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Abstract—Classification can often benefit from efficient feature selection. However, the presence of linearly nonseparable data, quick

response requirement, small sample problem, and noisy features makes the feature selection quite challenging. In this work, a class

separability criterion is developed in a high-dimensional kernel space, and feature selection is performed by the maximization of this

criterion. To make this feature selection approach work, the issues of automatic kernel parameter tuning, numerical stability, and

regularization for multiparameter optimization are addressed. Theoretical analysis uncovers the relationship of this criterion to the

radius-margin bound of the Support Vector Machines (SVMs), the Kernel Fisher Discriminant Analysis (KFDA), and the kernel

alignment criterion, thus providing more insight into feature selection with this criterion. This criterion is applied to a variety of selection

modes using different search strategies. Extensive experimental study demonstrates its efficiency in delivering fast and robust feature

selection.

Index Terms—Kernel class separability, feature selection, Support Vector Machines, Kernel Fisher Discriminant Analysis, pattern

classification.

Ç

1 INTRODUCTION

IN many classification tasks, numerous features can be
extracted, but only a small number of them are really

discriminative. In this case, feature selection becomes
critical and leads to many benefits. It reduces the dimen-
sions of a feature space, thus giving rise to more reliable
parameter estimation, lower system complexity, and less
storage requirement. Removing noisy and irrelevant
features can improve the performance of the classifier. In
addition, time, labor, and expense can be well saved by
only extracting useful features. Nevertheless, the following
problems make the feature selection quite challenging:

. Linearly nonseparable classes.1 This case generally
exists in real-world applications. In image classifica-
tion, the semantic gap between the high-level
concepts (used by humans to interpret visual
content) and the low-level features (used by com-
puters for classification) often results in a nonlinear
mapping between them.

. Quick response. This is always desirable, especially
when real-time processing is needed. A computa-
tionally efficient criterion will be preferred.

Furthermore, such a criterion will lend itself to being
combined with a more sophisticated (and often more
computationally expensive) selection strategy to
further improve the selection performance.

. Selection with a small number of samples. When
extracting a large number of features from every
sample is expensive or time consuming (for exam-
ple, intensive laboratory tests are needed), it will be
good to first identify the useful ones via a small-
sized sample set. By doing so, future feature
extraction can focus on only the useful features. In
this case, a selection criterion that is less sensitive to
sampling process is needed.

. Noisy features. These are features that are statisti-
cally irrelevant to class labels or are heavily
corrupted by noise during data generation. To
deal with noisy features, a more robust selection
criterion is required.

In this paper, a kernel-based feature selection criterion is
proposed. Compared with the existing criteria, it can
achieve overall better performance in the presence of the
above problems.

Introduced with the Support Vector Machines (SVMs), the
kernel trick [1], [2] has attracted much attention because of its
efficient and elegant way of modeling nonlinear patterns. Via
a kernel function, data can be nonlinearly mapped to a high-
dimensional kernel space.2 As stated by the Cover theorem,
the data will be more likely linearly separable when they are
nonlinearly mapped to a higher dimensional space [3].
Moreover, this mapping is implicitly and efficiently realized
through a kernel function. Aside from the SVMs, the Kernel
Principal Component Analysis (KPCA) [4] and the Kernel
Fisher Discriminant Analysis (KFDA) [5] are also commonly
used kernel-based algorithms.
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1. More precisely, the “linearly nonseparable classes” means that the
boundary that optimally separates the classes from each other is not a
hyperplane.

2. This space is often called the “feature space.” For convenience of
notation, it is called “kernel space” in this work.
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In this paper, the kernel trick is incorporated into a class
separability measure. Class separability is a classic concept
in pattern recognition [6], [7], [8]. A widely used separ-
ability measure is based on the scatter matrices of data. In
this paper, the scatter-matrix-based class separability
measure is extended to a kernel space and developed as a
feature selection criterion. This is based on the idea that the
features that lead to larger class separability are more important.
In a high-dimensional kernel space, the scatter matrices are
often singular, and their determinants become zero. To
measure the class separability in such a case, a trace-based
kernel class separability criterion is derived in this paper.
However, straightforwardly applying this criterion to
feature selection will be problematic, because the value of
a kernel-based criterion depends on the parameters of the
kernel function. A poor setting of these parameters can
easily remove the difference between good and bad
features, which makes the feature selection fail. In this
paper, the kernel parameters are treated as variables and
are automatically tuned by the maximization of the kernel
class separability criterion. This not only avoids the adverse
affect of manual parameter setting but also improves the
feature selection efficiency. To ensure the numerical
stability in the process of kernel parameter optimization,
a lower bound of the proposed criterion is further derived
by assuming that a stationary or normalized kernel is used.
In addition, in the case of small sample set but a large
number of features, simply maximizing the proposed
criterion may result in overfitting and degrade the feature
selection performance. To address this problem, a regular-
ization strategy is proposed in this paper.

This kernel class separability criterion is successfully
applied to a variety of selection modes, including the
simplest Best individual N (BIN),3 the sequential forward
selection (SEQ), and the state-of-the-art kernel parameter
optimization (KPO) approach. The radius-margin bound,
which is an upper bound of the leave-one-out cross-
validation error of the SVMs, has demonstrated excellent
performance as a feature selection criterion [10], [11]. In this
paper, our theoretical analysis uncovers the intrinsic
relationship between the kernel class separability criterion
and the radius-margin bound. Compared with the radius-
margin bound, the proposed criterion has the following
advantages. Feature selection with this criterion is faster,
because it is conceptually and computationally simpler.
The proposed criterion is more robust in the case of small
sample set and is less vulnerable to noisy features. This is
because it is based on the information averaged over all of
the data. Aside from these, the relationship between the
proposed criterion and the KFDA algorithm is clarified.
This criterion is proven to be a lower bound of the
maximum value of the KFDA’s objective function. It is
not a reinvention of the KFDA algorithm.

Our extensive experimental study is conducted on
synthetic and real benchmark data sets to compare the
proposed criterion with the existing methods, particularly
the radius-margin bound. The result demonstrates the
efficiency of the proposed criterion in achieving fast and
robust feature selection. The rest of this paper is organized
as follows: In Section 2, existing feature selection criteria are

reviewed. Section 3 develops the class separability measure
in a kernel space. It is then tailored for feature selection and
applied to three different feature selection modes. Section 4
discusses its relationship to the radius-margin bound, the
KFDA algorithm, and the kernel alignment (KA) criterion,
as well as its advantages. Finally, experimental results and
concluding remarks are given in Sections 5 and 6.

2 FEATURE SELECTION

Feature selection, more precisely feature subset selection, aims
at finding p features out of the original d ones according to a
selection criterion. Note that it is different from feature
extraction (or feature combination), where a d-dimensional
feature vector is projected to a p-dimensional subspace, for
example, the case in the PCA. For a classification-oriented
feature selection, the p selected features are expected to
produce low classification errors when they are used by a
classifier.4 Feature selection often consists of a selection
criterion and a search strategy (or the selection mode in this
paper). An efficient search strategy is critical, since feature
selection is essentially a combinatorial optimization pro-
blem. Many search algorithms have been developed in the
literature, for example, the branch-and-bound procedure, the
sequential forward/backward selection, and the floating
search methods [6], [9]. In this work, the selection criterion is
focused. Some widely used selection criteria are reviewed as
follows, and they will be compared with the criterion
proposed by this work:

. Pearson correlation coefficient. By treating a feature
and the class label as two random variables, this
method evaluates the strength of relevance between
them. High relevance is used to identify good
features. This method is simple and efficient when
the two variables are linearly correlated. Never-
theless, it cannot handle linearly nonseparable data.

. Kolmogorov-Smirnov test. For a given feature, this test
evaluates whether the samples in two classes are
actually generated by the same underlying distribu-
tion. The less the possibility (or the higher the test
value), the better this feature for discrimination.
This test is applicable to linearly nonseparable data,
but it needs a sufficient number of samples to
estimate the distribution.

. Class separability (nonkernel). For a given feature
subset, the scatter-matrix-based class separability
measure evaluates the ratio of the between-class
scattering to the within-class scattering of data. A
subset that gives rise to high class separability is
regarded as a good one [9]. This criterion is simple,
robust, and unified for both binary and multiclass
classification. Nevertheless, it cannot handle linearly
nonseparable data. In this paper, we will extend this
measure to a kernel space and make it an efficient
feature selection criterion.

. Radius-margin bound. This is an upper bound of the
leave-one-out cross-validation error of the SVMs. In
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3. This term is taken from [9]. It means that a selection criterion is
individually applied to each of the features to evaluate its goodness. The
features that give the larger criterion values will be selected.

4. Note that feature selection cannot completely be separated from the
classifier. For a linearly nonseparable problem, a wise user will employ a
nonlinear classifier, rather than a linear one, to obtain the result most
agreeable to human perception. It is believed that this assumption can be
generally satisfied.



[10] and [11], it is minimized to optimize the kernel
parameter assigned to each feature. The larger the
parameter value, the more important the corre-
sponding feature. This bound is theoretically elegant
and well handles linearly nonseparable data. How-
ever, it is not computationally efficient. In addition,
it is sensitive to small sample sets and may fail when
too many noisy features exist.

3 PROPOSED FEATURE SELECTION CRITERION

3.1 Class Separability

Class separability includes divergence, the Bhattacharyya
distance, and scatter-matrix-based measures [6], [8], [9].
The scatter-matrix-based measure is often favored because
of its simplicity. It includes the Within-class scatter matrix
SW , Between-class scatter matrix SB, and Total scatter matrix
ST . Let ðx; yÞ 2 ðIRd � YÞ denote a sample, where IRd stands
for a d-dimensional feature space, Y is the set of class labels,
and the size of Y is the number of classes c. The number of
samples in the ith class is denoted by ni. Let mi be the
mean vector for the ith class and m be the mean vector for
all classes. The scatter matrices are defined as

SW ¼
Xc

i¼1

Xni

j¼1
ðxij �miÞðxij �miÞ>

h i
;

SB ¼
Xc

i¼1
niðmi �mÞðmi �mÞ>;

ST ¼
Xc

i¼1

Xni

j¼1
ðxij �mÞðxij �mÞ>

h i
¼SW þ SB:

ð1Þ

A large class separability means small within-class scatter-
ing but large between-class scattering. The commonly used
measures include trðSBÞ=trðSW Þ and jSBj=jSW j, where
trðAÞ and jAj denote the trace and determinant of a square
matrix A, respectively. Other measures can also be found in
[6]. In these measures, the scattering of data is evaluated via
the mean and variance. This implicitly assumes a Gaussian
distribution for each class. The resulting drawback is that
these measures cannot correctly evaluate the class separ-
ability when the data presents a non-Gaussian structure
such as two classes distributed along two concentric circles.
This will be remedied by incorporating the kernel trick.

3.2 Kernel-Based Class Separability

A kernel function is an inner product in a kernel space. It is
written as k��ðxi;xjÞ ¼ h�ðxiÞ; �ðxjÞi, where �ð�Þ is a possibly
nonlinear mapping from the feature space IRd to a kernel
spaceK. ��denotes the kernel parameter set. A kernel function
plays a central role in a kernel-based algorithm. Geometri-
cally, it defines a distance metric inK, because it can be shown
that k�ðxiÞ � �ðxjÞk2 ¼ kii � 2kij þ kjj, where kij denotes
kðxi;xjÞ. In other words, it implicitly determines the
scattering of data in the kernel space K.

Let us develop the class separability measure in K. Since
only h�ðxiÞ; �ðxjÞi is accessible via a kernel function, none
of the scatter matrices in (1) can be explicitly computed in
K. Moreover, the high dimensionality of K often makes the
scatter matrices singular and their determinants zero,
leaving the determinant-based measure invalid. Hence,
the trace-based measure is used in this work. The super-
script � distinguishes the variables in K from those in IRd.

Let Di denote the set of samples from the ith class. In
addition, it is defined that D ¼ [ci¼1Di. The sizes of Di and
D are ni and n, respectively. K denotes a kernel matrix with
fKgij ¼ k��ðxi;xjÞ. KA;B is a kernel matrix with the
constraints of xi 2 A and xj 2 B. The operator Sumð�Þ
denotes the summation of all elements in a matrix. The
traces are derived as

trðS�BÞ

¼ tr
Xc

i¼1
niðm�

i �m�Þðm�
i �m�Þ>

h i
¼
Xc

i¼1
ni ðm�

i �m�Þ>ðm�
i �m�Þ

h i
¼
Xc

i¼1

SumðKDi ;DiÞ
ni

� SumðKD;DÞ
n

;

ð2Þ

trðS�W Þ

¼ tr
Xc

i¼1

Xni

j¼1
ð�ðxijÞ �m�

i Þð�ðxijÞ �m�
i Þ
>

h i
¼
Xc

i¼1

Xni

j¼1
ð�ðxijÞ �m�

i Þ
>ð�ðxijÞ �m�

i Þ
h i

¼ trðKD;DÞ �
Xc

i¼1

SumðKDi ;DiÞ
ni

;

ð3Þ

and

trðS�T Þ ¼ trðS�BÞ þ trðS�W Þ

¼ trðKD;DÞ �
SumðKD;DÞ

n
:

ð4Þ

The class separability in the kernel space can be measured as

J � ¼ trðS�BÞ
trðS�W Þ

: ð5Þ

This criterion is still conceptually simple and computation-
ally light, although the kernel trick has been incorporated.
The main computation is to calculate K only. To maintain
the numerical stability in the maximization of J �, the
denominator trðS�W Þ has to be prevented from approaching
zero. This may be realized by employing a modified kernel
matrix like K0 ¼ Kþ �I, where � is a regularization
parameter, and I is an identity matrix. In this paper, the
regularization is bypassed by deriving a lower bound of J �

as follows.

From (4), it is known that maximizingJ � ¼ trðS�BÞ=trðS
�
W Þ

is equivalent to maximizing J �
1 ¼ trðS�BÞ=trðS�T Þ. Let ks

denote a stationary kernel or a normalized kernel. The value

of a stationary kernel only depends on the difference of two

input samples, that is, ksðxi;xjÞ ¼ ksðxi � xjÞ. A normalized

kernel is defined as

ksðxi;xjÞ ¼
�ðxiÞ
k�ðxiÞk

;
�ðxjÞ
k�ðxjÞk

� �
¼ kðxi;xjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kðxi;xiÞkðxj;xjÞ
p :

Geometrically, both kernels map the data onto a hyper-

sphere in K with the radius of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ksðx;xÞ

p
. This is because

k�ðxÞk2, which is equal to ksðx;xÞ, is constant. In addition,

it is assumed that ksðxi;xjÞ � 0, 8xi;xj 2 D. A good

example of the stationary kernel is the commonly used

Gaussian RBF kernel kðxi;xjÞ ¼ expð� kxi�xjk2

2�2 Þ, where the
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Gaussian width � is the kernel parameter. Based on the

above conditions, it can be shown that

trðS�T Þ � trðKD;DÞ �
trðKD;DÞ

n
¼ ðn� 1Þksðx;xÞ: ð6Þ

Thus, a lower bound of J �
1 can be obtained as

J �
1 �

trðS�BÞ
ðn� 1Þksðx;xÞ

¼ J �
l ; and J �

l ¼
�

trðS�BÞ: ð7Þ

The last step removes ðn� 1Þksðx;xÞ, since it is a constant
in a classification task. By doing so, maximizing J �

1 can be
approximated by maximizing its lower bound J �

l . Com-
pared with J �

1 , the criterion J �
l is simpler and avoids

manually setting a regularization parameter. In this work,
assuming that a stationary or normalized kernel is used, J �

l is
proposed as a criterion for feature selection. In the rest of this
paper, J � is used to denote J �

l for the convenience of
notation.

3.3 Feature Selection by Maximizing Class
Separability

Let ��ð�� 2 f0; 1gdÞ be a d-dimensional indicator vector con-
sisting of “0”(unselected) and “1”(selected). A set of
selected features is written as xð��Þ ¼ ��� x, where �
denotes the componentwise multiplication. Given a criter-
ion C, the feature selection can be expressed as the
following maximization (or minimization) problem:

��� ¼ arg max
��2�
Cð��� xÞ½ 	; ð8Þ

where � is the parameter space of ��. Finding ��� is a
combinatorial optimization problem and is computation-
ally intractable in general. A variety of suboptimal search
methods have been developed to maintain a balance
between computational feasibility and selection perfor-
mance. This paper demonstrates the applicability of the
proposed kernel class separability criterion to the following
feature selection modes.

3.3.1 Best Individual N and Sequential Forward

Selection

BIN and SEQ are two suboptimal search methods that are
widely used in practical applications. In BIN, a selection
criterion is individually applied to each of the features. Those
giving larger criterion values are selected. It may be the
simplest search method. In SEQ, one feature is selected and
transferred to the set of selected features at each iteration. By
adding this particular feature, the selection criterion com-
puted with the selected feature set can be maximized.

Straightforwardly taking J � as a selection criterion for
these two search methods will be problematic, because the
criterion value with a given feature set is subject to the
value of kernel parameters. Fig. 1 shows an example from
the synthetic data set used in the experiment section
(Section 5.1). As shown in the figure, the value of J �

significantly varies with the value of �. A poor setting of �
can easily blur the difference between good and bad
features, making the feature selection fail. To handle this
problem, the maximal class separability over the kernel
parameter set �� is used as a selection criterion, which is
independent of the value of ��. It is expressed as

J �ð��; ���Þ ¼ max
��22��

J �ð��; ��Þ
� �

; ð9Þ

where � denotes the parameter space of ��. The criterion J �

has continuous first-order and second-order derivatives

with respect to ��, as long as the kernel function has. Hence,

the maximization of J � over �� can be efficiently solved by

gradient-based optimization techniques. This not only

eliminates the affect of poor parameter setting but also

frees users from manual parameter tuning, giving rise to a

friendly selection criterion.

3.3.2 Selection via Kernel Parameter Optimization

Recently, in kernel-based feature selection [10], [11], there

has been a trend of relaxing �� to a weighting vector in IRd

with the constraint of �i > 0 ði ¼ 1; 2; � � � ; dÞ. By doing so,

the gradient-based optimization techniques can be em-

ployed to efficiently search for the optimal ��, even if there

are a large number of features. Feature selection is

essentially converted to a KPO problem. The proposed

criterion J � is also applicable to this selection mode. For

example, the Gaussian RBF kernel in this case becomes

kð��� x; ��� yÞ ¼ exp �
Xd

i¼1

�2
i ðxi � yiÞ

2

2�2

" #

¼ exp �
Xd

i¼1
�iðxi � yiÞ2

h i
;

ð10Þ

where �i ¼ �2
i =ð2�2Þ. Finding the optimal �� is equivalent to

finding the optimal kernel parameter set ��. That is

��� ¼ arg max
��2IRd

;��>0

J �ð��Þ
� �

: ð11Þ

A larger ��i indicates more important features when the

features have been normalized into the similar scales.
When there are a large number of features (and, thus, a

high-dimensional ��) but a small number of training
samples, simply maximizing J �ð��Þ may fit the noise in
the training samples and fail to correctly reflect the
importance of features. This is often known as overfitting.
In this case, a regularization term has to be added. In this
paper, a regularized J �ð��Þ is proposed as

J �
regð��Þ ¼ ð1� �ÞJ �ð��Þ þ �k�� � ��0k

2; ð12Þ
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Fig. 1. J � versus � in a Gaussian RBF kernel (for a given feature).



where � ð0 � � < 1Þ is the regularization parameter that

penalizes the deviation of �� from a preset ��0. Mathemati-

cally, this imposes a Gaussian prior over ��. In this work, ��0 is

automatically found by optimizing (11) with the constraint

of �1 ¼ �2 ¼ � � � ¼ �d. Since this constraint reduces the

number of free parameters to one, the overfitting will less

likely happen. The regularization parameter � needs to be

set beforehand. Empirically, the larger the number of

features, or the smaller the number of training samples,

the larger the � value. In addition, the k-fold cross validation

can be used to tune � if the computational load is not a

critical issue and there are a sufficient number of training

samples. In this paper, the � value is mainly empirically set,

with the k-fold cross validation employed when there are

adequate training samples. Efficiently seeking the optimal �

will be a direction of the future work.

The function J �
regð��Þ is not convex, and a gradient-based

search technique will find a local optimum. Meanwhile, it is

found that J �
regð��Þ can be written as a difference of two

convex functions when the Guassian RBF kernel is used.5

Thus, the global optimum may be sought via the Difference

of Convex functions (DC) Programming, which is an active

research area in global optimization [12]. In this paper,

J �
regð��Þ is optimized by the commonly used BFGS Quasi-

Newton method. Reasonable experimental results are still

obtained.
Before ending this section, it is worth noting that besides

the above KPO approach, more complicated (and thus
possibly more accurate) variants on finding ��� are also
available in [10] and [11]. The proposed criterion is still
applicable. However, they are out of the focus of this work.

4 ANALYSIS AND DISCUSSION

4.1 Relationship with the Radius-Margin Bound

Applying the proposed criterion to feature selection can be
theoretically justified by its relationship to the radius-margin
bound. This also helps us in understanding why the
proposed criterion is faster and more robust than this bound.

Let D be a set of n training samples from two classes,
and LðDÞ is the number of errors in the leave-one-out cross-
validation procedure performed over D. The value of LðDÞ
is an estimate of the generalization error of an SVM
classifier trained with D. It is upper bounded as

LðDÞ � 4R2

	2
¼ 4R2kwk2; ð13Þ

where R is the radius of the smallest hypersphere enclosing

the n training samples in the kernel space, 	 is the margin,

w is the normal vector of the optimal separating hyper-

plane of the SVM classifier, and 	�1 ¼ kwk. This result is

based on the SVM with a hard margin that assumes

separable data. For nonseparable data, the SVM with L2-

norm soft margin will be used, because it can be interpreted

as the SVM with a hard margin that employs a slightly

modified kernel. This is followed in this paper. The R2 and

kwk2 are obtained by solving two quadratic optimization

problems:

R2 ¼ max

2IRn

Xn

i¼1

ikðxi;xiÞ �

Xn

i;j¼1

i
jkðxi;xjÞ

h i
subject to :

Xn

i¼1

i ¼ 1; 
i � 0;

ð14Þ

and

1

2
kwk2 ¼ max

�2IRn

Xn

i¼1
�i �

1

2

Xn

i;j¼1
�i�jyiyjkðxi;xjÞ

� �

subject to :
Xn

i¼1
�iyi ¼ 0; �i � 0:

ð15Þ

The relationship between trðS�BÞ and 	2 (or 1=kwk2) and
that between trðS�T Þ and R2 can be proven as

	2 � 1

4� n
n1n2

	 

trðS�BÞ

; ð16Þ

and

R2 � 1

n
trðS�T Þ; ð17Þ

where n1 and n2 are the numbers of training samples from
the two classes, respectively.

When minimizing the radius-margin bound, 	2 is

maximized, whereas R2 is minimized. According to (16),

	2 is upper bounded by 1=½4� ð n
n1n2
ÞtrðS�BÞ	. When the latter

is small, the maximization of 	2 will adversely be affected.

Hence, a larger 1=½4� ð n
n1n2
ÞtrðS�BÞ	 will be preferred

(although it does not necessarily lead to a larger 	2).

Similarly, according to (17), decreasing the value of trðS�T Þ
will facilitate the minimization of R2. The maximization of

the kernel class separability criterion trðS�BÞ=trðS
�
T Þ well

reflects the above idea (note that larger 1=½4� ð n
n1n2
ÞtrðS�BÞ	

just means larger trðS�BÞ). To some extent, this justifies the

application of this criterion to feature selection. That is,

maximizing the kernel class separability selects the features by

using which an SVM classifier is prone to achieving lower

generalization error. In addition, the kernel class separability

criterion can also be interpreted as a special case of the

radius-margin bound where all training samples are

considered to be equally important, rather than being

distinguished as support or nonsupport vectors.

4.2 Relationship with the Kernel Alignment and the
Kernel Fisher Discriminant Analysis

Although KA and KFDA are not designed for feature
selection, it is still helpful to clarify their relationship and
difference to the proposed criterion.

In [13], KA is developed as a measure of the alignment of a
kernel function to a given classification task. Recall that K
denotes a kernel matrix. An ideal kernel matrix is defined as
K0 ¼ yy>, where y ðy 2 fþ1;�1gnÞ is the vector consisting of
the labels of n training samples. The measure is defined as

AðK;yy>Þ ¼ hK;yy>iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hK;Kihyy>;yy>i

p ¼ hK;yy>i
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hK;Ki

p : ð18Þ
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KA can be viewed as a special case of the kernel class
separability criterion. It is proven that

hK;yy>i ¼ n1 þ n2ð ÞtrðS�BÞ
���
n1¼n2

;

hK;Ki � ðn1 þ n2Þ ðn1 þ n2Þ � trðS�T Þ
h i

:
ð19Þ

Note that the second result uses the condition of

kðxi;xjÞ 2 ð0; 1	, which can be satisfied by a Gaussian RBF

kernel and a part of the normalized kernels. As observed,

hK;yy>i is a special case of trðS�BÞ when the numbers of

training samples from the two classes n1 and n2 are the

same. In [13], by constraining hK;Ki as a constant C0, the

value of hK;yy>i is maximized to optimize the combina-

tion coefficients of a set of kernels. From the viewpoint of

kernel class separability, this imposes a constraint of

trðS�T Þ � ðn1 þ n2Þ � C0

ðn1þn2Þ

h i
and maximizes trðS�BÞ

���
n1¼n2

.

KFDA finds an optimal projection from the kernel spaceK
to a lower dimensional subspace in the sense that two classes
are maximally separated in that subspace. The optimal
projection w ðw 2 K;w 6¼ 0Þ is sought by maximizing

J ðwÞ ¼ w>S�Bw

w>S�Tw
: ð20Þ

The projection of a sample x into the subspace is obtained
as y ¼ w>�ðxÞ, which is a linear combination of all features
in �ðxÞ.

Feature selection with the proposed criterion and the

KFDA algorithm are essentially different, although both of

them aim at maximizing the class separability. In KFDA,
w>S�

B
w

w>S�
T
w

measures the class separability in a lower dimensional

subspace. The variable is w, which is a projection from a

high-dimensional kernel space to a lower dimensional

subspace. Its optimal value is found by the maximization of

the class separability, which is solved via an eigendecom-

position. On the other hand, feature selection with the

proposed criterion aims at evaluating the importance of

each feature and identifying more important ones. To

achieve this, a class separability criterion in a high-

dimensional kernel space trðS�BÞ=trðS�T Þ is maximized. The

variable is the parameter set of a kernel function. Its

optimal value is sought via a gradient-based search

method.
In the theoretical aspect, it is proven that the kernel class

separability criterion is actually a lower bound of the
maximum value of the KFDA’s objective function. It is
expressed as

trðS�BÞ
trðS�T Þ

� J ðw?Þ ¼ max
w2K;w 6¼0

J ðwÞ½ 	: ð21Þ

This lower bound is independent of w and is a function of

the kernel parameters only. This result can be understood

as follows: In KFDA, the maximum class separability that

could be achieved in a lower dimensional subspace is

subject to the class separability in the high-dimensional

kernel space. Improving the value of
trðS�

B
Þ

trðS�
T
Þ may help boost

the value of J ðw?Þ. Through the above analysis, it can be

clearly found that the proposed kernel class separability

criterion is not a simple reinvention of the KFDA algorithm.

4.3 Benefit of Using the Kernel Class Separability
Criterion

Generally speaking, when there are a sufficient number of
training samples, little noise in data, and adequate selection
time, minimizing the radius-margin bound can give a better
feature selection result, since the proposed criterion is only an
approximation of this bound. However, it is observed that the
proposed criterion often provides more benefits in practice.

Computational efficiency. For a given kernel parameter set,
each evaluation of the radius-margin bound needs to solve
two quadratic optimization problems, which can consider-
ably prolong the feature selection process. Comparatively,
each evaluation of the proposed criterion has much less
computational load, since it does not involve any optimiza-
tion. It can significantly reduce the time cost, leading to
faster feature selection.

Robustness. The radius-margin bound considers the worst
case (for example, it maximizes the minimum margin
between two classes) by solving (14) and (15). When
training samples are scarce, the estimated margin will less
likely reflect the true margin due to its high functional
complexity (overfitting happens). In addition, the estima-
tion of R2 is prone to being affected by noisy samples. In
these cases, the radius-margin bound can no longer
accurately predict the generalization error, and this, in
turn, affects its feature selection performance. Improving
the robustness of the SVMs has attracted much attention
and has been an active research topic [14]. Comparatively,
the proposed kernel class separability criterion is less
sensitive to the scarcity of training samples and the
presence of data noise, because it evaluates the average
case (for example, it maximizes the distance between two
class means) of data separability and has much lower
functional complexity.

Stability. Feature selection with the radius-margin bound
needs two loops of optimization. The outer loop minimizes
the radius-margin bound with respect to the kernel
parameters, whereas the inner loop computes the radius
and margin by solving (14) and (15). In the outer loop,
when a search direction is determined, a line search will be
performed to find the minimum of the radius-margin
bound along this direction. This involves evaluating the
radius-margin bound with a series of kernel parameters.
However, these parameter values are suggested by the
linear search mechanism and are not necessarily reasonable
for the training data. For example, a large Gaussian width
or regularization parameter C may be suggested when the
training samples are not separable. This will result in a very
long or even endless optimization process in solving (14)
and (15). The proposed class separability criterion is
completely free of this problem.

5 EXPERIMENTAL RESULT

This experiment evaluates the performance of the proposed
feature selection criterion in dealing with linearly nonsepar-
able classes, fast feature selection, small sample set, and noisy
features. This criterion is compared with the Pearson
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correlation coefficient, the Kolmogorov-Smirnov test, class
separability (nonkernel), Boosting feature selection, and,
particularly, the radius-margin bound. The feature selection
performance is measured by 1) the percentage of correct
selection, 2) the test error of an SVM classifier using the
selected features, and 3) the time cost by feature selection.
Higher percentage of correct selection, lower test error, and
less selection time indicate better performance. Three feature
selection modes of “BIN,” “SEQ,” and “KPO” are investi-
gated. The Gaussian RBF kernel is employed. The LIBSVM
[15] is used for training, test, and timing. The BFGS Quasi-
Newton method is employed to maximize the proposed
criterion or minimize the radius-margin bound. The code
provided in [16] is used.

5.1 Result on the Synthetic Data Set

A synthetic data set is created by following [11]. It is a

nonlinear binary classification problem and has been used as

a benchmark to test feature selection criteria. In this data set,

only two out of the 52 features are statistically relevant to the

class label, whereas all the others are random noise. For each

sample x ðx 2 IR52Þ, its label y has the equal probability of

being þ1 or �1. The features x1 and x2 are drawn from a

normal distribution of Nð��1; IÞ or Nð��2; IÞ with equal

probability, where I is an identity matrix. When y ¼ �1,

��1 ¼ ½�0:75;�3	>, and ��2 ¼ ½0:75; 3	>. When y ¼ þ1, ��1 and

��2 become ½3;�3	> and ½�3; 3	>, respectively. The remaining

50 features x3; � � � ; x52 are randomly sampled from Nð0; 20Þ.
The distribution of x1 and x2 is illustrated in Fig. 2. x1 is the

most discriminative feature. The two classes can be best

separated by using both x1 and x2. Assuming that we have

known that only two features are useful, the following

experiments investigate if they can be correctly selected by

the aforementioned criteria.

5.1.1 Result on the Mode of Best Individual N

Fig. 3 compares the percentage of correct selection and the
test error of an SVM classifier with the two features selected
by different criteria. All of the results are averaged over
30 groups. Fig. 3a shows the percentage of correctly
selecting x1 within the top two. As observed, both the
Pearson correlation coefficient and class separability (non-
kernel) fail to identify x1. This is not surprising, because
they cannot effectively handle the linearly nonseparable

data. Free of this problem, the Kolmogorov-Smirnov test
produces better performance. However, it needs enough
samples to estimate the underlying distribution. This
affects its performance when the number of training
samples is small. Higher selection percentage is obtained
by the proposed criterion and the radius-margin bound.
The percentage of exactly selecting ðx1; x2Þ as the top two
features is plotted in Fig. 3b. All selection criteria give a
poor result. This can be expected for the BIN selection
mode. With the two selected features, the test error of an
SVM classifier is further compared across these selection
criteria. The same 100 training samples and 500 test
samples are applied. For a fair comparison, the hyperpara-
meters in each SVM classifier are equally optimized via a 5-
fold cross validation. The mean and standard deviation of
the test errors are plotted in Figs. 3c and 3d, respectively.
Consistent with the selection percentage, the SVM classifier
with the features selected by the proposed criterion or the
radius-margin bound produces the lowest test error. The
significance test is conducted, as shown in Table 1, where
the McNemar test [17] with the significance level of 0.05 is
used. According to the test result, each of the 30 groups is
categorized as “KCSM (significantly) better,” “KCSM
(significantly) worse,” or “No statistical difference.”6 The
number of groups in each category is listed. The proposed
criterion achieves a performance comparable to that of the
radius-margin bound. The time spent by different feature
selection criteria is compared in the first part (the BIN
mode) of Table 5. For the kernel class separability and the
radius-margin bound, the time mainly includes the portion
of kernel evaluation and quadratic optimization. The
portion for reading and writing data and preprocessing is
excluded, because it varies with programming. Hence, the
sign “> ” is put before these numbers. As observed, the
proposed criterion is faster than the radius-margin bound.
In terms of the ratio of selection performance to selection
time, the proposed criterion is the best one.

5.1.2 Result on the Mode of Sequential Forward

Selection

In this selection mode, the proposed criterion is compared
with the radius-margin bound and the Boosting feature
selection [18]. Other criteria are omitted due to their relatively
poor selection performance. Fig. 4 shows the percentage of
correct selection and the SVM test error. The proposed
criterion obtains comparable or slightly better performance
than the radius-margin bound. This is confirmed by the
significance test result in Table 2. The Boosting feature
selection correctly selects the most useful feature x1, but it
fails to identify the best combination of ðx1; x2Þ. In this
selection mode, the proposed criterion still achieves excellent
selection performance. Meanwhile, it maintains the faster
feature selection than the radius-margin bound, as shown in
the second part (the SEQ mode) of Table 5.

5.1.3 Result on the Mode of Kernel Parameter

Optimization

This selection mode is newly proposed in [10], where
feature selection is performed by optimizing a criterion
with respect to the kernel parameter assigned to each
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Fig. 2. Illustration of the synthetic data set.

6. “KCSM significantly better” means that a statistically significant
difference is detected between the test errors and that the mean of the test
errors with respect to the proposed criterion is lower. “KCSM (significantly)
worse” is defined in a similar way.



feature. This mode is attractive, because the optimization

problem is efficiently solved by using the gradient-based

search methods, rather than the exhaustive search, in the

modes of BIN and SEQ. This selection mode is the focus of

the rest of this experimental study. As before, the proposed

criterion and the radius-margin bound are compared, and

the results are reported in Fig. 5 and Table 3. Compara-

tively, the proposed criterion achieves a higher percentage
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Fig. 3. Feature selection result and the SVM test error with the two selected features (the BIN mode and synthetic data). The Significance Test result
is reported in Table 1. (a) Correctly selecting x1 within the top two. (b) Correctly selecting both x1 and x2 as the top two. (c) Mean of the test errors.
(d) Standard deviation of the test errors.

TABLE 1
Significance Test of the SVM Test Errors with respect to KCSM and RMB in Fig. 3 (the BIN Mode)

Fig. 4. Feature selection result and the SVM test error with the two selected features (the SEQ mode and synthetic data). The Significance Test
result is reported in Table 2. (a) Percentage of correct selection. (b) SVM test error with the two selected features.



in selecting the feature x1, whereas the percentage of
selecting the combination of ðx1; x2Þ is a bit lower.
However, as demonstrated by the SVM test error, the
significance test, and the timing result in the third part (the
KPO mode) of Table 5, the proposed criterion still produces
overall better performance.

Since this selection mode simultaneously considers all
features by a one-shot optimization, it is important to
investigate the selection performance of a criterion with

respect to the number of irrelevant features. A better
criterion should be able to maintain a high percentage of
correct selection with the increasing number of irrelevant
features. Fig. 6 compares the proposed criterion and the
radius-margin bound in this case. To remove the affect of
small sample set, a sufficient number (100) of training
samples are used in feature selection. Again, the result is
averaged over 30 groups. Fig. 6a shows that the selection
percentage of the radius-margin bound quickly drops when
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TABLE 2
Significance Test of the SVM Test Errors with respect to KCSM and RMB in Fig. 4 (the SEQ Mode)

Fig. 5. Feature selection result and the SVM test error with the two selected features (the KPO mode and synthetic data). The Significance Test

result is reported in Table 3. (a) Percentage of correct selection. (b) SVM test error with the two selected features.

TABLE 3
Significance Test of the SVM Test Errors with respect to KCSM and RMB in Fig. 5 (the KPO Mode)

Fig. 6. Feature selection result and the SVM test error with the two selected features (the KPO mode and synthetic data). The Significance Test

result is reported in Table 4. (a) Percentage of correct selection. (b) SVM test error with the two selected features.



more irrelevant features are included. In other words, it
cannot deliver a good-enough selection result by simply
applying a one-shot KPO (in [10], a sequential backward
elimination of the worst features obtains better selection
performance, but it involves multiple times of KPO).
Comparatively, the proposed criterion demonstrates much
better selection performance with the increasing number of
irrelevant features. It is believed that the poor performance
of the radius-margin bound is due to its sensitivity to data
noise. Recall that R is the radius of the smallest hyper-
sphere enclosing all training samples. The value of R
heavily depends on the sample that most deviates from the
center of data. When this deviation is caused by noise
rather than the underlying data distribution, R will become
noisy. Applying the kernel class separability criterion can
considerably mitigate this problem, because it measures the
average radius of data scattering (via trðS�T Þ). Moreover,

this work takes the lower bound in (7) as a feature selection
criterion, which further reduces the impact of the radius
estimation. The SVM test error in Fig. 6b and the significance
test in Table 4 confirm the advantage of the proposed
criterion. Aside from the above comparison, it is also
investigated whether the poor performance of the radius-
margin bound in this case could be improved by applying
regularization. By setting the regularization parameter � in
(12) to different values ranging from 0 to 0.99, a regularized
radius-margin bound is used. In Table 6, it is seen that for this
feature selection problem, the radius-margin bound cannot
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TABLE 4
Significance Test of the SVM Test Errors with respect to KCSM and RMB in Fig. 6 (the KPO Mode)

TABLE 5
Time Cost versus the Number of Training Samples

TABLE 6
Percentage of Selecting ðx1; x2Þ versus the Number of Irrelevant Features (Different � Values)

Fig. 7. Example of the digit images in the USPS data set.



produce better performance, even if the regularization is
applied. As for the proposed criterion, the regularization
slightly improves its performance.

5.2 Result on the Data Set of the US Postal Service

The USPS data set has been widely used as a benchmark for
evaluating learning algorithms [2]. It contains 7,291 training
samples and 2,007 test samples, which can be downloaded
from [15]. They are from 10 classes of digits from 0 to 9, as
shown in Fig. 7. Each sample is characterized by 256 features
obtained by reshaping a 16�16 gray-level thumbnail image
to a long vector. Following the experimental setting in [10], a
binary classification problem is created to separate the digits
of 0
 4 from 5
 9. Feature selection in this case is to identify
more discriminative ones from the 256 features. The
performance of the proposed criterion in the presence of
small sample set and noisy features is investigated.

To simulate the case of small sample set, m ðm ¼
4; 5; 6; � � � ; 10Þ training samples are randomly chosen from
each class, forming a small-sized training set. Seven
training sets are obtained in total. After performing
feature selection on each of them, an SVM classifier with
the top-k ðk ¼ 1; 3; 5; 10; 20; 40; 50Þ selected features is
trained with 1,000 training samples and tested on the
predefined 2,007 test samples. Finally, the seven test
errors are averaged. Different regularization parameters
ð� ¼ 0; 0:1; 0:25; 0:5; 0:75; 0:99Þ are applied, and the lowest
average test error from each criterion is compared to each
other. As shown in Fig. 8a, the proposed criterion is
better in identifying the most important features, which is
reflected by its lower test error in the early stage. The
radius-margin bound catches up when more features are
selected.

In the experiment on noisy features, 10 percent of the
256 features are replaced by the noisy features generated by
randomly reshuffling each of them. The noisy features
generated this way maintain their original unconditional
distributions. Thirty groups of noisy training sets are created,
each including 1,000 samples randomly selected from the
predefined training set. Again, feature selection is performed
on each of them. This time, the regularization parameter � is
selected by applying the 5-fold cross validation. Each
training set is randomly partitioned into five subsets. Each
subset is used as a validation subset once, and the remaining
four subsets are correspondingly used as a training subset.
Based on this training subset, feature selection with a given �

value is performed, and an SVM classifier with the top-k
selected features is trained. The test error of the SVM
classifier is then computed via the validation subset. This
process is repeated five times, and the five validation errors
are averaged, forming a criterion of the goodness of this �
value. From a given selection pool, the � value that gives rise
to the minimum average validation error is chosen. In this
experiment, the selection pool of � is (0, 0.1, 0.25, 0.5, 0.75,
0.99). With the 5-fold cross validation, the value of 0.99 is
consistently selected for all the 30 training sets when the
proposed criterion is used. For the radius-margin bound, the
value of 0.75 is selected for 27 training sets, the value of 0.5 is
selected for 2, and the value of 0.25 is selected for 1. With the
selected � value, feature selection is then carried out on each
of the 30 training sets. The SVM classifier with the top-k
selected features is trained and then tested on the predefined
2,007 test samples (10 percent of the 256 features of these
samples have also been replaced by the noisy features). As
plotted in Fig. 8b, the proposed criterion still shows better
performance in selecting a small number of features. The
significance test is listed in Table 7, from which a similar
conclusion can be drawn. In this experiment, the selection
time of the radius-margin bound is much longer than that of
the proposed criterion. This is because in each evaluation of
the radius-margin bound, two quadratic programming
problems with 1,000 training samples have to be solved. In
addition, the minimization of the radius-margin bound
needs more function evaluations.

5.3 Result on the Data Set of Deoxyribonucleic Acid

This data set is taken from the Statlog Project database. Its
original task is to decide whether there is a splice junction in
a given DNA sequence and infer the type of this junction if
there is. In this experiment, this data set is used as a binary
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Fig. 8. (a) Test error of SVM with selected features (small sample). (b) Test error of SVM with selected features (10 percent noisy features obtained
by random shuffling are used). Note that the radius-margin bound in this figure uses the regularization proposed in this work. The original radius-
margin bound gives poorer performance in this case.

TABLE 7
Significance Test of the SVM Test Errors with respect to KCSM

and RMB in Fig. 8b (the KPO Mode)



classification problem by only deciding the “presence” or
“absence” of a splice junction. This data set includes 2,000
training samples and 1,186 test samples. Each sample is a
DNA sequence consisting of 60 nucleotides. Each nucleo-
tide is described by three binary features. This way, a DNA
sequence is represented by 60� 3 ¼ 180 features in total.
This data set is used, because it has a “ground truth” to
some extent: “Much better performance is generally observed if
attributes closest to the junction are used. This means using
attributes A61 to A120 only.”7 It provides a good way of
evaluating the feature selection performance. Twenty
small-sized training subsets are randomly sampled from
the predefined training set, each of which contains only
50 samples. As before, with the proposed criterion or the
radius-margin bound, feature selection is performed on
each training subset via KPO. After that, an SVM classifier
is trained with the top-k ðk ¼ 1; 2; 4; 6; 8; 10; 15; 20; 30; 40; 60Þ
selected features and evaluated on the predefined test set.
By applying different regularization parameter values, the
lowest test error from each criterion is picked and
compared, as shown in Fig. 9a. The proposed criterion
produces lower test errors than the radius-margin bound,
showing better feature selection performance. This experi-
ment is repeated by further reducing the number of
training samples in each training subset to 40. The SVM
test errors are compared in Fig. 9b, from which a similar
result is observed. The significance test result is reported in

Table 8. The number of groups on which the proposed

criterion wins is clearly higher. This verifies the better

performance achieved by the proposed criterion.
Finally, since this data set has a “ground truth” about the

features that should be selected, the following will check

whether they are really picked by the proposed criterion. The

optimized values of �i ði ¼ 1; 2; � � � ; 180Þ are averaged over

the 20 trials and are plotted in Fig. 10. The features from the

80th to the 100th are assigned higher � values, showing that

they are identified as more discriminative features. This

result well matches the aforementioned “ground truth.”
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Fig. 9. (a) Test error of the SVM with the selected features (50 samples). (b) Test error of the SVM with the selected features (40 samples). Note that
the radius-margin bound in this figure uses the regularization proposed in this work. The original radius-margin bound gives poorer performance in
this case.

TABLE 8
Significance Test of the SVM Test Errors with respect to KCSM and RMB in Fig. 9 (the KPO Mode)

7. http://www.liacc.up.pt/ML/old/statlog/datasets/dna/dna.descri.
html. Fig. 10. The average of the optimized value of �.



6 CONCLUSION AND FUTURE WORK

In this paper, a kernel-based class separability measure is
developed as a feature selection criterion. A feature subset
that gives rise to higher class separability is considered to be
more important. With this criterion, different modes of
feature selection are studied. Via our theoretical analysis, the
relationship of the proposed criterion to the radius-margin
bound, the KFDA, and the KA is exposed. This helps us in
understanding the advantages and disadvantages of the
proposed criterion for feature selection. As experimentally
demonstrated, this criterion gives the overall best feature
selection performance among the compared ones. It delivers
faster feature selection and well handles linearly nonsepar-
able data. In addition, it is robust to both the scarcity of
training samples and the presence of noisy features.

Much future work is worth exploring. For example, the
proposed kernel class separability criterion is unified for both
binary and multiclass classification. It can be readily applied
to the feature selection of a multiclass problem that is more
common in practice. In addition, it would be appealing if the
optimal number of features to be selected could automati-
cally be determined. It is believed that accurately and
efficiently identifying this number still remains an open
issue. A possible way is to treat this number as an extra
variable and maximize the criterion with respect to it. Finally,
since this criterion is proven as a lower bound of the
maximum value of the KFDA’s objective function, its
maximization may be used to tune the kernel parameters in
the KFDA. This approach is expected to be more computa-
tionally efficient than those computing the leave-one-out
cross-validation bound [19], [20].
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