R)T — Adgr Qy)))
= —Kptr(RP,(R)T)

The estimator frame coordinate frame transformation Given that B —
{E} — {A} and its inversel ! : {A} — {E} are defined tr(Py(R)Po(R)T) = 0,
analogously. Thus we can construct an error coordinate ¢

Ps(R) + P,(R), and that
the derivative ofL becomes

transformations Lr=—Kp HIP’a(R)Hi

T=T7"'T:{E} - {B} Let, (6,a) denote the angle-axis coordinates ®f One

In attitude and position one has has [10]
5 R = exp(fay) log(R) = fa
_ R D _ Y /s > -~ 19
T= (o 1) cos(f) = §(tx(R) 1), ax = GpPu(®) 19
R=R"R, p=RT(p—p) The cost functionCr may be written

If T — I, whereI denotes the identity matrix, theh — 7. Lr =tr(I — R) =2(1—cos(f)) = 4sin(6/2)*.  (20)
The cost function considered in the sequel is

Substituting forsin(f)ax = P,(R) gives
Lp =— Kgsin?(0)||ax||% = —Kgsin?(0)

) SetP = _RT? = R_T(p—ﬁ_). Noting that (17~) = 0, = — 4Kpsin?(0/2) cos?(0/2) = —Kgrcos®(0/2)Lr
yields the following kinematics

L(T) = |1 - T (13)

For 6 # +x then Lg is exponentially decreasing to zero.

T =TA-AT (14)  Note that¢ = £~ if and only if tr(R) = —1.
=T(A — Ads-1 A) Taking the derivative oL p and setting/, = V and P, =
—TA P yields:
where A = (0, V)" € se(3) and Lp= PP "
. PT(—V 4+ RTV — QP)
Oy =0y — Adpr Oy (15) _ o o
V_V_RTV4 Adpr ()P (16) Given thatP* Q. P = 0 and substituting” from Eq. 18
; =112
Theorem 1 (Direct Filter or5E(3)): Consider the sys- Lp=—Kp Hsz = —2KpLp
tem defined in Section Il with error measu& given by This insuresC, converges exponentially to zero and there-
Eqg. 14, along with2 and V' given by: fore 7' — T exponentially. The result follows directly. m
0= Adg () + KrPo(R)T (17) In this proof we have assumed ideal measurements

I _ (R, P,,Q,,V,). Clearly, in such a case it is unnecessary to
V=R,V,+ KpP (18) filter, however, even in the presence of noisy measurements



the expected response of the proposed filter will be as givenThe goal of the filter is to drive the error terffi — I.

in the theorem. Analogous to the previous case, we consider the cost functio
The output of the direct complementary filter estimatoEq. 13,
suffers from coupling between measurement errors. Firstly L(T) = }HI _ T||§r-

the angular velocity estimate, Eq. 17, is adjointed by the

instantaneous rotational errdk, The instantaneous rotation The kinematics ofl’ are
error is derived from the measuremegyf, which is typically

corrupted by low frequency noise. This corrupts the high

frequency angular velocity estimate with a low frequency T =T Adr(A — A),
noise. Secondly, the linear velocity estimate, Eq. 18, will =TA, (22)
propagate low frequency noise presentiy by both the . ) A
measurement term?,, and the innovation term; KpP = where A = (Q, V) € se¢(3) and
~KpR"(p—p) = —Kp(R"P - P).
V. COMPLEMENTARY FILTER ONSE(3) Oy =Adr(Q— Q)
The problems associated with the direct filter can be linked v :R(V -V)+ Qup

to the interpretation of the error tertff = 7-'7. The
error term was interpreted as a coordinate transformation
[ . {E} — {B}. However, the error can be viewed as Theorem 2 (Complementary filter &k (3)): Consider
the coordinates of £’} expressed with respect to the body-the system defined in section Il with deviation measiite
fixed-frame { B}. That is, T is associated with the frame given by Eq. 21, along witlf2 and V given by

of reference{ B}. The non-linear geometry of the Lie-group
SE(3) introduces a complexity that is not present in classical

linear filtering; the errorT is defined with respect to the Qf =y _AKR AdRTAPa(Ry) R (23)
moving frame{B} and not the inertial framg A}. This V=V, = (Q=Q)« P+ Kp(P - Py) (24)
causes undeswable couplmg of system dynamics into th‘vavhere R,, P, 9, V,) are noise free measurements of

Yo Sty .
e o ot v oy (1 UL sytem i he boy e fame, i, — 7]
Then, for any initial condition such that

that is due to the change of reference frame and not a
translational error. The solution is to represent the eeon tr(R(0)) # —1
T in the inertial frame.

Analogous to the adjoint operatoidr that changes
frames of reference associated with elementse(8), there
is an inner-automorphism operator

11— T||% converges exponentially to zero. It follows that
T — I exponentially andR — R andp — p.
Proof: [ Theorem 2] Recall the dynamics of the devia-

tion T from Eq. 22. Define the following candidate Lyapunov
Ir:SE(3) — SE(3) Ir(Q):=TQT™', T eSE(3), functionL,

that acts to change the frame of reference associated with
an element of the Lie-groupE(3). In particular, if T' is
associated with B}, andT € SE(3) is the coordinates of

{B} with respect to an inertial fram@A}, thenZ(T) is  Where againCy = tr(I — R) andLp = L[|5]|3 = L[| P|3.

L= |I-T|%
tr(l — R) + 517113 (25)
= Lr+Lp

associated with the inertial framfed}. Taking the time derivative of , substituting for(2 from
Let 5 o Eq. 23 and lettingR, = R andQ, = Q yields Lp =
T:=Ip(T)=TT" (21)  —Kg||P.(R)||%, and by analogous argument to that used in

¢ the previous proofLr is exponentially decreasing to zero.

denote the errorl represented in the inertial frame o . i > =7 :
Taking the time derivative ofp, letting V,, = V' and

reference. In the coordinate representatiof’ofne has

_ P, = P yields
7 (B D . .
0 1 Lp= PTP
where = PT(—RV 4+ RV — R(2 — Q)« P)
R—RRT substituting forV’ from Eq. 24
p=p—Rp Lp=—Kp||P|} =-2KpLp
It is straightforward to verify that This insuresLp converges exponentially to zero and
thereforeT' converges exponentially to. [ ]

5 BTa_ (P
P=-R'p=R(P-P) The complementary filter avoids the problems identified

Note thatT does not have an interpretation as a mappingith the direct filter. The estimation dynamics Eq. 23
operator. and Eg. 24 contain no cross terms between measurements.



Changes between frames are avoided by making error coiret W = /2L, with W =
parisons in the inertial frame. .

A disadvantage of the complementary filter formulation W= *KP% - %KR%*[” | Pra|
is the increased complexity in the linear velocity estimate W< —KP% + %KR%*m | Praz |l
Eq. 24, with the term(Q — Q) P. This cross product

%. Substituting, we have

Let
between the position of origin in the body fixed frame and ) w1 \
the error in angular velocity couples the linear velocity to Wi = —Kp'y — 5Kpae " || Pr|
orientation, as a correction for the convergence in orienta Wo= —Kp%W + LKpae " || Pl

tion. However, as WI|! be de_monstrated_ln the next SectioRy o W, < W < W, and, Clearly, if bothi¥; and ¥,
this term can be omitted without affecting the exponenti

. onverge to zero, thell/ converges to zero. It is straight
convergence of the filter.

forward to show that
VI. PRACTICAL IMPLEMENTATION Wy = e Krtyw,(0)

The filters developed in the prior two sections may be — KnollPraall (o=pt _ o~ Krt)
implemented using any sensible interpolation scheme.
this section we discuss implementing such integration wi
complementary filter described in section V. terms converge to zero. Analogously, converges to zero

First we address error coupling in the translation term frorﬁnd thusWw converges to zero. Since; and Wa bo_th
the angular velocity measurement. Recall Eq. 24: converge exponentially to zerdl’ converges exponentially
to zero. ™

- A A A As will become apparent from the figures in section VI,
Vi=Vy = Q= Q)< P+ Kp(P = F) this modified form ofV allows a temporary divergence in
The(Q—9,) . P term will not exactly cancel with the2—  the position estimate while the system undergoes a transiti
Q). P term in the Lyapunov function due to the noise in thdo correct large orientation error. The selection of gaifis
measuremer,. While zero mean random noise will ensureand Kz, addressed in section VI-B, allows this deviation to
that the expected value of the resulting filter has the desiré’e controlled to an extent.
properties, the cross term increases the high frequensg noi , i i
in the position estimate. We may eliminate this noise in thé- Discrete integration orsE(3)
position estimate by discarding the problematic terms, by Euler integration is the simplest form of numerical integra
using a modified form of the estimation equations. tion. The value over time is incremented as if the derivative
Proposition 3 (Convergence for alterdd): Consider the is constant at the last received value between samples.
statement of Theorem 2. Let and 5 be two positive

| .
ﬂgs £ and Kp are both greater than zero, the exponential

constants such that Ytrr = yr + 7Y(1)
1 5 op Wherer is the time step. IIBE(3), the Euler step must be
Lr < 5 el constrained to lie on the Lie group. A simple choice is
over a bounded translation area such that T(t+7)= exp(TA(t))T(t)
I1P@®)]] < || Pras]| for all £. where exp is the matrix exponential. Note that there are
N ’ explicit forms for the matrix exponential BE(3) based on
The estimation dynamics of Eq. 23 and Rodriguez formulae that are computationally tractable. Fo

. . our filters one obtains
V=V, +Kp(P—-P,) (26)

a N N A

instead of Eq. 24 then the exponential convergencé of AlD) = (Q(t)’ V<t))
remains valid. T(t+7)= exp(rT(t)A®)T(t)")T(t)
Proof: [Proposition 3] Recall the deviation measure,nere we multi

N ly by the exponential oAd;) A(T
from Eq. 21. LetL = 1||P||* be a candidate Lyapunov By by P 70 AT)

corresponding t@'~! = 7! Ad; A.

funct|on. . . . . As an alternative to Euler integration, we may use Runge-
L= PT(-RV+RV - R(Q—Q)P) Kutta integration to attempt to eliminate this high freqexen
L= PT(-KpP,— R(Q—Q)xP) noise. The second-order method [19], which integrates by an
L= —Kp HPH2 — PTR(Q - Q)x P estimate of the derivative at the midpoint of the step, is

E. < —2KpL-V2L H(Q - Q)X || ”Pmaw” Yirr = Ui+ ko

Given that||(Q2 — Q) || is bounded byK zae™?*, £ can be ko= TEt+ 57,5+ 3k1)
bounded as follows k= 7t ye)
L> —2KpL—\2LKpoe || Pl wherer is again the time step. For our systemSE(3) we

L< —2KpL+\V2LKpoe || Pl make the simplification th&i(¢, y(¢)) is independent of, as



Anglular Deviation vs time ~ SE3 Convergence for (i, n, g, n,) = (0.0, 0.0, 0.0, 0.0)

the estimator converges to the true state without additiona :

kinematics. 7
T(t+7) = exp(Ti(exp(37A(t)T(t)T(t) o T
For implementation in our system, this translates into L e R R R B R
N - P n Deviaiton vs time — SE3 Converger fc (rh p,no‘nv):(uﬂ 0.0, 0.0,0.0)
Qgt)X = QU (t)x +AKR AdR(t)T IP)CL/(R’L/ (t))T ' 7\){9“
V(t) = Vy(t) — () — (1)< P(2) | — =
—Kp(P(t) — P(t)) -
N A - N e
_Ap= Q. Vo) [
T(t+57)= exp(37(ABT()NTE) ' tt '
Q<t + %T) = Qy(t)x + Kr AdR(t-‘r%T)T ]Pa(Ry(t))T Fig. 1. T vs. time (in iterations) foISE(3) convergence from random
V(t + %T) _ Vy(t) _ (Q(ﬁ + %T) _ Qy(ﬁ « D (t + %7.) element to another random element with no sensor noise. TypEsalt
‘ ~ f ted testing.
—|—Kp(P(t ¥ %7’) - Py(t)) rom repeated testing
A(f + %T) = (Q(t +A %T), V(t :i‘ %T)) " ) ) Anglular Deviation vs time - SE3 Convergence for (1, n, no. n,) = (10, 1.0, 1.0, 1.0)
Tt+7)= exp(rT(t+ %T)A(t + %T)T(t + %T)fl)T(t) ’ ‘

where again we make the adjustment of the direction of
integration as previous. While this method reduces the high L
frequency noise from Euler integration, it still incorptas 4

the same noise in the position estimate.

N g ny) = (1.0, 1.0, 1.0, 1.0)

lIpIl

B. Gain selection

X
v
z

Mo sty N

The values of the gain&p and K correspond to the
cross over frequencies between the response to the pose =
measurements?, and P, and the velocity measurements B
, andV,,. Values of the gains corresponds to the crossover .
frequencies in radians per second. Values will typically b&ig- 2. ' vs. time (in iterations) foiSE(3) convergence from random
selected based on analysis of the sensors used, but will ﬁ' ment tToypei‘Q;tT:;urlf‘?r%?nmr:;gégttgvs'irngrfo'se variances of d.@llo
somewhere between zero and the Nyquist frequency of the
sampling rate of the pose measurement. Values higher than . . . . . )
the Nyquist frequency of the pose measurement may be used®mulations were performed using a variety of white noise
to aggressively counteract off-set errors occurring due 3/0C€SS€S and both the original and modified (proposition 3)

dropped frames or missing pose measurements when trackffRjnPlementary filter dynamics. All images depict simula-
moving targets. tions of the same randomly generated system with changes

When employing the modified form df, the system will only to the filter parameters. The filter parameters/dig=

- IRl X .
undergo a divergence in the position estimate during period: £7 = 1. 7 = 107", with no sensor noise or bias and
of high angular velocity. The ratids /K » determines the iteration via Euler integration unless otherwise specified
relative timing of this divergence appeafing in the positio Noise variances have been selected to be excessively high to

estimate. A high value will delay the divergence and spread greate adverse conditions. Noise was added to measurements

over time. Conversely a low value may cause an immediat8S follows

sharp, spike. « R,: Noise as a rotation by radians around a uniform
randomly selected axis, wheteis drawn from a zero
mean Gaussian process with a specified variance in

VII. SIMULATION RESULTS

The proposed design of the complementary filter has
been simulated using MATLAB 7.1. Both the system and e
estimator are initialised to random elements of a trarcstati
subspace 0ofE(3)

o The rotation, R, is initiated to a rotation af — 0.1

around random axis selected uniformly.

radians.

P,, Q, and V,: Noise added as a three independent
component vector drawn from a Gaussian process with
a specified variance in units.

All noise variance are specified independently. Typical re-
sults for tests with no noise are indicate in figure 1.

« The position, p, is a selected from the cube The system proved highly stable under noise on the
(=10..10,—10..10, ~10..10) under a uniform random measurement®,,, P,, andV,, yet sensitive to noise ify,.

distribution.

Despite this, when noise is applied to all sensors, the filter

Repeated testing using this selection identifies numericathieves a good degree of convergence as depicted in figure
errors that may not be apparent when either the target @r Contrasting the results of figures 3 and 4, it is clear that

estimate is initialised to the identity matrix or other ebsmts
of SE(3) inside the unit cube.

the majority of the disturbance is due to the noise on the
angular velocity sensor. When this is removed, the filter is



Anglular Deviation vs fime - SE3 Convergence or (1 . ng, n,) = (0.0, 0.0, 1.0,0.0) Anglular Deviation vs time - SE3 Convergence for (y, ng, ng, n,) = (0.0, 0.0,0.0, 0.0)
0 —%
Roll Roll
21 ~ = —Pitch 2r ~ = —Pitch
Yaw Yaw

0 2 4 6 8 10 12

Fig. 3. T vs. time (in iterations) foISE(3) convergence from random Fig. 5. T vs. time (in iterations) forSE(3) convergence from random
element to another random element with noise variances ofridhly the  element to another random element with no sensor noise ugingf
angular velocity sensor. Typical result from repeatedrigst proposition 3. Typical result from repeated testing.

Anglular Deviation vs time ~ SE Convergence for ( 1y, N, ng, ) = (1.0, 1.0, 0.0, 1.0) Anglular Deviation vs time ~ SE3 Convergence for (fy, N, ng, 1) = (0.0, 0.0, 1.0, 0.0)
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Position Deviaiton vs time - SE3 Convergence for (1, nj, n, n,) = (1.0, 1.0, 0.0, 1.0) Position Deviaiton vs time ~ SE3 Convergence for (ry,, ni, no, n,) = (0.0, 0.0, 1.0, 0.0)
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Fig. 4. T vs. time (in iterations) forSE(3) convergence from random Fig. 6. T vs. time (in iterations) forSE(3) convergence from random

element to another random element with noise variances ofrlall sensors ~ element to another random element with noise variances of 1.0ny

except the angular velocity sensor. Typical result fromeegpd testing. the angular velocity sensor usiig of proposition 3. Typical result from
repeated testing.

comparatively well behaved. It should be noted, that nog onl .
does angular velocity noise cause delayed convergence atic? fate of 50 Hz, and vision measurements at a rate of 10

oscillation in the rotation estimate, it also induces arseiff Hz. o
error in the position estimate. Data from the Vision and IMU measurements were har-

Analysis of the effects of noise on other sensor yieldglon'sed’ to place them n thg same (body f|xgd) frame
less dramatic results. Noise on the orientation sensoyéela .Of_ reference, and the filter appl!e_d. The pose est|m:_;1te was
convergence of the rotation component and causes oscil'Qlt'ated at no rotational or position offset. Flltgr gaios
tions around the set point. Similarly, noise on the positior{{R = 1 andKp = 10 were selected by hand tuning. A pre-

or linear velocity sensors causes oscillations around ¢te J”ter was used to testllTats_ velocity ftr_om accelerafltlon ?jnd
point, though it did not delay convergence. pose measurements. No bias correction was performed on

Changing the estimate dynamics to those of propositio%ither the gyrometer measurements or velocity estimate.
The results obtained using the experimental data are

3 resulted in the temporary divergence of the position Whil(éepicted in figures 8 and 9. These graphs compare estimate

the 3”9“""?r slope is h|gh, as deplcte'd. n f|gurq > . from the 3DMG IMU’s industrial filter, vision measurements
Under high angular noise, the modified formiéfremains . . .
and our filter. As can be seen, our filter quickly overcomes

stable, undergoing little additional disturbance thandte- . oo i initial conditions and tracks the moving target
dard form, as depicted in figure 6. well o

VIIl. EXPERIMENTAL RESULTS IX. CONCLUSIONS

We applied the filter developed in section V to experimen- In this paper we have provided theoretical developments
tally obtained data to analyse the real world performander both a direct and complementary filter, evolving dirgctl
of the algorithm. We used experimental data obtained byn the SE(3) manifold with exponential convergence. We
Thibault Cheviron [3] from a radio controlled helicopter indeveloped methods for practical implementation of these
hover over a visual target. The experimental platform cgiesi filters and identify theoretically based guidelines formgai
of a Microstrain 3DMG IMU and a Philips Webcam mountedselection.
on a Vario Benzin-Acrobatic 23cc radio controlled heliGapt ~ We provided simulations analysing the effects of noise in
as depicted in figure 7. The inertial sensor data is acquire@rious sensor measurements on the complementary filter.



Fig. 7. Experimental Platform: Vario Benzin-Acrobatic 23@dio con-
trolled helicopter, fitted with low-cost, lightweight canaeand IMU.
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Fig. 8. Attitude estimate from experimental results, comgaestimates
from the IMU’s industrial filter, vision measurements and oltefi

Evolution of Helicopter Position in Inertial Frame
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Fig. 9. Position estimate from experimental results, compgaeistimates
from vision measurements and our filter.

We identified a high set-point sensitivity to angular vetgpci
noise, and a moderate convergence time sensitivity to -orien
tation sensor noise.

We provided experimental results verifying the operation
of our filter on real world data.
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