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Abstract

Hyperspectral unmixing is a crucial preprocessing step for material classification and recognition. In the last

decade, nonnegative matrix factorization (NMF) and its extensions have been intensively studied to unmix hyper-

spectral imagery and recover the material end-members. As an important constraint for NMF, sparsity has been

modeled making use of the L1 regularizer. Unfortunately, the L1 regularizer cannot enforce further sparsity when

the full additivity constraint of material abundances is used, hence, limiting the practical efficacy of NMF methods

in hyperspectral unmixing. In this paper, we extend the NMF method by incorporating the L1/2 sparsity constraint,

which we name L1/2-NMF. The L1/2 regularizer not only induces sparsity, but is also a better choice among

Lq(0 < q < 1) regularizers. We propose an iterative estimation algorithm for L1/2-NMF, which provides sparser and

more accurate results than those delivered using the L1 norm. We illustrate the utility of our method on synthetic

and real hyperspectral data and compare our results to those yielded by other state-of-the-art methods.

Index Terms

Hyperspectral unmixing; Nonnegative matrix factorization; Sparse coding, L1/2 regularizer

I. INTRODUCTION

Hyperspectral data is acquired by high spectral-resolution imaging sensors, containing hundreds of contiguous

narrow spectral band images. Due to the low spatial resolution of the sensor, disparate substances may contribute

to the spectrum for a single pixel, leading to the existence of “mixed” spectra in hyperspectral imagery. Hence,
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hyperspectral unmixing, which decomposes a mixed pixel into a collection of constituent spectra, or end-members,

and their corresponding fractional abundances is often employed to preprocess hyperspectral data [1]. Many

hyperspectral unmixing methods have been proposed in recent years. These include N-FINDR [2], vertex component

analysis (VCA) [3], independent component analysis (ICA) [4], alternating projected subgradients (APS) [5],

minimum volume based algorithms [6], [7], [8], [9], [10] and flexible similarity measures [11].

Most of these methods assume a linear spectral mixture model for the unmixing process. If the number and

signatures of end-members are unknown, unmixing becomes a blind source separation (BSS) problem. This is

compounded by the need to estimate the parameters of the mixing and/or filtering processes. It is impossible

to uniquely estimate the original source signals and mixing matrix if no a priori knowledge is applied to the

BSS. Various approaches have specific physical and statistical assumptions for modeling the unmixing process.

For example, the assumption of source independence leads to the ICA method [4], whereas the assumption of

Markov random distribution of abundance leads to the spatial structure method in [12]. Since the source signals are

normally independent from one another in some specific frequencies, it can be assumed that the subcomponents of

the sources are mutual independent, which leads to subband ICA [13].

From the linear algebra point of view, BSS is a constrained matrix factorization problem that has found numerous

applications in feature and signal extraction [14]. For general matrix factorization problems, traditional matrix

computation tools such as singular vector decomposition (SVD), QR decomposition and LU factorization can be

used. However, these tools can not be directly applied to hyperspectral unmixing because two constraints have to

be considered [15]. The first constraint is the nonnegativity of both spectra and their fractional abundances. This

is natural as the contribution from end-members should be larger than or equal to zero. Secondly, the additivity

constraint over the fractional abundances has to be considered, which guarantees the addition of the proportional

contribution from the end members matches the mixed observation.

Non-negative matrix factorization (NMF) [16], [17], which decomposes the data into two nonnegative matrices, is

a natural solution to the nonnegativity constraint [18]. From the data analysis point of view, NMF is very attractive

because it usually provides a part-based representation of the data, making the decomposition matrices more intuitive

and interpretable [19]. However, the solution space of NMF is very large if no further constrains are considered.

This, added to the fact that the cost function is not convex, makes the algorithm prone to noise corruption and

computationally demanding.

To reduce the space of solutions, extensions of NMF including symmetric NMF, semi-NMF, non-smooth NMF,

and multi-layer NMF have been proposed [19]. Researchers have also tried improving NMF based unmixing methods

by imposing further constraints [18], [20], [21]. In [22], Donoho and Stodden analyzed the assumptions required

for NMF to generate unique solutions and lead to a well-defined answer. More recently, sparsity constraints have

gained much attention since they allow exploiting the notion that most of the pixels are mixtures of only a few of

the end-members in the scene [23], [24]. This implies that a number of entries in the abundance matrix are zeros,

which manifests itself as a large degree of sparsity.

Regularization methods are usually utilized to define the sparsity constraint on the abundance of the end-members.

April 11, 2011 DRAFT



3

Along these lines, the L0 regularizer accounts for the number of zero elements in an abundance matrix so as to yield

the most sparse result given a cost function. However, the solution of the L0 regularizer is an NP hard optimization

problem that cannot be solved in practice. The L2 regularizer, on the other hand, generates smooth but not sparse

results [25]. In general, the L1 regularizer is the most popular choice for achieving sparsity of the abundance matrix

[26], [27], [28].

More recent works on this topic include the semi-supervised algorithms based on sparse regression in [29], [24].

These methods assume that the pixel signature can be expressed in the form of linear combinations of a number

of pure spectral signatures known in advance. As the library of pure spectral signatures contain more possible

sources than those actually present in the scene. The L1 regularizer is used to favor sparse solutions where only

a subset of signatures is selected as end-members. Guo et al [30] also used a sparse regression model to estimate

the abundances, while the end-members are extracted using the N-FINDR algorithm . In [31], sparsity-promoting

priors are used with an extension of the iterated constrained end-member (ICE) algorithm [32] to determine the

number of end-members, in which the sparsity is achieved by a zero-mean Laplacian distribution akin to the L1

regularizer.

Despite the importance of sparsity in hyperspectral unmixing, and the wide use of L1 regularizer, the sparsity

property of the regularizers and its influence on the unmixing performance has not been thoroughly investigated.

Recently, the properties of fractional Lq(0 < q < 1) regularizers have been studied in [33] and [34]. The Lq(0 < q <

1) regularizers give sparser solutions than their L1 counterpart. Furthermore, the sparsity of the Lq(1/2 ≤ q < 1)

solution increases as q decreases, whereas the sparsity of the solution for Lq(0 < q ≤ 1/2) does not overly change

with respect to q. Xu et al [35] have shown that the L1/2 regularizer is an unbiased estimator which imposes strong

sparsity upon the minimisation problem at hand.

In this paper, we introduce the L1/2 regularization into NMF, which we name L1/2-NMF, so as to enforce

the sparsity of end-member abundances. The L1/2-NMF presented here is implemented through the multiplicative

update algorithm in [36], which is an iterative application of a rescaled gradient descent approach so as to ensure

convergence. In our approach, the full additivity constraint is naturally embedded in the parameter update process.

The experiments on synthetic and real-world hyperspectral data demonstrate the effectiveness of our L1/2-NMF

approach. We also generalize the method to Lq-NMF for 0 < q < 1, and discuss the sparsity imposed by the

regularizers upon the unmixing task.

Our contribution is, hence, to introduce a novel NMF method which recovers a sparse solution to the unmixing

problem using an optimization algorithm that guarantees stable convergence to a local minimum. We show that

the L1 regularizer is not a good choice in enforcing the sparsity of hyperspectral unmixing and propose the use of

Lq(0 < q < 1) NMF instead. We analyze the behavior of these regularizers and point out that q = 1/2 is a sound

option to the problem. The paper also provides a link between the sparsity-constrained NMF and minimum volume

methods.

The rest of the paper is organized as follows. In Section II, we introduce the linear spectral mixture model

and brief background to the nonnegative matrix factorization. This section also presents our L1/2-NMF model for
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unmixing. Section III derives the multiplicative update algorithm employing a rescaled gradient descent scheme.

Implementation issues are discussed later on. These include the consideration of the unmixing additivity constraint.

Section IV extends the algorithm to Lq-NMF for 0 < q < 1, and discusses some important factors related to

the proposed method. Results on synthetic and real-world data are reported in Sections V-A and Section V-B,

respectively. Finally, Section VI draws conclusions and gives suggestions on future research.

II. L1/2-NMF UNMIXING MODEL

In a hyperspectral image, each pixel describes the spectral radiance of the corresponding ground location. Due

to the low spatial resolution of hyperspectral imagery, a pixel often covers several different materials. Therefore,

the spectral irradiance is a combined result of several materials according to their distributions and configurations.

Unmixing aims at detecting the existence of the contributing materials in the region and estimating their proportions.

To do so, the development of mixing/unmixing models is crucial. These models should consider the interpretation

of the image formation process, be physically meaningful, statistically accurate and computationally feasible. In

this section, we introduce the L1/2-NMF mixture model used throughout the paper.

A. Linear spectral mixture model

Classical linear mixing is a way to represent the spectrum of a pixel of L wavelength-indexed bands in the

observed scene based upon K end-member abundances. It is given by

x = As+ e (1)

where x denotes a L×1 vector of observed pixel spectra in a hyperspectral image, s is a K×1 vector of abundance

fractions for each end-member, e is a L× 1 vector of an additive noise representing the measurement errors, and

A is a L×K nonnegative spectral signature matrix whose columns correspond to an end-member spectrum.

Using matrix notation, the mixing model above for the N pixels in the image can be rewritten as

X = AS+E (2)

where the matrices X ∈ RL×N
+ , S ∈ RK×N

+ and E ∈ RL×N represent, respectively, the hyperspectral data, the

end-member abundances, and additive noise. Note that, in general, only X is known in advance, while the other

two matrices, A and S are our targets of computation. Moreover, from observation, we can see that the product in

the first right-hand side term leads itself to a matrix factorization problem.

B. NMF with sparsity constraints

Nonnegative matrix factorization (NMF) has received considerable attention in the fields of pattern recognition

and machine learning, where it leads to a “part-based” representation since it allows only additive combination

of factors. Linear mixing models assume that the hyperspectral image is constituted of spectral signatures of end-

members with corresponding nonnegative abundances. Therefore, the non-negativity of A and S mentioned above is
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a natural property of the measured quantities in hyperspectral data. This non-negativity can replace the independence

constraint used for BSS and exploited by methods such as ICA.

To obtain A and S, NMF can be performed by minimizing the difference between X and AS and enforcing

non-negativity on A and S. Such difference is often measured using the Euclidean distance, relative entropy, or

Kullback Leibler divergence. The loss function for NMF based upon the Euclidean distance is as follows

C(A,S) =
1

2
∥X−AS∥22 (3)

Although there are numerous optimization algorithms to estimate A and S, it is difficult to obtain a globally

optimal solution because of the non-convexity of C(A,S) with respect to both A and S. Moreover, NMF is always

utilized with other constraints, such as sparsity. This is due to the fact that NMF lacks a unique solution. This can

be easily verified by considering AS = (AD)(D−1S) for any nonnegative invertible matrix D.

Note that NMF with sparsity constraints has been used as an effective tool for dimensionality reduction, feature

extraction and source separation [19]. A sparse representation of the data by a limited number of components is

supported from many fields such as statistics, microeconomics, biology, artificial intelligence, and information

retrieval. Studies have shown that sparse coding provides a set of spatially localized, oriented and bandpass

representations similar to those found in primary visual processing [37]. The importance of sparsity is also illustrated

in compressive sensing [38]. Likewise, sparsity is an intrinsic property of hyperspectral data. In most cases, the

abundance distribution of any end-member does not apply to the whole scene. This implies that the mixed pixel

is usually the superposition of only a few end-members, but not all those present in the scene. That is, for each

end-member, its abundance is localized with a degree of sparseness.

For this reason, here we consider NMF with a sparsity constraint as an objective function for our minimization

problem. This objective function is the combination of the reconstruction error and a sparsity measure as follows

C(A,S) =
1

2
∥X−AS∥22 + λf(S) (4)

where λ ∈ R+ is a scalar that weights the contribution of the sparsity measure function f(·) of the matrix S, which

is usually regarded as a regularization term.

C. NMF with L1/2 regularizer

Many forms of regularizers f(y) exist such that sparsity is encouraged. In recent years, there has been an

increasing interest in the L1 regularizer since it yields sparse solutions for training samples grows logarithmically

with respect to the number of outliers in the set. This indicates that the L1 regularizer can be effective with

small sample-sizes in a high-dimensional space. Furthermore, the L1 regularizer has a better asymptotic sample-

consistency than its L2 counterpart. However, for spectral unmixing, the L1 regularizer does not enforce the full

additivity constraint. Finding new regularizers that yield sparse solutions while preserving the additivity constraint

over the end-members is a capital problem in NMF-based unmixing methods.

Here, we explore the use of the L1/2 regularizer, which is an alternative to the L1 counterpart. As mentioned

earlier, the L1/2 regularizer is a sparsity-promoting function [35]. Further, the L1/2 regularizer not only can provide
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sparse solutions close to those yielded when L0 is used, but is also computationally efficient. Based on Equation

(4), the L1/2-NMF model for unmixing is given by

C(A,S) =
1

2
∥X−AS∥22 + λ∥S∥1/2 (5)

where

∥S∥1/2 =

K,N∑
k,n=1

sn(k)
1/2 (6)

and sn(k) is the abundance fraction for the kth end-member at the nth pixel in the image.

III. ALGORITHM FOR L1/2-NMF BASED UNMIXING

We now focus on achieving a factorization solution compliant with the additivity constraint over the end-members.

In this section, we first propose a general multiplicative iterative algorithm for L1/2-NMF and prove its convergence.

Then, we discuss implementation issues related to explicitly enclosing the additivity unmixing constraint into the

optimisation process, parameter initialisation, estimation of the number of end-members, and the setup of the

parameter λ.

A. Multiplicative Iterative Algorithm for L1/2-NMF

The objective function described in Equation (5) includes a quadratic error term added to a sparsity-inducing

regularizer. This cost function is convex with respect to the individual parameters A and S. The most popular

algorithms for solving NMF are iterative ones which minimize a multi-variate objective function by dividing

the parameters into two sets and adopting a dual-step process. In the first step, a subset of the parameters is

updated while the others remain fixed. The second step proceeds conversely by fixing the newly updated parameters

while estimating the solution of the second subset. Despite effective, such alternating solutions have a numbers of

drawbacks, such as slow and unstable convergence and susceptibility to spurious local minima.

Multiplicative iterative algorithms, which belong to the majorization-minimization family, have relatively low

complexity and can overcome some of these drawbacks [39]. Lee and Seung derived a multiplicate update rule for

standard NMF whose convergence has been proved [36]. When applied to Equation (3) this multiplicative update

becomes

A ← A. ∗XST ./ASST (7)

S ← S. ∗ATX./ATAS (8)

An extension of the above multiplicative rule for L1-NMF was later developed by Hoyer [40] as follows

A ← A. ∗XST ./ASST (9)

S ← S. ∗ATX./(ATAS+ λ) (10)

where (·)T denotes the transpose of the matrix, .* and ./ denote element-wise multiplication and division, respec-

tively.
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As for the L1/2-NMF in Equation (5), the rescaled gradient descent introduced in [40] can be achieved by a

modification of the above multiplicative update rules as follows

A ← A. ∗XST ./ASST (11)

S ← S. ∗ATX./(ATAS+
λ

2
S− 1

2 ) (12)

Likewise, where S− 1
2 is given by the sum over the element-wise square root for each entry in the matrix S. If any

entry in S is zero, a very small value will be added so as to avoid trivial solution.

Note that the update rule for A in (11) is the same for all three versions of NMF. For the sake of brevity, we

only address the update rule for S in Equation (12). To make our elaboration clearer, we focus on each column

of S alone. We can do this without any loss of generality since the objective function is separable in the columns

of S. For convenience, let these columns be denoted s. Similarly, the corresponding row of X is denoted x. The

column-wise objective function becomes

C(s) = 1

2
∥x−As∥22 + λ∥s∥ 1

2
(13)

To guarantee the convergence of the update rule in Equation (12), we now proceed to show that the objective

function decreases monotonically. To do so, we define an auxiliary function G(s, st) satisfying the conditions

G(s, s) = C(s) and G(s, st) ≥ C(s) such that C(s) is non-increasing when updated using the following equation

s(t+1) = argmin
s

G(s, st) (14)

This is guaranteed by

C(s(t+1)) ≤ G(s(t+1), st) ≤ G(st, st) = C(st) (15)

Following [40], we define the function G as

G(s, st) = C(st) + (s− st)(∇C(st))T +
1

2
(s− st)K(st)(s− st)T (16)

where the diagonal matrix K(st) is

K(st) = diag

((
ATAst +

λ

2
(st)−

1
2

)
./st

)
(17)

Here, diag(s) denotes the matrix whose diagonal is given by the entries of the vector s while off diagonal elements

are null. Since G(s, s) = C(s), the Taylor expansion of C(s) is

C(s) = C(st) + (s− st)(∇C(st))T +
1

2
(s− st)

(
ATA− λ

4
diag

(
(st)−

3
2

))
(s− st)T +R

(
∇(n≥3)C(st)

)
(18)

where the function R denotes the Lagrange remainder. Note that the constraint G(s, st) ≥ C(s) is satisfied if

(s− st)

(
K(st)−ATA+

λ

4
diag

(
st
)− 3

2

)
(s− st)T ≥ 0⇒

(s− st)

(
K′(st) +

λ

2
diag

(
st
)− 1

2 +
λ

4
diag

(
st
)− 3

2

)
(s− st)T ≥ 0 (19)
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where we have omitted R as it appears on both sides of the inequality and K′(st) is defined as

K′(st) = diag
(
ATAst./st

)
−ATA (20)

Lee and Seung [17] proved the positive semidefiniteness of K′(st). Due to the non-negativity of s, the other two

terms in Equation (19) are non-negative. This is due to the fact that the sum of two positive semidefinite matrices

is also positive semidefinite. Further, Equation (19) holds by substituting Equation (16) into Equation (14). This

results in the update rule

s(t+1) = st −∇C(st)K−1(st)

= st −
(
ATAst −ATx+

λ

2

(
st
)− 1

2

)
. ∗ st./

(
ATAst +

λ

2

(
st
)− 1

2

)
= st. ∗ATx./

(
ATAst +

λ

2

(
st
)− 1

2

)
Note that Equation (12) is the matrix form of the the update rule above. Thus, as long as the initial values of A

and S are set in a strictly positive manner, the update rule guarantees that the elements of the two matrices A and

S remain non-negative. This makes the objective function in Equation (5) decrease monotonically at each iteration

until convergence has been reached.

B. Implementation Issues

As mentioned earlier, the L1/2-NMF is not a convex optimization problem with respect to both A and S. As a

result, the rescaled gradient decent algorithm with the above update rules can only attain a local minimum. This

implies that a number of factors will influence the final result. Firstly, the full additivity constraint of the end-

member abundances can reduce the solution space of the optimization. Moreover, it should be noted that the full

additivity constraint differs from the normalization of the columns of the matrix A often introduced in non-negative

factorization approaches so as to avoid trivial solutions. Here, we employ a method akin to that in [41] where the

data matrix X and the signature matrix A are augmented by a row of constants defined by

Xf =

 X

δ1T
N

 Af =

 A

δ1T
K

 (21)

where δ controls the impact of the additivity constraint over the end-member abundances. The larger the δ, the

closer the sum over the columns of S are to unity. In each iteration, these two matrices are taken as the input of

the update rule of S given in Equation (12) as an alternative to X and A.

Note that the initialization of the signature matrix A can be computed by applying the end-member extraction

method in [42], or using manually chosen data [43]. For the sake of easiness of implementation, A and S are both

initialized by setting their entries to random values in the interval [0, 1]. Since the estimation of the number of

end-members in the scene is crucial in the unmixing process, here we resort to the HySime algorithm [44]. We do

this due to its reliability as an estimators for signal subspace dimensionality.
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We have adopted two stopping criteria for our iterative optimisation. The first of these is the maximum iteration

number, which, in our experiments is set to 3000. The second one is the gradient difference of the cost function C

between the current iteration and the starting value, i.e.

∥∇C(Ai,Si)∥22 ≤ ϵ∥∇C(A1,S1)∥22

where ϵ is set to ϵ = 10−3 in our experiments. Once either of these criteria is met, the optimisation ends.

The value of the parameter λ is dependent on the sparsity of the material abundances. Since these abundances

cannot be obtained a priori, we use an estimator for λ based on the sparseness criteria in [26]. This is given by

λ =
1√
L

∑
l

√
N − ∥xl∥1/∥xl∥2√

N − 1
(22)

where xl denotes the lth band in hyperspectral imagery.

In order to improve the robustness of the algorithm, not all elements in S are updated following the application

of Equation (12). For those elements less than a predefined threshold, we omit the additional term corresponding to

the L1/2-sparsity operator. In our experiments, the threshold is set to 10−4. Note that the computational complexity

at each iteration is linear with respect to the number of pixels in the scene, i.e. N , so the algorithm can be applied to

hyperspectral imagery of medium and large sizes. For very large hyperspectral images, projected gradient algorithms,

random block-wise methods, multi-layer processing and parallel processing schemes can be used [19].

Finally, it should be noted that our approach is quite general in nature. Indeed, other constraints can be added.

For example, spatial information can be added to the L1/2-NMF in a manner akin to that applied in [20]. Our

L1/2-NMF based unmixing algorithm is summarized below.

Algorithm: L1/2-NMF for Hyperspectral Unmixing

1) Estimate the number of K end-members using the HySime algorithm

2) Estimate the weight parameter λ according to the sparsity measure over X.

3) Initialize A and S by randomly selecting entries in the interval [0, 1]. Rescale each column of S to unit

norm.

4) Repeat

a) Augment X and A to recover Xf and Af , respectively

b) Do Cold = C(Af ,S)

c) Update A by applying Equation (11)

d) Update S making use of Equation (12)

e) Do Cnew = C(Af ,S)

until the maximum number of iterations has been reached or ∥Cnew − Cold∥22 < ϵ
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IV. METHOD EXTENSION AND DISCUSSIONS

A. NMF with Lq regularizer

To generalize the proposed algorithm to Lq-NMF for 0 < q < 1, we note that, in theory, all Lqs for 0 < q < 1

can be used for sparsity NMF. Extending the proposed method to NMF with Lq regularizer is straightforward. It

follows the definition and algorithm in sections II-C and III-A. More specifically, the Lq-NMF model for unmixing

is given by

C(A,S) =
1

2
∥X−AS∥22 + λ∥S∥q (23)

where

∥S∥q =

K,N∑
k,n=1

sn(k)
q (24)

and sn(k) is the abundance fraction for the kth end-member at the nth pixel in the image.

The multiplicative update rules to solve C(A) and C(S) are

A ← A. ∗XST ./ASST (25)

S ← S. ∗ATX./(ATAS+
λ

2
Sq−1) (26)

Similar to the L1/2 case, we can simplify the solution by defining a column-wise objective function

C(s) = 1

2
∥x−As∥22 + λ∥s∥q (27)

Following the induction in Equations (14)-(20), we get

s(t+1) = st. ∗ATx./

(
ATAst + λ

2

(
st
)q−1

)
The computational complexity of the algorithm is similar to that of standard NMF, except that the computation

cost of S−1/2 is known as O((KN)2). Hence, the computational complexity of L1/2-NMF is O(LKN +(KN)2)

for each optimization iteration. The computational costs of other Lq(0 < q < 1)-NMF are usually larger than

L1/2-NMF, which, for large hyperspectral imagery, favours the use of p = 1/2 for our method.

B. Sparsity Analysis

Lq(0 < q < 1) regularizer can yield sparser solutions than its L1 counterpart, and it approximating the L0

regularizer as q approaches 0 (see Figure 1). Unfortunately, how to determine the optimal value of q is still an open

problem. Up to now, no learning or optimization methods have been reported. In practice, a sub-optimal q can be

determined via an intensive search, which, despite effective, can be inefficient.

The sparsity of the Lq(1/2 ≤ q < 1) solution increases as q decreases, whereas the sparsity of the solution for

Lq(0 < q ≤ 1/2) shows little change with respect to q [45], [46], making q = 1/2 a good regularizer choice.
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q = 4 q = 2 q = 1 q = 0.5 q = 0.1

P

q

Fig. 1. The shape of Lq regularizers with different values of q.

Moreover, when the full additivity constraint
K∑

k=1

sk = 1 is imposed, L1 can not further promote sparsity. This is

due to the fact that the L1 regularizer is linked to the additivity constraint. The difference between the two lies in that

the former enforces the sum of end-member abundances to be small, while the latter enforces it to be unity. Thus,

the L1 regularizer can be seen as a relaxation of the full additivity constraint, and, some cases, yields non-unique

solutions [47]. For example, if we assume there exist three end-members, and the sum of abundances of a pixel is 1,

for L1 regularizer, the sparsity of (0.3, 0.3, 0.4) and (1, 0, 0) are the same, whereas for Lq(0 < q < 1) regularizers,

(1, 0, 0) is sparser than (0.3, 0.3, 0.4). To further illustrate the responses to the sparseness of the regularizers, in

section V, we present an experiment on the synthetic data, which shows that q = 1/2 is a good choice for Lq

regularizers with 0 < q < 1, while L1 may not strictly enforce sparsity.

C. Geometric interpretation

As summarized in [48], most linear spectral unmixing methods can be categorized into geometric and statistical

algorithms. The geometrical methods are based on the connection between the linear spectral unmixing model and

the convex geometry. In this sense, the approach proposed in this paper is a geometric method. Here, we give the

geometrical interpretation for our method and show how it is related to the some other algorithms.

In general, Equation (1) is based on two main constraints:

• (A1) Nonnegative constraint: A and S are nonnegative matrix.

• (A2) Full additivity constraint: the sum of entries in each column of S is unity.

The first of these is met by NMF, with all the mixed or pure pixels laying on a positive simplicial cone that is

given by

Cone(A) =
{
X = AS|S ∈ RK×N

+

}
(28)

If (A2) is met, all the mixed or pure pixels lie in an affine hull that is represented by

affine(A) =
{
X = AS|1T

NS = 1
}

(29)

This implies that, if both (A1) and (A2) are satisfied, all the mixed or pure pixels lie in a convex hull (simplex)

that is represented by

Simplex(A) =
{
X = AS|S ∈ RK×N

+ ,1T
NS = 1

}
(30)
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Fig. 2. Geometric interpretation of linear spectral unmixing
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Fig. 3. Simplex and minimim volume: (a) Uniform distribution of data points, (b) Sparse distribution of data points.

The relationship for cone, convex hull, and simplex is displayed in Figure 2. Note that, if pure pixels exist in the

scene, many geometrical unmixing algorithms can be used, such as PPI, N-FINDR, and VCA. However, in the case

when pure-pixels do not exist, i.e., pixels are highly mixed, the above mentioned constraints are not sufficient to

produce a unique result. This can be observed in Figure 3(a), in which three simplexes meet the assumptions, but only

one of them is accurate. Therefore, additional constraints have to be added to the linear spectral unmixing model,

for example, those that enforce smoothness [18] on A and S, or low variance on the end-member spectra [21]. In

recent years, a very common practice has been to use minimum volume as an additional constraint. Methods such

as ICE [32], MVES [7], MVC-NMF [43] and SISAL [9] follow Craig’s unmixing criterion [6] that the end-member

matrix A and its spanned simplex should enclose the observed pixels and minimize its volume.

The L1/2 regularizer is closely linked to the minimum volume method through its geometric interpretation. This

is as the sparsity represented by L1/2 enforces the volume of the simplex to be minimized. This is intuitive because

if the volume of simplex becomes large, the observed pixels become highly mixed (less sparse). Here, we present a

simple experiment to illustrate this phenomenon. In Figure 3, we construct a simplex, which is represented by the

red triangle (R) in Figure 3(a). In the figure, 100 data points spanned by three vertices are generated with uniform

distribution across in this simplex. Then, we construct two more simplexes, the green (G) and blue triangles (B),

which also contain all data points. Note that the volumes meet the following condition
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VG > VB > VR

Thus, the red simplex is the minimum one containing all the data points. The sum of the abundances of each

data point in each simplex is unity. As a result, the L1 regularizer can not distinguish the volume of the simplexes

from one another. On the contrary, the L1/2 regularizer yields a different average penalty cost of the data points

for each simplex using

∥S∥1/2 =
1

N

N∑
n=1

∑
k=1

sn(k)
1/2

where N = 100 and sn(k)
1/2 is defined in Equation (6), such that

∥S∥(VR)
1/2 < ∥S∥(VB)

1/2 < ∥S∥(VG)
1/2 (31)

which has verified our claim that the minimum volume is related to L1/2 regularizer.

The same observation also applies to more clustered data. If we let the 100 data points drift towards the vertices

of the red simplex, as shown in Figure 3(b), then their real abundances are sparser than those corresponding to

uniformly distributed data points with penalty costs fulfilling the relationship in Inequality 31.

V. EXPERIMENTS

Having presented our method in the previous sections, we now turn our attention to demonstrate its utility for

unmixing. Here, we employ synthetic and real-world data so as to evaluate the performance of the algorithms. The

results are evaluated using Spectral Angle Distance (SAD) and Root Mean Squared Error (RMSE). The SAD is

used to compare the similarity of the kth end-member signature Ak and its estimate Âk, which is defined as

SADk = arccos

(
AT

k Âk

∥Ak∥∥Âk∥

)
(32)

The RMSE is used to evaluate the the abundance estimates. It is defined as

RMSEk =

(
1

N
| Sk − Ŝk |2

) 1
2

(33)

where Ŝk is the ground-truth abundance matrix for the kth end-member.

A. Synthetic Data

Firstly, we present a quantitative analysis of our method on synthetic data. Unless specifically mentioned, the

proposed L1/2-NMF algorithm is compared against three alternatives. These are the standard NMF in [17], the

L1-NMF [40] and the L2-NMF method [18].

For our synthetic data experiments, ten spectral signatures are chosen from the United States Geological Survey

(USGS) digital spectral library [49]. Figure 4 shows six example end-member signatures used for all the following

experiments. The other four spectral signatures that are not displayed in the figure include Chlorite HS179.3B,
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Fig. 4. Example spectral signatures from USGS used in our synthetic data experiments.

Axinite HS342.3B, Galena S26-39, and Goethite WS220, which are only used to evaluate the performance of the

unmixing methods with respect to the variation of endmemeber number. To generate the synthetic data, we compute

the ground-truth abundances in a similar manner to that in [43]. That is, we depart from an image with size z2×z2

(z ∈ Z+) pixels, which is divided into z× z regions. Each region is initialized with the same type of ground cover,

randomly selected as one of the end-members mentioned above. We then apply a (z + 1)× (z + 1) low pass filter

to each pixel in the image to generate mixed pixels, and make the abundance variation smooth. Finally, we use a

threshold θ (0.6 ≤ θ ≤ 1) so as to make some pixels mixed in higher degree. If the abundance of a pixel is larger

than θ, this pixel is replaced with a mixture of all end-members with equal abundances. This threshold parameter

can be used to produce the synthetic data with different levels of sparseness, i.e., the smaller the θ is, the synthetic

data is mixed in a higher degree, and in turn, with less sparsity. The measure of average sparseness for all the

pixels in an image is defined as

sparse(A) =
1√
K

∑
k

√
K − ∥Ak∥1/∥Ak∥2√

K − 1
(34)

where Ak denotes the abundances on kth end-menber.

Note that, from the synthetic data generation process introduced above, its natural to perform a quantitative

analysis on the four methods, i.e. our proposed L1/2-NMF unmixing algorithm and the other three alternatives,

with respect to the SNR, the sparseness, the image size and the number of end-members.

Thus, we commence by providing a sensitivity study where we have used zero-mean white Gaussian noise, which,

when substituted into Equation (1), yields the following signal-to-noise ratio (SNR)

SNR = 10 log10
E[(As)T (As)]

E[eTe]
(35)

where E[·] denotes the expectation operator.

In Figure 5 the RMSE and SAD levels as a function of the SNR for the interval (∞, . . . , 15) in steps of 5 dBs

for six end-members, i.e. K = 6, θ = 0.7 and z = 7. As expected, the decrease in the SNR has a detrimental effect
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Fig. 5. Results on synthetic data: SAD (a) and RMSE (b) as a function of SNR.

in the performance for all the four algorithms. From the figure, we can see that the L2-NMF delivers the worst

results for both the SAD and the RMSE. The performance of the L1-NMF is slightly better than that of NMF.

Meanwhile, our L1/2-NMF not only provides the best SAD, but its also robust to noise corruption by yielding the

smallest RMSE.

The second experiment presented here aims at evaluating the performance of the Lq(0 < q ≤ 1) regularizer with

respect to sparsity changes. Here, L2-NMF is removed due to its low sparse solution, while L1/4 and L3/4-NMFs

are added for comparison. Figure 6 shows the plots of the unmixing results with different sparseness levels of

the end-member abundances. Here the parameters are set as K = 6 and z = 7, where θ is used to control the

sparseness levels. From figure 6(a), it can be seen that the SAD of L1-NMF is not overly affected by the variation

of the sparsity. This observation supports our claim that the L1 regularizer cannot impose strict sparsity on the

solution when the full additivity constraint is enforced. On the contrary, the SADs from the other three Lq-NMFs

(q = 1/4, 1/2, 3/4) decrease with the increase of sparseness. This means that Lq-NMF (0 < q < 1) is a better

option for the problem than q = 1.

In Figure 6(b), with the increase of the sparsity, there is also an increase of the RMSE for L1-NMF and L3/4-

NMF, while L1/4-NMF and L1/2 methods show clear advantages. Figure 6(c) shows the true sparseness against the

estimated sparseness. It is obvious that the sparsity obtained by L1-NMF is much lower than the true sparseness

along with the increase of the abundance sparsity. Meanwhile, the estimated sparsities by Lq-NMF (0 < q < 1)

are closer to the ground truth. Furthermore, from Figure 6, we found that the results of L1/2-NMF and L1/4-NMF

are very similar, which validates the observation that the sparsity of the Lq(1/2 ≤ q < 1) increases as q decreases,

whereas the sparsity of the solution for Lq(0 < q ≤ 1/2) does not change greatly with respect to q. This makes

q = 1/2 a good choice when the Lq (0 < q < 1) regularizer is used for spectral unmixing.

We now examine the effect of varying the number of pixels on our method and the alternatives. We set the number

of pixels to 625, 1296, . . . , 10000, which corresponds to z = 5, 6, . . . , 10. Again, we have used six end-members

and set the SNR = 30dB and θ = 0.7. From Figure 7, we can see that the performances of the four methods

increase as the size of the data grows. This is expected, since a large training set makes the solution space more
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Fig. 6. Results on synthetic data: SAD (a) and RMSE (b) as function of different sparsity of the abundances. (c) the true sparsity vs the

estimated sparsity obtained by the four methods.
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Fig. 7. Results on synthetic data: SAD (a) and RMSE (b) as a function of the number of pixels in the scene.

stable and constrained, which, in turn, increases the likelihood of finding an optimal or near-optimal solution.

Finally, we examine the performance of the four methods when the number of end-member changes. We also

evaluate their accuracy with respect to the estimated number of end-members. To do this, we vary the number of

end-members from K = 3 to K = 10. Figure 8 shows the performance of the four methods when the SNR =

30db, θ = 0.7 and z = 7. Note that the performance decays as the number of end-members present in the scene

increases. Indeed, when K = 3, the four methods are comparable. When the number of end-members increases,

the differences between the algorithms become apparent, with the L1/2-NMF consistently yielding the best results.

Note that, in practice, overestimation of the number of end-members present in the scene is often a crucial problem

in hyperspectral unmixing. Figure 9 shows the plot of the unmixing results when the number of end-members is

overestimated by 1. As before, the results obtained by our L1/2-NMF method are more accurate than those of the

other three alternatives. This is in-line with our other experiments, where it can be observed that L1/2-NMF is a

better alternative than the NMF, the L1-NMF and the L2-NMF.
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Fig. 8. Results on synthetic data: SAD (a) and RMSE (b) as function of the number of endmembers.
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Fig. 9. Results on synthetic data: SAD (a) and RMSE (b) as function of the number of end-members overestimated by 1.

B. Experiments on Real-word Data

Now we present the results of applying our L1/2-NMF method to real-world data. Here, we have used two data

sets which cover both an urban scene and an image that provides a regional geologic context.

The first real-world data set is given by the Urban HYDICE hyperspectral image. The image depicts the scene

in Figure 10 and is of size 307× 307 being composed of 210 spectral channels with spectral resolution of 10nm in

the 400nm and 2500nm range. After low SNR bands are removed (channels 1−4, 76, 87, 101−111, 136−153, and

198−210), only 162 bands remain (i.e., L = 162). There are four distinct targets of interest: asphalt, grass, roof

and tree. Figure 11 displays the ground truth for the abundance fractions of the end-members. In these images, and

from now on, the brightness of a pixel denotes the abundance of the end-member under consideration.

To evaluate the effectiveness of the proposed algorithm, we have compared our method against the L1-NMF. We

have done this since the latter performs the best among the three alternative methods examined in our previous

experiments on synthetic data. Meanwhile, results for other state-of-the-art methods are also presented. These are

VCA [3], MVC-NMF [43], PSNMFSC [20] and SISAL [9]. VCA is a popular geometric approach while MVC-NMF

and PSNMFSC are both constrained NMF methods. The former adopts minimum volume as constraint while the

latter uses piecewise smoothness and sparseness. SISAL is the abbreviation of Simplex Identification via variable

Splitting and Argumented Lagrangian, which can deal with outliers and is very efficient from the computational
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Fig. 10. Urban HYDICE hyperspectral dataset at band 80.

(a) Asphalt (b) Grass (c) Roof (d) Tree

Fig. 11. Ground-truth abundance maps for four targets in the Urban HYDICE hyperspectral data.

cost point of view.

Figure 12 illustrates the separated abundance fractions for each end-member as delivered by our L1/2-NMF.

Meanwhile, Figure 13 displays the estimated L1/2-NMF end-member signatures with respect to the USGS library

spectra. The figures show that the results from L1/2-NMF are in good accordance with the real end-member

signatures and abundances. Table I gives the mean and standard variances of the SAD over 10 runs for these

methods. From the table, it can be seen that, in general, the results obtained by our L1/2-NMF are better than those

yielded by the other algorithms.

In [50], the road is further divided into asphalt and concrete, whereas the roof is divided into roof #1 and roof

#2/shadow. In order to test our method under this setting, we performed experiments with six end-members. From

the Figures 14, 15, 16 and Table II, we also find that the results obtained by our L1/2-NMF are better than those

yielded by the alternatives.

We now turn our attention to the second real-world data, which is an image acquired by the AVIRIS sensor over

Cuprite in Souther Nevada. It is a regional scene which contains an abundant supply of minerals [51]. In recent

years, the Cuprite data set has been widely used for hyperspectral unmixing research [3], [43]. Figure 17 displays
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(a) Asphalt (b) Grass (c) Roof (d) Tree

Fig. 12. Urban HYDICE results: Abundance maps estimated using L1/2-NMF for the four targets.
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Fig. 13. Urban HYDICE results: Comparison of the USGS library spectra (solid line) with the signatures extracted by L1/2-NMF (dotted

line).

the 80th band as a subimage of the original data with size 250× 190. For our experiments, we have removed low

SNR and water-vapor absorption bands (1-2, 104-113, 148-167 and 221-224), which yields 188 bands out of the

original 224 bands.

According to [3], 14 types of minerals are presented in the scene. Its worth mentioning that variants of the same

mineral with slightly different spectra can be considered as the same end-member and, hence, we set K = 10. In

Figure 18, we compare the estimated L1/2-NMF end-member signatures with the USGS library spectra. Clearly,

the extracted signatures are in good accordance with the USGS library spectra. Table III quantifies the similarity

of the recovered spectra using the SAD criterion. For most of materials in the image, the SAD of our method is

lowest, with the smallest mean and variance.

VI. CONCLUSIONS

In this paper, we have extended NMF-based hyperspectral unmixing methods by incorporating the L1/2 sparseness

constraint over the end-member abundances. In contrast with previous approaches, which used the L1 regularizer,

our L1/2-NMF produces sparser unmixing results with the end-member spectra and abundance maps being more

accurately recovered. We have also presented an effective multiplicative iterative algorithm, which estimates the end-

member signatures and abundances using a rescaled gradient descend method. This algorithm is further extended to

Lq (0 < q < 1) regularizers. The sparsity property of the Lq regularizer and its intrinsic link to minimum volume
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TABLE I

SAD AND THE STANDARD VARIANCE (%) RESULTS ON THE URBAN HYDICE DATA WITH 4 END-MEMBERS.

L1/2-NMF L1-NMF MVCNMF VCA SISAL PSNMFSC

Asphalt 0.1352± 0.88 0.3347± 0.86 0.5073± 5.65 0.3091± 1.10 0.1868± 3.71 0.1742± 3.83

Grass 0.2097 ± 2.65 0.2282±4.82 0.2908±2.25 0.3196±8.40 0.2598±1.06 0.2877± 5.06

Tree 0.0658±3.05 0.1436±0.56 0.2124±5.97 0.2110±2.57 0.1724±2.77 0.1213± 3.40

Roof 0.2441±6.03 0.4664±0.35 0.2783±5.37 0.7619±0.20 0.2097±0.52 0.2050± 3.59

Mean 0.1637±3.15 0.2932±1.65 0.3222±4.81 0.4004±3.07 0.2072±2.02 0.1971± 3.97

TABLE II

SAD AND THE STANDARD VARIANCE (%) RESULTS ON THE URBAN HYDICE DATA WITH 6 END-MEMBERS.

L1/2-NMF L1-NMF MVCNMF VCA SISAL PSNMFSC

Asphalt road 0.2302± 1.03 0.3739± 1.81 0.4978± 5.49 0.3304± 7.70 0.2263± 2.03 0.5151± 5.45

Grass 0.2692 ± 2.95 0.3772±3.40 0.3334±4.57 0.5104±3.06 0.3655±3.29 0.1781± 6.62

Tree 0.0414±1.14 0.1523±1.45 0.1727±4.99 0.3108±3.79 0.2513±1.59 0.1717± 8.12

Roof #1 0.1000±3.56 0.7134±2.66 0.2574±4.35 0.9529±6.56 0.4339±5.53 0.2624± 5.70

Roof #2/shadow 0.2617±4.27 0.5849±0.97 0.4389±5.06 0.5409±3.22 0.3373±4.65 0.4477± 6.65

Concrete road 0.1570±0.83 0.5136±0.60 0.2882±4.34 0.3721±0.46 0.3119±8.84 0.3226± 8.65

Mean 0.1766±2.30 0.4526±1.82 0.3314±4.80 0.5029±4.13 0.3210±4.32 0.3163± 6.87

TABLE III

SAD AND THE STANDARD VARIANCE (%) RESULTS ON THE AVIRIS CUPRITE DATA.

L1/2-NMF L1-NMF MVCNMF VCA SISAL PSNMFSC

Alunite 0.1660± 0.61 0.2874± 6.83 0.1421± 5.92 0.1016± 3.19 0.2103± 5.63 0.0979± 2.91

Andradite 0.0545 ± 0.14 0.2380±0.87 0.1488±5.11 0.0715±3.18 0.0869±4.57 0.0938± 11.04

Buddingtonite 0.1626±0.25 0.3448±8.86 0.2058±4.44 0.1317±1.99 0.1413±4.98 0.3303± 8.62

Dumotierite 0.0918±1.27 0.2112±4.87 0.1553±3.90 0.0988±1.30 0.1221±4.77 0.2310± 2.30

Kaolinite 0.1441±4.46 0.3793±3.46 0.1979±4.15 0.2418±4.85 0.2087±3.97 0.3493± 8.54

Montmorillonite 0.1206±2.26 0.3014±4.75 0.1339±9.87 0.1357±4.52 0.1605±4.03 0.2591± 6.95

Muscovite 0.1292±2.39 0.3801±5.01 0.0914±9.28 0.1349±4.01 0.1398±4.58 0.2275± 7.99

Nontronite 0.0850±0.08 0.2292±0.92 0.1779±8.03 0.0920±1.81 0.0887±3.89 0.1379± 6.82

Pyrope 0.0596±0.39 0.3188±0.43 0.2078±7.71 0.1257±3.77 0.1482±3.96 0.1430± 10.23

Sphene 0.1002±0.28 0.2718±5.23 0.1439±3.73 0.0794±5.16 0.0713±2.26 0.1134± 3.04

Mean 0.1114±1.21 0.2962±4.12 0.1585±6.21 0.1213±3.38 0.1378±4.26 0.1983± 6.84
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(a) Asphalt Road (b) Grass (c) Tree

(d) Roof #1 (e) Roof #2/shadow (f) Concrete road

Fig. 14. Ground-truth abundance maps for six targets in the Urban HYDICE hyperspectral data.

methods have been discussed.

We have illustrated the advantages of our unmixing method on synthetic and real-world data and compared our

method against a number of alternatives, i.e., NMF, L1-NMF and L2-NMF, VCA, MVC-NMF, PSNMFSC and

SISAL. The experimental results consistently show that L1/2-NMF exhibits better performance. This is particularly

true in the presence of noise corruption and low end-member purity levels. We would like to emphasize that the

L1/2-NMF method presented here is quite general in nature and can be readily applied to other settings in which

nonnegative sparse matrix factorization is a valuable computational tool. Furthermore, the method presented here

can easily incorporate constraints found elsewhere in the literature.

Apart from the multiplicative iterative algorithm proposed in this paper, projected gradient algorithm, alternating

least squares algorithm, and quasi-Newton algorithms are also widely used for NMF and related problems. Most of

these algorithms can be extended to L1/2-NMF in modified forms. New optimization methods are worth exploring so

as to extend the L1/2-NMF to wavelet-subspaces, Markovian formulations based upon spatial consistency constraints

and non-negative tensor factorization. Another possibility is to develop more effective estimation algorithms for

L1/2-NMF and their extensions to robust statistics so as to achieve greater levels of robustness to noise. In this

regard, the use of Bayesian estimation methods is worth considering.
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