
Qualitatively Analyzing PR Rejection Reasons from
Conversations in Open-Source Projects

Tanay Gottigundala, Siriwan Sereesathien, Bruno da Silva
Department of Computer Science and Software Engineering

California Polytechnic State University
San Luis Obispo, CA, USA

{pgottigu, ssereesa, bcdasilv}@calpoly.edu

Abstract—Software developers have largely relied on pull
requests as a mechanism of collaboration in their projects.
Researchers have collected and analyzed pull request data in
different ways for different reasons. In particular, we have qual-
itatively analyzed pull request conversation data to understand
the main reasons for pull request rejection from a developer’s per-
spective. In this paper, we report results from ongoing research
on identifying and categorizing pull request rejection factors. Two
software developers, co-authors of this paper, manually analyzed
605 rejected PRs from Hexo and ESLint. We found that the most
frequent reasons for PR rejection may vary depending on the
project size and popularity. Still, some common rejection factors
include implementing unnecessary functionality, conflicting PRs,
agreement to make PR reattempts, and inactivity. Code quality
issues are not among the most frequent reasons.

Index Terms—pull request, code review, open-source software,
developer communication, social software engineering

I. INTRODUCTION

The pull-based development model has changed the way
developers make contributions to software projects worldwide.
Platforms like GitHub and GitLab typically offer additional
support for collaboration around pull requests (PRs) on top of
Git. Besides being popular in the software industry, researchers
have also found scientific evidence of benefits that the pull
request model offers. These benefits include a more efficient
code review process, decreased time to incorporate changes,
and increased opportunity for community engagement [1].

Recently, researchers have analyzed pull request data, es-
pecially from open-source projects, in several different ways
and for different purposes [1] [2] [3] [4] [5] [6] [7]. However,
only a few of them have analyzed a limited number of pull
request conversations to fully understand PR rejection reasons
in a qualitative fashion from a developer’s perspective. For
instance, in [1], the authors manually analyzed 350 PRs
to identify and classify rejection reasons, whereas in [8]
Steinmacher et al., with similar purposes, manually analyzed
263 PRs among other collected data. In [9], the authors also
qualitatively analyzed 231 rejected PRs from one open-source
project and proposed guidelines for open-source contributors.

In this work, we have qualitatively analyzed pull request
conversation data to understand the main reasons for pull
request rejection from a developer’s perspective. We intend to
complement existing research by iterating over a systematic

process of manually analyzing and classifying rejected PRs
by rejection reasons. We also planned to cover two different
projects of diverse sizes and popularity, involving a number
of PRs that have never been investigated by following such
a qualitative approach. For this work, we analyzed two open-
source projects: Hexo and ESLint. Our investigation involved
605 rejected PRs manually analyzed and classified by two
separate developers and co-authors of this paper. The research
questions we set for this work are:

RQ1: What are the most frequent reasons why pull requests
get rejected in open source projects?

RQ2: Are there significant differences in pull request rejec-
tion reasons in projects of different sizes and popularity?

RQ3: Are code quality issues the most driving factor for
rejecting pull requests in open source projects?

II. STUDY SETTINGS

The two open-source projects we analyzed are ESLint and
Hexo. ESLint is a static code analysis tool that helps identify
problems in JavaScript code, whereas Hexo is a blog writing
framework. We selected these two projects because they target
different users in separate domains, have different sizes and
popularity, and have a significant PR activity to be analyzed.

With over 8k issues and nearly 6k PRs in total, ESLint is
a very popular plugin that attracts many developers willing
to contribute. It has 17.8k stars and 3.2k forks on GitHub.
ESLint also has an extremely high download rate, with its
peak average weekly downloads setting at over 15 million in
2020 and totaling over 1.3 billion download counts overall.
Hexo is less popular than ESLint but still highly used and
active in terms of contributions, with about 3.5k issues and
almost 1k pull requests in total. In terms of usage, it has 32k
stars and 4k forks on GitHub. Hexo also set its peak weekly
download at nearly 20k in 2018 with a total download count
of over 2 million. All these numbers for both projects were
checked on Jan 2021.

We manually analyzed a total of 605 rejected pull requests1

(155 from Hexo and 450 from ESLint). The 155 PRs from
Hexo represent all the rejected PRs in that project at the
time we set to perform the study. The 450 PRs from ESLint

1Our dataset is publicly available at https://doi.org/10.5281/zenodo.4499541



represent the most recent 450 rejected PRs in that project at
the time we gathered data for this work. For analyzing and
classifying the rejection reasons, we followed a systematic
coding process similar to [9] and [1]. We started with the
rejection categories provided in [9]. Divided into multiple
analysis sessions, two co-authors of this paper read through
all the 605 PRs separately. During each session, they in-
dividually classified each PR based on the categories from
[9]. Besides, they created their own labels and categories as
they saw fit. In between individual sessions, they scheduled
synchronization meetings to compare their analysis results,
debating over different classifications they had, and coming to
a consensus. Also, they discussed potential changes on the set
of rejection categories and specific reasons in each category,
thus iteratively updating the model provided by [9].

Regarding the possibility of having multiple reasons for
rejecting a PR, the analysts always tried to identify the most
relevant cause of the PR rejection (even if it potentially
had other reasons). Generally, the rejection reason is usually
aligned with the most recent messages in the PR conversation.
Only a minimal number of PRs had more than one reason for
rejection in the classification. For the final set of rejection
reasons organized by category, see the following list.

• Author Issues [A]
– Author unable to fix: Author unable to fix the issue that

was found or gives up
– Closed accidentally: Author unfamiliar with PRs and code

review process, closes the PR accidentally and creates a
new one

– Closed by author: Author closed the PR without a
discernible reason

– Closed due to inactivity: Author abandoned the PR for a
long period

– Ego issues: Author or reviewer was generally hostile or
hard to work with

– No description: Reviewer closed without giving a reason
– Not in English: The PR discussion or description was not

in English

• Code Issue [CODE]
– Bad code formatting: The code formatting was not up to

industry or company standards
– Bad coding practice: The PR did not follow proper coding

conventions
– Hard to read: The pull request description or code was

difficult to understand
– Insufficient testing: Feature or changes added did not

include sufficient tests, which are required for the PR to
be accepted according to the open-source project

– Ego issues: Author or reviewer was generally hostile or
hard to work with

– Wrong logic: The author did not understand the existing
code correctly, thus proposing wrong changes

• Unnecessary Issue [UNEC]
– Functionality already exists: Functionality already exists

as author tried to add similar functionality unknowingly
– Issue not reproducible: The issues is not a real issue,

author misunderstood the code base as wrong while it is
working as intended

– Lack of team consensus: Team maintaining project could
not come to an agreement of accepting the change or is
against the change

– Minor change: The change was too insignificant to be
accepted

– Unnecessary functionality: Additional functionality that
isn’t something the maintaining team feel would fit with
the project

– Unnecessary refactoring: Changes in the code base that
isn’t significant enough for the team maintaining the
project to think its essential

– Wrong code location: PR changes are put in the wrong
branch or repository of the project

• Side Effect Issue [SE]
– Breaks compatibility: The PR is a breaking change for

some/all use cases
– Fails tests: Build failed due to failing tests
– Performance issues: The changes caused a notable de-

crease in performance
– Unintended side effects: The changes caused undesirable

functionality elsewhere

• Version Control Issue [VC]
– PR reattempt: Author has readdressed (or will readdress)

changes in a new PR.
– PR conflict: PR is a duplicate of another change by a

different author
– PR outdated: Issue regarding the PR changes were already

closed/fixed, new changes to the code base makes the PR
change unnecessary

– PR too large: Changes for the PR are too large, so
reviewers suggest to break it up into multiple PRs

III. RESULTS

A. RQ1: What are the most frequent reasons why PRs get
rejected?

For answering this research question, we decided to dis-
regard the reason “closed by author” because it does not
represent a PR rejected by reviewers. Several reasons may
lead an author to close a PR, including the author’s impetus
for not working on the PR anymore. Also, in most of them,
the authors do not even post a justification for closing.

Figure 1 summarizes the distribution of PR rejection reasons
from Hexo. The brackets represent the rejection categories
listed in the previous section. The green bars represent each of
the five rejection categories’ tallies, and the blue bars represent
rejection reasons marked with tags representing the categories
to which they belong.

The top five reasons include “Reattempt”, “Closed due to
inactivity”, “Unnecessary functionality”, “Wrong code loca-
tion”, and “No description”. Since Hexo has several first-time
contributors, the top reasons for rejection are issues that newer
contributors would likely encounter.

The “Reattempt” reason was classified when the PR author
created (or agreed to create) another PR to tackle the same
issues in a way that improves the original PR contents. It
turns out that an overwhelming amount of PRs is reattempted
in Hexo. Also, PRs in this project were often “Closed due
to inactivity”, perhaps because new contributors lose interest
quickly or realize the complexity of the changes, even when
they get feedback and support from reviewers. Reviewers also
considered several PRs with “Unnecessary functionality”. The
high frequency of “Wrong code location” in this repository



was because Hexo has many plugins available that extend
its functionality. The core maintainers often felt that certain
features belonged in one of the plugin repositories rather than
the main Hexo repository. Reviewers closed a surprisingly
high number of PRs in this project since they had “No
description”. From our observations, this was usually a result
of inexperienced GitHub users creating PRs that did not follow
basic contribution guidelines, such as including a description.
Finally, looking at the rejection categories, apart from PR
Reattempts, two out of the top five reasons were under the
“Unnecessary Issue” category and another two under the
“Author Issue” category. Side Effect and Code Issues did not
bubble to the top as frequent reasons compared to others.

Fig. 1. Count of PR Rejection Reasons in Hexo (Closed by Author excluded)

Figure 2 summarizes the distribution of PR rejection reasons
from ESLint. The top five reasons include “Lack of team
consensus”, “Unnecessary functionality”, “PR conflict”, “Un-
necessary refactoring”, and “PR outdated”.

Fig. 2. Count of PR Rejection Reasons in ESLint (Closed by Author excluded)

One unique aspect of ESLint is its large and active main-
taining team. This is necessary for an open-source project of
that size. Due to its scale and popularity, they receive a high
volume of PRs. As a result, they only accept PRs that strictly
adhere to their vision, shown by the number of PRs rejected
due to a “Lack of team consensus” and “Unnecessary function-
ality”. Another result of the project’s size was keeping consis-
tent formatting, structuring, and practices across the project.
Due to these guidelines’ strictness, a significant number of PRs
were rejected because of “Unnecessary refactoring”. Because
of its popularity, ESLint often had conflicting PRs that dealt
with the same issues, leading to many contributions being
rejected due to “PR conflict”. The popularity also played a role
in rejected PRs labeled “PR outdated” because the codebase
is continually changing, and the authors have trouble keeping
up with the current state of the code base in the context of
their contributions. Finally, looking at the rejection categories,
we observe a significant concentration on rejections under the
“Unnecessary Issue” category.

B. RQ2: Are there significant differences in PR rejection
reasons in projects with different sizes and popularity?

As noted, the size, scale, and popularity of these two
projects change significantly. As a result, we observed that
most of their differences in PR rejection reasons stem from
their distinct project size, popularity, and consequent level of
organization and strictness for managing PRs.

When comparing Hexo and ESLint, we noticed that the only
common reason among their top five reasons was “Unneces-
sary functionality”. It is also consistent with other works in this
area, such as [1] [9] that pointed this reason as a reasonably
common one over the open-source projects they analyzed.

Because of the volume of PRs in ESLint, the core develop-
ment team could not review and merge every PR, even when
the PR could improve the project. Hexo team, on the other
hand, were able to review more PRs that helped authors adapt
their change-set to the project expectations. As a result, “Lack
of team consensus” was a reason that only arose in ESLint.
In general, perhaps due to a lower number of PRs pending
reviews, Hexo was more likely to guide authors in improving
the PRs, leading some PRs to be reattempted. That is probably
why “PR Reattempt” rose to the top in Hexo, whereas it stayed
middle-ranked in ESLint.

Comparatively, ESLint had more “PR Conflicts”, though.
This might be due to a much higher contribution activity in
ESLint in contrast with a limited number of review resources,
which leads to a higher frequency of conflicting contributions
being proposed relatively in parallel.

Some reasons we only identified in either one of the
projects. For instance, only Hexo had PRs “Not in English”.
While only in ESlint we found “Lack of team consensus”,
“Breaks compatibility”, and “Issues not reproducible”. ESLint
guidelines for contributions seem clearer, which is probably
why we did not see contributions in a spoken language not
supported by the project. Also, as we noted in section III-A,
“Lack of team consensus” as the top reason in ESLint and



not present in Hexo is probably because in ESLint, a much
larger project with many more PRs, the core maintainers had to
follow their internal review policies strictly, which led several
PRs being rejected in that project.

Comparing the most frequent categories in both projects,
“Unnecessary Issue” (UNEC), as a category of different rejec-
tion factors, is a common area, with “Unnecessary functional-
ity” being the most common reason across the two projects, as
already discussed in this section. In general, for both projects,
“Version Control Issues” (VC) and “Author Issues” (A) tend
to be more frequent as categories compared to “Side Effect
Issues” (SE) and “Code Issues” (CODE).

C. RQ3: Are code quality issues the most driving factor for
rejecting PRs?

This question has been also explored in other works [10]
[7]. Many might think that it is reasonable to have a high
number of pull requests being rejected due to code quality
issues (see our CODE category on Section II). However, if
we consider results from [10] and [7] this is not necessarily
true. Some results in the literature are not consensual. In [7],
they found that code quality flaws measured by the PMD tool
turned out not to affect the acceptance of a PR. However, in
[10], they found that code quality issues are vital for rejecting
PRs. Therefore, we set out to analyze this question as well,
but with qualitative data as we have described in this paper.

Looking at our rejection reasons distributions for both
projects, we observe that none of the CODE reasons rose
to the top. The highest-ranked CODE reason was “Wrong
Logic” in ESLint, taking the ninth position in that ranking.
In general, CODE-related reasons take low to medium spots
in the distribution of rejection reasons, which is consistent
with [9] and [7] results.

Note on threats to validity: This study is limited by the
manual analysis of two co-authors of this work. We mitigated
researchers’ implicit biases by defining a systematic process
described in Section II that includes a calibration step with
a small number of PRs and discussion rounds for consensus-
based conflict resolution. All PRs were analyzed twice by two
different human classifiers.

IV. CONCLUSION

It is not new that software development is strongly reliant
on human collaboration. The pull request mechanism has
shaped how many software teams and projects around the
world have evolved their codebase. It has been particularly
relevant to how global communities have maintained open-
source software. Researchers have leveraged the abundance
of pull request data to learn how PRs are reviewed and then
provide scientific evidence on current practices’ benefits and
discover new information from open data.

We set out to qualitatively analyze and classify rejected PRs
in two open-source projects with different sizes and popularity.
Out of the 605 manually analyzed PRs, we provided evidence
that PR rejection reasons may differ significantly depending on
the project size and popularity. These factors may impact how

organized the contribution guidelines are and how strict the
maintainers apply a rigorous reviewing approach. Across both
projects, the most frequent reason why PRs got rejected was
“Unnecessary functionality”. Also, “PR Conflict”, “Closed
due to inactivity”, and “PR Reattept” took medium to high
positions in both rankings. Finally, we also found evidence
that code quality issues are not among the main reasons
for rejecting PRs in both projects. Although with different
methodologies, datasets, and research questions, our work has
been somewhat consistent with results reported in [1] [8] [9]
[7]. With this work, we have complemented the literature
by providing additional and complementary evidence using
a qualitative method over an amount of PRs that have never
been manually analyzed to date.

Still, this work is a continuing attempt toward building more
knowledge on PR rejection reasons by applying qualitative
research methods. Such an effort can ultimately lead to prac-
tical guidelines for globally distributed contributors in open-
source projects. Also, tool builders may use this research to
help them build tools to support a more efficient pull request
process. Our future work involves expanding the analysis to
more projects and looking at additional factors (e.g., reviewer
history of acceptances and rejections, and social aspects).

REFERENCES

[1] G. Gousios, M. Pinzger, and A. v. Deursen, “An exploratory study of
the pull-based software development model,” in Proceedings of the 36th
Intl Conference on Software Engineering, ser. ICSE 2014. New York,
NY, USA: Association for Computing Machinery, 2014, p. 345–355.

[2] D. M. Soares, M. L. d. L. Júnior, L. Murta, and A. Plastino, “Rejection
factors of pull requests filed by core team developers in software projects
with high acceptance rates,” in 2015 IEEE 14th Intl Conference on
Machine Learning and Applications (ICMLA), Dec 2015, pp. 960–965.

[3] J. Terrell, A. Kofink, J. D. Middleton, C. Rainear, E. R. Murphy-Hill,
C. Parnin, and J. Stallings, “Gender differences and bias in open source:
pull request acceptance of women versus men,” PeerJ Computer Science,
vol. 3, p. e111, 2017.

[4] R. N. Iyer, S. A. Yun, M. Nagappan, and J. Hoey, “Effects of personality
traits on pull request acceptance,” IEEE Transactions on Software
Engineering, pp. 1–1, 2019.

[5] D. Ford, M. Behroozi, A. Serebrenik, and C. Parnin, “Beyond the
code itself: How programmers really look at pull requests,” in 2019
IEEE/ACM 41st Intl Conference on Software Engineering: Software
Engineering in Society (ICSE-SEIS), 2019, pp. 51–60.

[6] T. Dey and A. Mockus, “Effect of technical and social factors on
pull request quality for the npm ecosystem,” in Proceedings of the
14th ACM / IEEE Intl Symposium on Empirical Software Engineering
and Measurement (ESEM), ser. ESEM ’20. New York, NY, USA:
Association for Computing Machinery, 2020.

[7] V. Lenarduzzi, V. Nikkola, N. Saarimäki, and D. Taibi, “Does code
quality affect pull request acceptance? an empirical study,” Journal of
Systems and Software, vol. 171, p. 110806, 2021.

[8] I. Steinmacher, G. Pinto, I. S. Wiese, and M. A. Gerosa, “Almost there:
A study on quasi-contributors in open-source software projects,” in 2018
IEEE/ACM 40th Intl Conference on Software Engineering (ICSE), May
2018, pp. 256–266.

[9] N. Papadakis, A. Patel, T. Gottigundala, A. Garro, X. Graham, and
B. da Silva, “Why did your pr get rejected? defining guidelines for
avoiding pr rejection in open source projects,” in Proceedings of the
IEEE/ACM 42nd Intl Conference on Software Engineering Workshops,
ser. ICSEW’20. New York, NY, USA: Association for Computing
Machinery, 2020, p. 165–168.

[10] M. C. Silva, M. T. Valente, and R. Terra, “Does technical debt lead
to the rejection of pull requests?” in Proceedings of the XII Brazilian
Symposium on Information Systems, ser. SBSI 2016. Porto Alegre,
BRA: Brazilian Computer Society, 2016, p. 248–254.


