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Trust Issues in Collaborative 

Environments

How do I know if my 
collaborator’s system can 
still be trusted (e.g., is not 
compromised) after 
running for a long time?

• Constant attacks exploiting vulnerabilities (e.g. buffer overflow, SQL injection)

• Configuration errors

• Malware (e.g., rootkits) are increasingly stealthy



One Solution: Integrity Checks 

through Remote Attestation

• Example malware: persistent control flow 
attacks



One Solution: Integrity Checks 

through Remote Attestation
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• Integrity guarantee is only as strong as the completeness of the 
integrity model

• E.g., if integrity properties only cover system call table, a new 
rootkit can manipulate other function pointers (such as those 
found in device driver jump tables) to achieve its goal and 
remain undetected

• Question: Given the target software, how can we systematically 
and accurately identify its integrity properties?



Challenge of Runtime Attestation: 

Precise Integrity Models

• Two classic attestation errors when the model is 
not precise
– False positives: the model is overly stringent

– False negatives: the model is too loose– False negatives: the model is too loose

– Both kinds of errors are undesirable



Integrity Model Derivation 

Approaches

• Manual analysis
– Hard to scale, hard to counter novel attacks that move 

their targets to less-known places

• Dynamic analysis• Dynamic analysis
– Inability to explore all possible program execution 

paths

– Gibraltar generates about 4,673 false positives

– ReDAS has to create 70 training scenarios and 

13,000 training sessions

• Static analysis …
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Example Program

int v = 100;

while (1) {
…
if (tcp connect request from port 8088){

v = v + 2;
}

• Dynamic analysis may report v as an invariant

• Static analysis will not
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}
…

}



Our Contributions

• A program analysis tool that can 
automatically derive global invariants from 
source code, using static analysis

• A thorough study of global invariants • A thorough study of global invariants 
detection for the Linux kernel

• An invariant monitor based on the result of 
the static analysis with low false positive and 
false negative rates



Outline

• Background

• Design and Implementation

• Evaluation

• Conclusion• Conclusion



Background

• Definition of Global Invariant
– Global variable that has a known-good value during the 

runtime of the system

• Relevance in Integrity Protection• Relevance in Integrity Protection
– Represent the immutability of critical internal control data 

of the target system, e.g, Interrupt Descriptor Table 
(IDT),system call table, System Service Descriptor Table

– Popular targets of attacks by rootkits (e.g., SucKIT, Hacker 
defender, NTIllusion, HE4Hook)

– Basis for rootkit detectors (e.g., ReDAS, Copilot, and 
several commercial tools)
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Design and Implementation (1)

• Architecture

Source Code

(in C)

Monitor

Source Code

Invariant

Report

Pointer
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graph

int *p, *q, a, b; 

p = &a; q = &b;

if (...) p = q;

*p = 2;

p

a, b

q

b



Design and Implementation (2)

• Goal: high precision by minimizing false 
negative and false positive rates

– False negatives

• Cause: a lack of fine-granularity and imprecise • Cause: a lack of fine-granularity and imprecise 

pointer analysis



Design and Implementation (2)

• Goal: high precision by minimizing false 
negative and false positive rates

– False negatives

• Cause: a lack of fine-granularity and imprecise • Cause: a lack of fine-granularity and imprecise 

pointer analysis

• Example: field-insensitive analysis would consider 

the entire structure v as non-invariant, including 
v.a, and v.c ���� need to be field-sensitive

struct {char* a; int b; long c} v;
…
v.b = v.b + 2;



Design and Implementation (2)

• Goal: high precision by minimizing false 
negative and false positive rates

– False negatives

• Cause: a lack of fine-granularity and imprecise • Cause: a lack of fine-granularity and imprecise 

pointer analysis

• Example: array-insensitive analysis would consider 

the entire array v as non-invariant, including v[1], 
v[2], …, v[9] ���� need to be array-sensitive

int v[10], m;
…
v[0] = v[0] + m;



Design and Implementation (2)

• Goal: high precision by minimizing false 
negative and false positive rates

– False negatives

• Cause: a lack of fine-granularity and imprecise • Cause: a lack of fine-granularity and imprecise 

pointer analysis

• Example: conservative pointer analysis would 
consider c non-invariant as well � need precise 

pointer analysis char* a; int b; int c;
int *p;
…
p = &b; …
*p = *p + 1;



Design and Implementation (2)

• Goal: high precision by minimizing false 
negative and false positive rates

– False negatives

• Cause: a lack of fine-granularity and imprecise • Cause: a lack of fine-granularity and imprecise 

pointer analysis

• Solution: field- and array-sensitivity, precise pointer 

analysis

– False positives

• Causes: implicit assignments and incomplete 

points-to analysis



Design and Implementation (2)

• Goal: high precision by minimizing false negative 
and false positive rates
– False negatives

• Cause: a lack of fine-granularity and imprecise pointer 
analysis

• Solution: field- and array-sensitivity, precise pointer analysis• Solution: field- and array-sensitivity, precise pointer analysis

– False positives
• Causes: implicit assignments and incomplete points-to 

analysis
• Example: a structure-level assignment implicitly assigns to all 

fields. Here foo = bar modifies both foo.a and foo.b

struct {int a; int b;} foo, bar;
…
foo = bar;



Design and Implementation (2)

• Goal: high precision by minimizing false negative 
and false positive rates
– False negatives

• Cause: a lack of fine-granularity and imprecise pointer 
analysis

• Solution: field- and array-sensitivity, precise pointer analysis• Solution: field- and array-sensitivity, precise pointer analysis

– False positives
• Causes: implicit assignments and incomplete points-to 

analysis
• Example: If the points-to set of q does not contain a, then a is 

mistakenly considered an invariant � need precise pointer 
analysis

int a; int b; int *p, int *q;
p = &a; …;
if (some condition) {q = &b; …}
else {q = p; …}; …
*q = *q + 2;



Design and Implementation (2)

• Goal: high precision by minimizing false 
negative and false positive rates
– False negatives

• Cause: a lack of fine-granularity and imprecise 
pointer analysispointer analysis

• Solution: field- and array-sensitivity, precise pointer 
analysis

– False positives
• Causes: implicit assignments and incomplete 

points-to analysis

• Solution: heuristics and precise pointer analysis



Design and Implementation (3)

• Assignment Recognition

– Field Sensitivity: v.a and v.b are different variables

– Array Sensitivity: v[0] and v[1] different variables

– Pointer Analysis: use a precise algorithm called – Pointer Analysis: use a precise algorithm called 

generalized one level flow (GOLF)

– Union Support: treat each field of a union as an 

alias of other fields in the same union. E.g., union 
uarg{int a; int b} c, if c.a non-invariant, c.b non-

invariant, either

– Heuristics-base Assignment Recognition



Design and Implementation (3)

• Heuristics-base assignment recognition

– Function prototype-based heuristic: capture implicit 

assignment by assembly code.

• Example functions: memcpy, copy_from_user, spin_lock

– Structure-level assignments

• E.g., given struct {int a; int b;} foo, bar , foo = bar is 
translated into foo.a  = bar.a; foo.b = bar.b



Design and Implementation (4)

• Invariant Recognition
– Associate a flag (invariant or not) and a legal value list with each 

global variable

– Scan global variable declarations and initialization functions and fill 
global variable's legal value listglobal variable's legal value list

– Scan the remaining kernel functions. If a global variable, which is 
marked as an invariant, is assigned a non-constant value, or a 
constant value but the value is not in its legal value list, the analyzer 
marks it as a non-invariant

– Generates a report about the invariant status of all global variables 
based on their flags
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Metrics and Methodology

• Target software: Linux kernel 2.4.32

• Metrics

– False positives– False positives

– False negatives

• Methodology

– Comparing with a dynamic invariant detector

– Checking invariants against real software (benign or 

malicious)



Test Cases

• Benign test cases

Test program Description

ltp-2005 Linux Test Project: more than 700 test cases for 

the Linux kernel and more than 60 test cases 

for the network stack

• Malicious test cases: real-world rootkits such as SuckIT

26

Iperf A network testing tool that measures the 

throughput of a network, thus exercising the 

network subsystem of the kernel

Andrew benchmark A file system benchmark

Miscellaneous Kernel compilation, ssh, scp, common 

commands



Comparing with a Dynamic 

Invariant Detector

S: Static, D: Dynamic; NI: Non-invariant; I: Invariant



Verification of the 17,200 Possible 

Non-invariants

• If a variable is directly modified: the assignment 
statement logged in the analysis report is 
straightforward evidence that the variable is a 
non-invariant

• If a variable is only indirectly modified through a 
pointer, our analyzer outputs the relevant 
statements from the source code that support 
the points-to relationship



Points-to Analysis Report 

Example

• Why ctrl_map[2] can be indirectly modified through the pointer 
key_map



Comparing with a Dynamic 

Invariant Detector

S: Static, D: Dynamic; NI: Non-invariant; I: Invariant



Example Non-Invariants

Category Example variables

List heads acpi_bus_drivers.next

arp_tbl.gc_timer.list.next

Locks dev_base_lock.lock

exec_domains_lock.lock

Auditing information kernel_module.kallsyms_start

kernel_module.kallsyms_endkernel_module.kallsyms_end

Accounting information console_sem.count.counter

con_buf_sem.count.counter

Resource mgmt data contig_page_data.node_zonelists[0].zones[0]

contig_page_data.node_zones[0].free_area[0].map

Configuration data FDC2,FLOPPY_DMA,FLOPPY_IRQ,

can_use_virtual_dma,fifo_depth

Driver-specific data eth0_dev.allmulti, eth0_dev.dev_addr[0]
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Comparing with a Dynamic 

Invariant Detector

S: Static, D: Dynamic; NI: Non-invariant; I: Invariant



Experimental Evaluation of 

Accuracy

• We implement and run an Invariant Monitor 
based on the static analysis result

• False positive: only ONE false invariant out of 
141,280

• False negative: successfully detect the SucKIT 2 • False negative: successfully detect the SucKIT 2 
rootkit, which modifies sys_call_table[59]
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Conclusion

• Core techniques

– Static analysis – design and implement automated 

tools that can derive global invariants out of the target 

kernel without running it

– Evaluate our methodology– Evaluate our methodology

• Compare with dynamic analyer 

– Static analysis is a viable option for automated 

integrity property derivation and can have very low 

false positive and false negative rates


