
Distributed Multipath Routing for Data Center
Networks based on Stochastic Traffic Modeling

Omair Fatmi and Deng Pan
School of Computing and Information Sciences

Florida International University

Miami, Florida

Abstract—Modern data center networks often adopt multipath
topologies for greater bisection bandwidth and better fault
tolerance. However, traditional distributed routing algorithms
make routing decisions based on only packet destinations, and
cannot readily utilize the multipath feature. In this paper, we
study distributed multipath routing for data center networks.
First, to capture the time varying and non-deterministic nature of
data center network traffic, we present a stochastic traffic model
based on the log normal distribution. Then, we formulate the
stochastic load-balanced multipath routing problem, and prove
that it is NP hard for typical data center network topologies,
including the fat tree, VL2, DCell, and BCube. Next, we propose
our distributed multipath routing algorithm, which balances
traffic among multiple links by minimizing the probability of
each link to face congestion. Finally, we implement the proposed
algorithm in the NS2 simulator, and provide simulation results
to demonstrate the effectiveness of our design.

I. INTRODUCTION

Data centers of today contain no less than several hundreds

and thousands of servers [4]. To connect such a large number

of servers, data center networks are usually built using multi-

rooted hierarchical topologies. For example, data centers based

on the fat tree topology [3] contain a layer of hosts, edge

switches, aggregation switches, and core switches, respec-

tively, as shown in Fig. 1. Such topologies provide multiple

possible paths between a pair of hosts. For example, in the

4-pod fat tree network in Fig. 1, there are four different paths

between hosts 1 and 2. Hence, an efficient routing strategy

is necessary to utilize the multipath feature of modern data

center networks.

However, traditional routing algorithms such as distance

vector and link state do not support multipath routing well.

The reason is that they make routing decisions based on only

packet destinations, and hence all packets to the same destina-

tion take the same path. The inability to support multipath may

greatly reduce the routing efficiency of a data center network,

as many links would remain under-loaded while traffic would

be directed to a small group of links, resulting in congested hot

spots. Therefore, in order to fully utilize the network capacity,

the routing algorithm should efficiently balance the traffic

among all available paths while fulfilling the traffic demand.

There exist some multipath routing solutions in the lit-

erature [2], [11], [17], [22]. Equal Cost MultiPath (ECMP)

[17] provides multipath forwarding by performing static load

splitting among the flows. Each node running ECMP has

multiple next hops configured for a given destination. When

Core
Switches

Aggregation
Switches
Edge

Switches

Hosts1 2

Fig. 1. Hierarchical 4-pod fat tree topology.

a packet arrives, the node forwards the packet according to

the hash of selected fields in the packet header. ECMP can

split traffic to a destination across multiple paths, but such

traffic splitting is restricted to cases where equal cost paths

exist. Adaptive Multipath Routing (AMP) [11] introduces

an efficient signaling architecture by reducing the view of

the network for each node to a local scope, i.e. each node

is informed about the congestion on the links that are in

its immediate neighborhood. The information is distributed

with the help of a unique signaling mechanism known as

the backpressure mechanism, in which a node experiencing

congestion sends out the congestion information to its im-

mediate neighbors. As a result, the neighbors offload some

of their paths containing that congested link by selecting

different paths. The neighboring nodes eventually send the

congestion information to their adjacent nodes, in proportion to

their contribution in the congestion. Although AMP achieves

multipath traffic engineering utilizing the link information,

it supports only congestion alleviation, but not congestion

prevention at the beginning of path selection. Hedera [2] is a

scalable and dynamic flow scheduling system for data centers.

It takes a centralized approach in which a single scheduler has

global knowledge of all the flows in the network. It schedules

the flows over different available paths in the network, and

its scheduling decisions are based on large flows as they are

presumably responsible for much of the traffic sent across the

network. By comparison, our approach is a distributed one and

thus more scalable. Maximum Alternative Routing Algorithms

(MARA) [22] construct directed acyclic graphs (DAGs) that

include all edges present in the network, so that the maximum

number of alternate paths should be available between a pair

of nodes. Similarly, MARA works in a centralized mode and

needs the entire network topology.

Recent studies have shown that traffic patterns in data center

networks are not deterministic [4]. Instead, they are stochastic

in nature and are usually modeled by heavy-tailed distributions

[5], based on how packet inter-arrival times and flow sizes are

distributed [19], [23]. It is due to the fact that although most

of the traffic inside a data center network have flows that are

reasonably small, some flows are relatively large because of

sudden data bursts.

Considering the above mentioned fact, our solution takes

into account the stochastic nature of traffic in typical data

center networks, and makes routing decisions based on those

traffic patterns. Our algorithm takes a fully distributed ap-

proach, which means that instead of a centrally controlled

path selection mechanism such as that in Hedera [2], each

node in the path of a flow autonomously selects an optimal

link. Based on the stochastic traffic model, the optimal link

is determined by comparing the probabilities of the links to

become overloaded, and selecting the link with the lowest

probability. The use of the above distributed routing approach

can prevent centralized control limitations, such as a single

point of failure or performance bottleneck [4]. Also, our

algorithm avoids the division of a single flow into multiple

paths, because 99% of the traffic flows in data centers are

TCP flows [12], which suffer performance degradation when

packet delivery is not in order [16].

Our main contributions in this paper can be summarized as

follows. First, we present a stochastic traffic model that uses

the log normal distribution to capture the non-deterministic

nature of data center network traffic. Second, we formulate the

load-balanced multipath routing problem, and prove that it is

NP hard for typical data center network topologies, including

the fat tree [3], VL2 [13], DCell [15], and BCube [14]. Third,

we propose a novel distributed multipath routing algorithm,

in which each node makes independent decisions to balance

traffic based on the stochastic traffic model. Finally, we

conduct extensive simulations in different topologies including

the fat tree and VL2. Our results show substantial improvement

in the end-to-end packet delay and bandwidth utilization, not

to mention a highly load-balanced network as compared to

other routing algorithms.

The remaining of this paper is organized as follows. Sec-

tion II presents the formal definition of the load-balanced

multipathing problem, and proves that it is NP hard for

typical topologies. Section III describes the stochastic traffic

model. Section IV proposes the distributed multipath routing

algorithm. Section V shows the simulation results. Finally,

Section VI concludes the paper.

II. PROBLEM FORMULATION

In this section, we describe our stochastic traffic model, for-

mulate the stochastic load-balanced multipath routing (SLMR)

problem, and prove that it is NP-hard for typical data center

network topologies.

A. Stochastic Traffic Model
Because recent studies indicate that data center traffic can

be best modeled by heavy-tailed distributions [5], we use

the log normal distribution [24] to represent the dynamic

bandwidth demand of a flow. Specifically, for a flow fi, its

bandwidth demand di follows a log normal distribution, i.e.

di ∼ lnN (μi, σ
2
i), where μi is the mean and σi is the standard

deviation.

Further, the aggregated demand of multiple individual flows

can also be approximated by a log normal distribution [9].

Assuming that a link l has n flows f1, . . . , fn traversing it,

denote the aggregated demand of all the flows as dl =
∑

i di,
and dl ∼ lnN (μl, σ

2
l), in which the calculation of μl and σl

is explained in the following [9].

μl = μ1 + μ2 + . . .+ μn (1)

σ2
l = σ2

1 + σ2
2 + . . .+ σ2

n (2)

Note that ln(dl) follows a standard normal distribution [24],

i.e. ln(dl) ∼ N (Ml, D
2
l), in which the mean Ml and stand

deviation Dl are calculated as follows.

Dl =

√
ln(

σ2
l

μ2
l

+ 1) (3)

Ml = lnμl − D2
l

2
(4)

Knowing the log normal distribution of the aggregate flow of

a link, we can easily calculate its probability of oversubscrip-

tion. Oversubscription happens if the aggregated bandwidth

demand is greater than the product of the link capacity and a

threshold defined in the service level agreement (SLA). Denote

the capacity of link l as cl and the oversubscription percentage

threshold as T . Utilizing the cumulative distribution function

of the standard normal distribution by its relationship with the

log normal distribution [24], we can calculate the oversub-

scription probability as follows.

Pr{dl > Tcl} = 1− Φ
(ln(Tcl)−Ml

Dl

)
(5)

where Φ() is the cumulative distribution function of the

standard normal distribution.

B. Formulation of Stochastic Load-Balanced Multipath Rout-
ing

Model a data center network as a graph G = (V,E). The

vertex set V = H ∪ S includes a set of hosts H = {hi} and

a set of switches S = {sj}. The edge set E = {(ax, ay)}
includes links (ax, ay), where ax and ay are either two

switches or a switch and a host. Each link (ax, ay) has a

non-negative capacity c(ax,ay) ≥ 0 indicating its available

bandwidth.

Consider a set of flows F = {f1, . . . , fn}. Each flow is

defined as a four-tuple fk = (uk, vk, μk, σk), where uk ∈ H
is the source host, vk ∈ H is the destination host, and

lnN (μk, σk) is the log normal distribution describing the

bandwidth demand of the flow. Use rk(ax, ay) to indicate

whether flow fk is routed via link (ax, ay). To avoid TCP

performance degradation [16], we do not allow a single flow

to be split among multiple routes, and thus rk(ax, ay) is either

1 or 0. However, different flows between the same pair of

hosts are allowed to take different routes. For link (ax, ay),

use d(ax,ay) to represent its aggregated bandwidth demand, i.e.

d(ax,ay) =
∑

fk
dk · rk(ax, ay).

To achieve load balancing, we define two objectives. First,

there should be a small probability of oversubscription, as it

may result in packet loss. Second, the aggregated bandwidth

demand on each link should have a small mean value, so

that the average packet delay is small. Since there are two

objectives, we assign each a weight factor [7], and minimize

the maximum weighted sum of all the links. Therefore, the

stochastic load-balanced multipath routing problem can be

formulated as:

minimize maxWS

subject to the following constraints:

∀(ax, ay) ∈ E,αPr{d(ax,ay) > Tc(ax,ay)}+
βμ(ax,ay) ≤ maxWS (6)

∀k, ∀ax ∈ V \ {vk, uk},∑
ay∈V

rk(ax, ay) =
∑
ay∈V

rk(ay, ax) (7)

∀k,
∑
ax∈V

rk(vk, ax) =
∑
ax∈V

rk(ax, uk) = 1 (8)

Equation (6) defines the weight sum, in which the over-

subscription probability Pr{d(ax,ay) > Tc(ax, ay)} and the

mean of the aggregated bandwidth demand μ(ax,ay) can be

calculated as in Section II-A. α is the weight for the former

and β is the weight for the latter. Without loss of generality,

assume that α and β are integers. Equation (7) states the flow

conservation constraint, i.e. the flow values do not change at

intermediate nodes. Equation (8) states the demand satisfaction

constraint, i.e. the flow value at the source and destination is

equal to the demand of the flow.

C. NP-hardness Proof

We now show that the above formulated problem is NP-

hard for typical data center network topologies by reduction

from the integer partition problem. In the following theorem,

we first look at the popular fat tree topology.

Theorem 1. The stochastic load-balanced multipath routing
problem is NP-hard for the fat tree [3] topology.

Proof: We prove the theorem by reduction from the

integer partition problem [20]. An integer partition problem

decides whether a set of integers I = {i1, . . . , in} has a subset

Is whose sum is half of
∑

ik∈I ik, i.e.

∃Is ⊆ I,
∑
ik∈Is

ik =
∑

ik∈I\Is
ik (9)

To reduce the load balancing problem from the above

integer partition problem, consider an instance of a partition

problem with set I . From that, we construct an instance of

the load-balanced multipath routing problem. First, set up a

4-pod fat tree network G = (V,E), with the capacity of

each link being infinite, i.e. ∀(ax, ay) ∈ E, c(ax, ay) = ∞.

Fig. 2 illustrates the detail of one pod. Next, set up n flows

Aggregation
Switches

Edge
Switches

Hosts
1 2 3 4

A

B C

D

Path 1-A-C-D-3
Path 1-A-B-D-3

Fig. 2. Single pod from a 4-pod fat tree topology.

f1, . . . , fn. For each flow fk, its source host uk is host 1, its

destination host vk is host 3, the demand mean μk = ik where

ik ∈ I , and the demand standard deviation σk = 0.

As can be seen, there are only two paths between hosts 1

and 3: 1-A-B-D-3 and 1-A-C-D-3, as shown in Fig. 2. Further,

since each link has infinite capacity, the oversubscription

probability is zero.

Suppose that the integer partition problem I has a solution

Is as in Equation 9, then we can construct a solution for

the load-balanced multipath routing problem to achieve an

optimized objective of maxWS = β
∑

ik∈I ik/2 as follows.

For each ik ∈ Is, we assign the corresponding flow fk to

the path 1-A-B-D-3; otherwise, if ik ∈ I \ IS , we assign the

corresponding flow fk to the alternative path 1-A-C-D-3. It

can be easily verified that such a route assignment satisfies

the flow conservation and demand satisfaction constraints as

well.

Conversely, suppose that the load-balanced multipath rout-

ing problem has an optimized objective value of maxWS =
β
∑

ik∈I ik/2. Note that the optimized objective must be an

integer, since we do not allow flow splitting and σk = 0. Thus,

we can construct a solution Is for the integer partition problem

as follows. For any flow fk taking the path 1-A-B-D-3, assign

the corresponding integer ik to Is.

Theorem 2. The load-balanced multipath routing problem
is NP-hard for the VL2 [13], BCube [14], and DCell [15]
topologies.

Proof: The proof is similar to that for the fat tree

topology. The key is to find a network with only two disjoint

paths between two selected hosts, and map the two sets of

integers to the two sets of flows taking different paths. Due to

space limitations, the detail proof is omitted.

III. DISTRIBUTED MULTIPATH ROUTING ALGORITHM

In this section, we present the stochastic load-balanced

multipath routing (SLMR) algorithm. The design of SLMR

is based on the fact that the traffic demand in data centers

shows a stochastic pattern. Hence each link in the network

has an oversubscription probability, based on the behavior

of traffic traveling through it. Using this unique property,

SLMR selects optimal paths by obtaining and comparing the

oversubscription probabilities of the candidate links. Because

data center networks are usually organized in a hierarchical

structure, candidate links are defined as the links that lead

to the next hierarchical layer to the destination node. SLMR

selects the candidate link with the minimum oversubscription

probability. After a link is being selected, it is added to

the optimal route and the packet will be sent to the next

hierarchical layer until it reaches the destination. Finally, a

route consists of a sequence of such locally selected links

with small oversubscription probabilities, and all the following

packets of the same flow will use this route. Due to this

distributed approach of SLMR, each node only needs the

information of the candidate links connecting its neighboring

layer, instead of the global information of the network. In the

following, we discuss the operation and implementation details

of the proposed algorithm.

A. Algorithm Description
The operation of SLMR consists of two steps. The first

step is to determine the routing direction of a flow and the

set of candidate links. The direction can be either upstream

or downstream, based on the network topology and the des-

tination address, as hosts in data center networks usually

have addresses based on their topological locations [6]. Such

network topology information can be computed in advance

during network initialization, and stored in each switch. For

example, for a data center network implementing the fat tree

topology, hosts in the same pod share the same sub-net address

[3]. So, when the packet of a new flow arrives at one of

the switches, the switch checks the destination address of the

packet to see if it belongs to the same pod as the source or a

different one. If it is destined to a different pod, then all the

upstream links of that layer are considered as the candidate

links. If the destination pod is same as the source pod, the

algorithm identifies the candidate links using the destination

and sub-net address of the pod.

The second step is to determine the oversubscription prob-

abilities of all the candidate links, and assigning the link with

the smallest probability to the flow. In this step, for all the

candidate links, the current link load value is obtained and their

oversubscription probabilities are calculated, using Equation

(5). The algorithm then checks whether the obtained probabil-

ities are within the oversubscription percentage threshold T .

The threshold in our case is 99% [1]. This is to ensure that

SLMR does not include oversubscribed links in the calculation

of the optimal path. From all the calculated probabilities, the

algorithm then finds the link with the smallest probability, by

comparing the probabilities of all the candidate links. The link

with the smallest oversubscription probability is then selected

and added to the route. Finally, the packet moves to the next

layer where the above process is repeated until the packet

reaches the destination. At this point, the path between the

source and destination is successfully created, after which all

the remaining packets of the flow follow the same path.

B. Implementation
Here we describe the implementation details of the SLMR

algorithm. This includes the implementation of flow table and

application profiles by the switches in the network. We also

describe the behavior of SLMR under different scenarios, in

cases when new and existing flows are seen by the switches,

and also when the links in the network have high oversub-

scription probabilites.

In order to take optimal routing decisions for each flow and

to achieve distributed control over the network, each switch

maintains a flow table. An entry in the flow table consists of

source address and port number, destination address and port

number and the outgoing link on which the flow is assigned

[18]. Whenever a new flow arrives at a switch, SLMR records

an entry in the flow table for the new flow. After a link is

selected for the flow, it is added to the entry in the flow table

as an outgoing link for that particular flow.

In addition to the flow table, each switch also maintains a

profile of applications that are generating traffic inside the data

center. This profile contains the port numbers and stochastic

traffic parameters (μk and σk, as discussed in Section II-A)

of the flows generated by different applications. SLMR learns

the stochastic traffic parameters of the new flow by checking

its entry in the flow table and matching the port numbers of

the new entry with the port numbers in the profile. For the

flows succeeded by the first one, SLMR checks the originating

host and destination addresses, and using the recent history of

profiles used for the host pair, obtains the stochastic parameters

from the profile.

In case of an existing flow, each switch along the path

already has an entry in its flow table. The switch determines if

it is an existing flow by comparing the four-tuple information

(source address and port number, and destination address and

port number) provided by the packets of the flow. After this

determination, the switch forwards the packet to the link which

is present in the flow table for that particular entry.

If there are no links available on a particular layer, i.e.

all the links have probabilities exceeding oversubscription

percentage threshold T , the current switch sends the packet to

the previous switch. This means that the packet is backtracked

to the previous layer. The previous hop switch then repeats

the process in section III-A, and sends the packet to the next

link with a greater oversubscription probability than the link

where the backtracked packet is received. If there is no more

available link, the packet is backtracked again, until either a

route is successfully found or there is no more backtracking

possible, which means a route failure. Note that since the entire

network is load balanced, a route failure should happen with

a small chance.

From the above explanation we can easily deduce that our

proposed algorithm is fulfilling the design objectives. Firstly,

with the help of link availability searching and backtracking,

it finds a path if there exists one. Secondly, with the help of

link load probabilities, it guarantees an optimal load balanced

network.

IV. SIMULATION RESULTS

This section presents the simulation results used to validate

the efficiency of SLMR over traditional routing algorithms,

such as Distance Vector and Link state. We also perform

SLMR comparison with and without considering the stochastic

traffic behavior to show the effectiveness of our traffic model.

Our simulation scope covers the average end to end delay and

also average normalized throughput per host in the network.

A. Simulation Settings
We use Network Simulator 2 (NS2) [8] to simulate the

operation of all the aforementioned algorithms and to compare

their performance under both the fat tree and VL2 topologies.

We consider a 16-pod fat tree topology with 1024 hosts, 128

edge switches, 128 aggregation switches and 64 core switches.

Similarly for the VL2 topology we consider 1024 hosts, 128

edge switches, 64 aggregation switches and 32 core switches.

Each link in both the topologies is bidirectional and has a

bandwidth of 1 Gbps for each direction. Each flow has a

bandwidth demand that follows log normal distribution, with

a maximum demand of 5 Mbps. During traffic generation, the

values are obtained from the profile of applications. For each

profile, we have different μk values and for each flow fk, we

have two σk values, which are 1% and 10% of μk. Although

experiments were done with other σk values, the above men-

tioned values most clearly portray the simulation based traffic

deviation. For both the topologies, we consider both uniform

and non-uniform traffic distribution. For uniform distribution,

the flow destination of a host is uniformly distributed among

all the remaining hosts. For non-uniform distribution, 70% of

the traffic generated is destined to the hosts situated in the

same pod (or connected through one of the two aggregate

switches for a particular source edge switch, in case of the

VL2 topology) [21]. Each link has a propagation delay of

1 μs. The packet length is uniformly distributed between 40

and 1,400 bytes [5] [10], and packet arrival follows the log

normal random process [5]. Each simulation run has a total

duration of 30 seconds. As 80% of the flows inside a typical

data center network last no more than 10 seconds [5], therefore

a simulation duration of 30 seconds is sufficient to capture the

behavior of SLMR in typical data center networks. Traffic is

generated separately for each value of σk and behavior of each

case is observed.

B. Average Delay
Now we present the average end-to-end delay results. We

assume that the per hop nodal delay consists of queuing delay,

transmission delay, and propagation delay.

Fig. 3(a) and 3(b) show the average end to end delay in a

16-pod fat tree with uniform and non-uniform distribution of

the destinations, respectively. We executed SLMR under both

the configurations with and without considering the stochas-

tic traffic behavior. When stochastic behavior is considered,

SLMR uses σk values to calculate the congestion probabilities

of the links (refer to Section II-A for details), represented as

SLMR with SD in all the figures. When stochastic behavior

is not considered, SLMR uses only the μk information and

ignores the stochastic traffic behavior. In this case, the data

are represented as SLMR without SD in the figures. It is

evident from the figures that when stochastic behavior is

considered, SLMR gives the best result. At high traffic loads,

i.e. traffic load values greater than 0.6, we see increase in

end to end delay when stochastic behavior is not considered.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 11
10

-5

10
-4

10
-3

10
-2

10
-1

Traffic Load

A
v
e
ra

g
e
 D

e
la

y
(s

e
c
)

16-pod Fat Tree Topology

SLMR with SD (1% of mean)

SLMR with SD (10% of mean)

SLMR without SD (10% of mean)

SLMR without SD (1% of mean)

Distance Vector (1% of mean)

Link State (1% of mean)

Distance vector (10% of mean)

Link state (10% of mean)

(a) Fat tree topology under uniform traffic.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 11
10

-5

10
-4

10
-3

10
-2

10
-1

Traffic Load

A
v
e
ra

g
e
 D

e
la

y
(s

e
c
)

16-pod Fat Tree Topology

SLMR with SD (1% of mean)

SLMR with SD (10% of mean)

SLMR without SD (1% of mean)

SLMR without SD (10% of mean)

Distance Vector (1% of mean)

Link State (1% of mean)

Distance vector (10% of mean)

Link state (10% of mean)

(b) Fat tree topology under non-uniform traffic.

Fig. 3. Average end-to-end delay of a 16 pod Fat tree topology under uniform
and non-uniform traffic.

This is because of the fact that at high traffic loads, there is

a drastic increase in network traffic congestion. Also, SLMR

faces more backtracks which adds up in the delay as it takes

more time to find an optimal path. When stochastic behavior

is considered, the delay is almost stable even at very high

traffic loads. For non-uniform traffic, the average delay in each

case decreases, as compared to uniform traffic. Because in this

case, most of the flow destinations are situated in the same

pod or aggregation layer, and hence need fewer number of

hops. Distance Vector and Link State algorithms show large

delay under both uniform and non-uniform traffic as they are

inefficient in utilizing multiple paths under high traffic loads.

Fig. 4(a) shows the average end-to-end delay under the VL2

topology. In this case, there is a slight improvement in the

average delay as compared to the fat tree, due to a greater

number of available paths between the source and destination

[13].

C. Average Normalized Throughput
We now present the average normalized throughput per host

under the fat tree topology. Throughput values were taken at

each host for all the simulation runs and their average was

calculated, as shown in Fig. 5(a) and 5(b) for the fat tree

topology. It is evident from the results that SLMR provides

the highest throughput when stochastic behavior is considered.

As seen in the figure, throughput stays above 90% even at

higher traffic load values. This is mainly because of the fact

that the probability calculations are more resilient to the traffic

behavior, hence give close to optimal results.

Fig. 4(b) shows average normalized throughput under the VL2

topology. Persistently, SLMR shows improved results when

we consider the stochastic behavior of traffic, as compared to

when the stochastic behavior is not considered.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 11
10

-5

10
-4

10
-3

10
-2

10
-1

Traffic Load

A
v
e
ra

g
e
 D

e
la

y
(s

e
c
)

VL2 Topology

SLMR with SD (1% of mean)

SLMR with SD (10% of mean)

SLMR without SD (10% of mean)

SLMR without SD (1% of mean)

Distance Vector (1% of mean)

Link State (1% of mean)

Distance vector (10% of mean)

Link state (10% of mean)

(a) Average end-to-end delay under uniform traffic.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 11
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Traffic Load

N
o
rm

a
li
ze

d
 T

h
ro

u
g

h
p

u
t

VL2 Topology

SLMR with SD (1% of mean)

SLMR with SD (10% of mean)

SLMR without SD (1% of mean)

SLMR without SD (10% of mean)

Distance vector (1% of mean)

Link state (1% of mean)

Distance vector (10% of mean)

Link state (10% of mean)

(b) Average normalized throughput under uniform traffic.

Fig. 4. Average end-to-end delay and normalized throughput under VL2
topology.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 11
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Traffic Load

N
o
rm

a
li
ze

d
 T

h
ro

u
g

h
p

u
t

16-pod Fat Tree Topology

SLMR with SD (1% of mean)

SLMR with SD (10% of mean)

SLMR without SD (1% of mean)

SLMR without SD (10% of mean)

Distance vector (1% of mean)

Link state (1% of mean)

Distance vector (10% of mean)

Link state (10% of mean)

(a) Average normalized throughput under uniform traffic.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 11
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Traffic Load

N
o
rm

a
li
z
e
d

 T
h
ro

u
g

h
p

u
t

16-pod Fat Tree Topology

SLMR with SD (1% of mean)

SLMR with SD (10% of mean)

SLMR without SD (1% of mean)

SLMR without SD (10% of mean)

Distance Vector (1% of mean)

Link State (1% of mean)

Distance vector (10% of mean)

Link state (10% of mean)

(b) Average normalized throughput under non-uniform traffic.

Fig. 5. Average normalized throughput of a 16 pod Fat tree topology.

V. CONCLUSION

Our goal in this work is to achieve optimal load balancing

and efficiently utilize the multipath properties of muti-rooted

data center networks, while considering the stochastic behavior

of traffic inside the data centers. We first prove that the con-

sidered problem is NP hard by reduction from the integer par-

tition problem. We then propose our stochastic load-balanced

multipath routing (SLMR) algorithm that takes a distributed

approach, and achieves load balancing by considering the

stochastic nature of traffic in the network. By calculating the

oversubscription probability of each link, it selects the optimal

path for each flow in the network. We implement our proposed

algorithm in the NS2 simulator, under both the fat tree and

VL2 topologies, and conduct extensive simulations to evaluate

the average end to end delay and normalized throughput of

SLMR. Our simulations reflect the importance of considering

traffic behavior inside the data centers, as SLMR gives the

best results when we consider the stochastic behavior of traffic

during its execution.

REFERENCES

[1] Amazon ec2 sla. [Online]. Available: http://aws.amazon.com/ec2-sla/
[2] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,

“Hedera: Dynamic flow scheduling for data center networks,” in ACM
SIGCOMM, Aug. 2010.

[3] M. Al-Fares, A. L., and A. V., “A scalable, commodity data center
network architecture,” in ACM SIGCOMM, 2008.

[4] T. Benson, A. Akelia, and D. Maltz, “Network traffic characteristics of
data centers in the wild,” in ACM IMC, Nov. 2010.

[5] T. Benson, A. Anand, A. Akella, and M. Zhang, “Understanding data
center traffic characteristics,” in ACM SIGCOMM, Jan. 2010.

[6] K. Chen, C. Hu, X. Zhang, K. Zheng, Y. Chen, and A. V. Vasilakos,
“Survey on routing in data centers: Insights and future directions,” IEEE
network, vol. 25, July/August 2011.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. stein, Introduction
to Algorithms, 3rd ed. The MIT press, 2009.

[8] K. Fall and K. Varadhan, “The ns manual (formerly ns notes and
documentation),” UC Berkeley, LBL, USC/ISI, and Xerox PARC., Tech.
Rep., Nov. 2011.

[9] L. F. Fenton, “The sum of log-normal probability distributions in scatter
transmission systems,” in IRE Transactions on Communications Systems,
1960.

[10] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, D. Moll, R. Rockell,
T. Seely, and S. Diot, “Packet-level traffic measurements from the sprint
ip backbone,” IEEE network, vol. 17, no. 6, pp. 6–16, Nov. 2003.

[11] I. Gojmerac, P. Reichl, and L. Jansen, “The adaptive multi-path algo-
rithm,” in Elsevier Computer Networks 52 (2894 - 2907), 2008.

[12] A. Greenberg, M. Alizadeh, and D. Maltz, “Data center tcp (dctcp),” in
ACM SIGCOMM, Aug. 2010.

[13] A. Greenberg, J. Hamilton, and N. Jain, “Vl2: A scalable and flexible
data center network,” in ACM SIGCOMM, Oct. 2009.

[14] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and
S. Lu, “Bcube: a high performance, server-centric network architecture
for modular data centers,” in ACM SIGCOMM, 2009.

[15] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, “Dcell: A
scalable and fault-tolerant network structure for data centers,” in ACM
SIGCOMM, 2008.

[16] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma,
S. Banarjee, and N. McKeown, “Elastictree: Saving energy in data center
networks,” in USENIX NSDI, Apr. 2010.

[17] Analysis of an Equal-Cost Multi-Path Algorithm, IETF, RFC 2992 - Nov.
2000 Std.

[18] N. McKeown, T. Anderson, H. Balakrishnan, S. Shenker, and J. Turner,
“Openflow: Enabling innovation in campus networks,” in ACM SIG-
COMM, Apr. 2008.

[19] X. G. Meng, S. H. Wong, Y. Yuan, and S. Lu, “Characterizing flows in
large wireless data networks,” in MOBICOMM, 2004.

[20] D. S. J. Michael R. Garey, Computers and Intractability, A guide to the
theory of NP Completeness.

[21] R. Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S. Rad-
hakrishnan, V. Subramanya, and A. Vahdat, “Portland: a scalable fault-
tolerant layer 2 data center network fabric,” in ACM SIGCOMM, Aug.
2009.

[22] Y. Ohara, S. Imahori, and R. Meter, “Mara: Maximum alternative routing
algorithm,” in IEEE INFOCOM, 2009.

[23] J. J. Prevost, K. Nagothu, and B. Kelley, “Prediction of cloud data center
networks loads using stochastic and neural models,” in System of Systems
Engineering (SoSE), Jun. 2011.

[24] R. E. Walpole, R. H. Myers, S. L. Myers, and K. Ye, Probability and
Statistics for Engineers and Scientists, 9th Edition. Prentice Hall.

