
Static Analysis Based Invariant Detection

for Commodity Operating Systems

Jinpeng Wei, Feng Zhu
Florida International University

Yasushi Shinjo
University of TsukubaFlorida International University

Miami, FL, USA

University of Tsukuba

Tsukuba, Ibaraki, Japan

7th International Conference on Collaborative Computing:
Networking, Applications and Worksharing

Orlando, Florida, USA
October 15 - 18, 2011

Trust Issues in Collaborative

Environments

How do I know if my
collaborator’s system can
still be trusted (e.g., is not
compromised) after
running for a long time?

• Constant attacks exploiting vulnerabilities (e.g. buffer overflow, SQL injection)

• Configuration errors

• Malware (e.g., rootkits) are increasingly stealthy

One Solution: Integrity Checks

through Remote Attestation

• Example malware: persistent control flow
attacks

One Solution: Integrity Checks

through Remote Attestation

Target System

Measurement

Agent

Decision
Maker

Integrity
Properties

• Integrity guarantee is only as strong as the completeness of the
integrity model

• E.g., if integrity properties only cover system call table, a new
rootkit can manipulate other function pointers (such as those
found in device driver jump tables) to achieve its goal and
remain undetected

• Question: Given the target software, how can we systematically
and accurately identify its integrity properties?

Challenge of Runtime Attestation:

Precise Integrity Models

• Two classic attestation errors when the model is
not precise
– False positives: the model is overly stringent

– False negatives: the model is too loose– False negatives: the model is too loose

– Both kinds of errors are undesirable

Integrity Model Derivation

Approaches

• Manual analysis
– Hard to scale, hard to counter novel attacks that move

their targets to less-known places

• Dynamic analysis• Dynamic analysis
– Inability to explore all possible program execution

paths

– Gibraltar generates about 4,673 false positives

– ReDAS has to create 70 training scenarios and

13,000 training sessions

• Static analysis …

6

Example Program

int v = 100;

while (1) {
…
if (tcp connect request from port 8088){

v = v + 2;
}

• Dynamic analysis may report v as an invariant

• Static analysis will not

7

}
…

}

Our Contributions

• A program analysis tool that can
automatically derive global invariants from
source code, using static analysis

• A thorough study of global invariants • A thorough study of global invariants
detection for the Linux kernel

• An invariant monitor based on the result of
the static analysis with low false positive and
false negative rates

Outline

• Background

• Design and Implementation

• Evaluation

• Conclusion• Conclusion

Background

• Definition of Global Invariant
– Global variable that has a known-good value during the

runtime of the system

• Relevance in Integrity Protection• Relevance in Integrity Protection
– Represent the immutability of critical internal control data

of the target system, e.g, Interrupt Descriptor Table
(IDT),system call table, System Service Descriptor Table

– Popular targets of attacks by rootkits (e.g., SucKIT, Hacker
defender, NTIllusion, HE4Hook)

– Basis for rootkit detectors (e.g., ReDAS, Copilot, and
several commercial tools)

Outline

• Background

• Design and Implementation

• Evaluation

• Conclusion• Conclusion

Design and Implementation (1)

• Architecture

Source Code

(in C)

Monitor

Source Code

Invariant

Report

Pointer

Analyzer

Invariant

Analyzerpoints-to

graph

int *p, *q, a, b;

p = &a; q = &b;

if (...) p = q;

*p = 2;

p

a, b

q

b

Design and Implementation (2)

• Goal: high precision by minimizing false
negative and false positive rates

– False negatives

• Cause: a lack of fine-granularity and imprecise • Cause: a lack of fine-granularity and imprecise

pointer analysis

Design and Implementation (2)

• Goal: high precision by minimizing false
negative and false positive rates

– False negatives

• Cause: a lack of fine-granularity and imprecise • Cause: a lack of fine-granularity and imprecise

pointer analysis

• Example: field-insensitive analysis would consider

the entire structure v as non-invariant, including
v.a, and v.c ���� need to be field-sensitive

struct {char* a; int b; long c} v;
…
v.b = v.b + 2;

Design and Implementation (2)

• Goal: high precision by minimizing false
negative and false positive rates

– False negatives

• Cause: a lack of fine-granularity and imprecise • Cause: a lack of fine-granularity and imprecise

pointer analysis

• Example: array-insensitive analysis would consider

the entire array v as non-invariant, including v[1],
v[2], …, v[9] ���� need to be array-sensitive

int v[10], m;
…
v[0] = v[0] + m;

Design and Implementation (2)

• Goal: high precision by minimizing false
negative and false positive rates

– False negatives

• Cause: a lack of fine-granularity and imprecise • Cause: a lack of fine-granularity and imprecise

pointer analysis

• Example: conservative pointer analysis would
consider c non-invariant as well � need precise

pointer analysis char* a; int b; int c;
int *p;
…
p = &b; …
*p = *p + 1;

Design and Implementation (2)

• Goal: high precision by minimizing false
negative and false positive rates

– False negatives

• Cause: a lack of fine-granularity and imprecise • Cause: a lack of fine-granularity and imprecise

pointer analysis

• Solution: field- and array-sensitivity, precise pointer

analysis

– False positives

• Causes: implicit assignments and incomplete

points-to analysis

Design and Implementation (2)

• Goal: high precision by minimizing false negative
and false positive rates
– False negatives

• Cause: a lack of fine-granularity and imprecise pointer
analysis

• Solution: field- and array-sensitivity, precise pointer analysis• Solution: field- and array-sensitivity, precise pointer analysis

– False positives
• Causes: implicit assignments and incomplete points-to

analysis
• Example: a structure-level assignment implicitly assigns to all

fields. Here foo = bar modifies both foo.a and foo.b

struct {int a; int b;} foo, bar;
…
foo = bar;

Design and Implementation (2)

• Goal: high precision by minimizing false negative
and false positive rates
– False negatives

• Cause: a lack of fine-granularity and imprecise pointer
analysis

• Solution: field- and array-sensitivity, precise pointer analysis• Solution: field- and array-sensitivity, precise pointer analysis

– False positives
• Causes: implicit assignments and incomplete points-to

analysis
• Example: If the points-to set of q does not contain a, then a is

mistakenly considered an invariant � need precise pointer
analysis

int a; int b; int *p, int *q;
p = &a; …;
if (some condition) {q = &b; …}
else {q = p; …}; …
*q = *q + 2;

Design and Implementation (2)

• Goal: high precision by minimizing false
negative and false positive rates
– False negatives

• Cause: a lack of fine-granularity and imprecise
pointer analysispointer analysis

• Solution: field- and array-sensitivity, precise pointer
analysis

– False positives
• Causes: implicit assignments and incomplete

points-to analysis

• Solution: heuristics and precise pointer analysis

Design and Implementation (3)

• Assignment Recognition

– Field Sensitivity: v.a and v.b are different variables

– Array Sensitivity: v[0] and v[1] different variables

– Pointer Analysis: use a precise algorithm called – Pointer Analysis: use a precise algorithm called

generalized one level flow (GOLF)

– Union Support: treat each field of a union as an

alias of other fields in the same union. E.g., union
uarg{int a; int b} c, if c.a non-invariant, c.b non-

invariant, either

– Heuristics-base Assignment Recognition

Design and Implementation (3)

• Heuristics-base assignment recognition

– Function prototype-based heuristic: capture implicit

assignment by assembly code.

• Example functions: memcpy, copy_from_user, spin_lock

– Structure-level assignments

• E.g., given struct {int a; int b;} foo, bar , foo = bar is
translated into foo.a = bar.a; foo.b = bar.b

Design and Implementation (4)

• Invariant Recognition
– Associate a flag (invariant or not) and a legal value list with each

global variable

– Scan global variable declarations and initialization functions and fill
global variable's legal value listglobal variable's legal value list

– Scan the remaining kernel functions. If a global variable, which is
marked as an invariant, is assigned a non-constant value, or a
constant value but the value is not in its legal value list, the analyzer
marks it as a non-invariant

– Generates a report about the invariant status of all global variables
based on their flags

Outline

• Background

• Design and Implementation

• Evaluation

• Conclusion• Conclusion

Metrics and Methodology

• Target software: Linux kernel 2.4.32

• Metrics

– False positives– False positives

– False negatives

• Methodology

– Comparing with a dynamic invariant detector

– Checking invariants against real software (benign or

malicious)

Test Cases

• Benign test cases

Test program Description

ltp-2005 Linux Test Project: more than 700 test cases for

the Linux kernel and more than 60 test cases

for the network stack

• Malicious test cases: real-world rootkits such as SuckIT

26

Iperf A network testing tool that measures the

throughput of a network, thus exercising the

network subsystem of the kernel

Andrew benchmark A file system benchmark

Miscellaneous Kernel compilation, ssh, scp, common

commands

Comparing with a Dynamic

Invariant Detector

S: Static, D: Dynamic; NI: Non-invariant; I: Invariant

Verification of the 17,200 Possible

Non-invariants

• If a variable is directly modified: the assignment
statement logged in the analysis report is
straightforward evidence that the variable is a
non-invariant

• If a variable is only indirectly modified through a
pointer, our analyzer outputs the relevant
statements from the source code that support
the points-to relationship

Points-to Analysis Report

Example

• Why ctrl_map[2] can be indirectly modified through the pointer
key_map

Comparing with a Dynamic

Invariant Detector

S: Static, D: Dynamic; NI: Non-invariant; I: Invariant

Example Non-Invariants

Category Example variables

List heads acpi_bus_drivers.next

arp_tbl.gc_timer.list.next

Locks dev_base_lock.lock

exec_domains_lock.lock

Auditing information kernel_module.kallsyms_start

kernel_module.kallsyms_endkernel_module.kallsyms_end

Accounting information console_sem.count.counter

con_buf_sem.count.counter

Resource mgmt data contig_page_data.node_zonelists[0].zones[0]

contig_page_data.node_zones[0].free_area[0].map

Configuration data FDC2,FLOPPY_DMA,FLOPPY_IRQ,

can_use_virtual_dma,fifo_depth

Driver-specific data eth0_dev.allmulti, eth0_dev.dev_addr[0]

31

Comparing with a Dynamic

Invariant Detector

S: Static, D: Dynamic; NI: Non-invariant; I: Invariant

Experimental Evaluation of

Accuracy

• We implement and run an Invariant Monitor
based on the static analysis result

• False positive: only ONE false invariant out of
141,280

• False negative: successfully detect the SucKIT 2 • False negative: successfully detect the SucKIT 2
rootkit, which modifies sys_call_table[59]

Outline

• Background

• Design and Implementation

• Evaluation

• Conclusion• Conclusion

Conclusion

• Core techniques

– Static analysis – design and implement automated

tools that can derive global invariants out of the target

kernel without running it

– Evaluate our methodology– Evaluate our methodology

• Compare with dynamic analyer

– Static analysis is a viable option for automated

integrity property derivation and can have very low

false positive and false negative rates

