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Abstract

Synthetic disk request traces are convenient and popular workloads for performance evaluation of storage
subsystem designs and implementations. This paper develops an approach for validating synthetic disk
request generators. Using this approach, commonly-used simplifying assumptions about workload charac-
teristics (e.g., uniformly-distributed starting addresses and Poisson arrivals) are shown to be inappropriate,
often leading to inaccurate performance predictions. Also, workload characteristics that require additional
study are identi�ed.

1 Introduction

Perhaps the largest di�culty facing storage architects
and performance analysts is identifying and obtain-
ing workloads with which to evaluate and compare de-
signs. Many groups and organizations have a small
set of traces/benchmarks, but few have a large set and
fewer still share these all-important tools. The di�-
culty with obtaining representative workloads is perva-
sive and many researchers are forced to use whatever is
available (commonly, ad hoc synthetic workloads with
many simplifying assumptions). As a consequence, the
open literature is riddled with studies that have no solid
basis in reality, many of which have later (with better
workloads) been shown to be incorrect.
An approach preferred by many storage subsystem re-

searchers employs a record of real systems' storage activ-
ity in the form of disk request traces. A disk request
trace represents an accurate account of what really hap-
pened in a particular storage subsystem during a given
period of time. However, disk request traces have sev-
eral limitations: (1) For non-technical reasons, it can be
extremely di�cult to convince system administrators to
allow tracing. (2) Traces, which tend to be very large
(e.g., the six traces used in this work require over 1.3 GB
of compressed, on-line storage), must be stored on-line
when they are to be used for experiments. (3) Each
trace represents a single measure of behavior, making
it di�cult to establish statistical con�dence in results.
It can sometimes be di�cult to distinguish between real
performance characteristics of the system under test and
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anomalous behavior of the trace. (4) It is very di�cult
to isolate and/or modify speci�c workload characteris-
tics (e.g., arrival rate or total accessed storage capacity)
of a trace. (5) Traces do not support studies of expected
future workloads, since one cannot trace what does not
yet exist.

An alternative approach is to use a synthetic work-
load. Fundamentally, disk workload synthesis is a
simple task. Based on values for a set of workload-
characterizing statistics, one generates a series of disk
requests. The values can be derived from expected be-
havior or measured from a sequence (e.g., a trace) of
disk requests { hopefully in one pass, which then en-
ables characterization based on observation rather than
tracing. The di�cult part of the task is to identify a
set of statistics that accurately and uniquely character-
izes a workload. Generally speaking, a disk request is
de�ned by �ve values: device, operation (e.g., read or
write), start location, size and arrival time. The �rst
four values identify the access and the �fth identi�es
when it is presented to the disk subsystem. We refer to
the sequence of accesses as the access pattern and the
sequence of arrival times as the arrival pattern.

Disk workload synthesis has the potential to elim-
inate the limitations of disk request traces. For ex-
ample, capturing workload characteristics rather than
traces should be more palatable to system administra-
tors (who are probably interested in such characteris-
tics as well, for capacity planning and system tuning
purposes). The synthetic traces can be manufactured
on the 
y rather than stored. By applying di�erent
seeds to the random number generator, one can generate
many request streams with the same characteristics and
thereby achieve some statistical con�dence. Changes to
the workload can be made much more readily and work-



?

Real

System

Extract

Stats

Trace

File

Trace

Synthesis

System

Under

Test

System

Under

Test

I/Os

I/Os

I/Os

Stats Performance

Performance

Figure 1: Calibration of disk request trace synthesis.

loads representing expected future environments can be
generated.

The main disadvantage of trace synthesis is the dan-
ger of generating a trace that is a poor match to the
original in some important way, thereby compromising
the validity of the results. Borrowing from recent work
in disk model calibration [Ruemmler94], we develop an
approach to validating synthetic disk request trace gen-
erators. Using this approach, we show that commonly
applied assumptions (e.g., uniform starting addresses,
Poisson arrivals) are inappropriate and can produce dra-
matically incorrect results. We also identify speci�c ar-
eas where additional understanding of workload charac-
teristics is needed.
The remainder of the paper is organized as follows.

Section 2 describes our methodology for evaluating syn-
thetic workload generators. To isolate speci�c issues
with trace synthesis, we evaluate access pattern gen-
eration (Section 3) and arrival pattern generation (Sec-
tion 4) separately. Section 5 concludes with a discussion
of problems with standalone storage subsystem models
and a possible source of representative synthetic work-
loads.

2 Evaluation Methodology

2.1 Calibration of Synthetic Workloads

To calibrate a synthetic workload generator, one can
compare performance measurements of the system(s) of
interest operating under a synthetically-generated work-
load and the real workload that it attempts to recreate.
While performance-based comparison more appropriate
than other approaches [Ferrari84], it limits the applica-
bility of calibration results to those systems-under-test
(SUTs) used. As a result, workload characteristics that
are important in other SUTs can be overlooked. For ex-
ample, this work examines disk workloads on an individ-
ual disk-by-disk basis, ignoring correlations among the

workloads observed by the di�erent disks. Such corre-
lations might be important for evaluating management
approaches (e.g., load balancing and striping) for multi-
disk subsystems.

Our speci�c methodology is illustrated in �gure 1.
Statistics are collected from a single pass over a timed
sequence of disk requests, as generated by the system
software above the device driver. These statistics are fed
into a trace synthesis tool, which produces a sequence of
requests with the same characteristics (including length
in time). Assuming that the synthesis tool has no errors,
this will be successful if the statistics capture all impor-
tant information. Both request sequences (traced and
synthetic) are used, in turn, to exercise a SUT (the disk
simulator described below, for this paper). Performance
measurements from the resulting SUT activity are used
to evaluate the closeness of the synthetic trace.

While many metrics can be used, we try to encap-
sulate a number of them in a single value. As in
[Ruemmler94], we plot the response time distributions
for the two request sequences (traced and synthetic)
and use the root-mean-squared (RMS) horizontal dis-
tance between the two curves as a metric, which we call
the total error. Lower values indicate better matches.
Many synthetic traces can be generated from a sin-
gle set of statistic values by simply changing the seed
value for the random number generator. So, we also
measure the randomness error, which is the average
RMS distance between response time distributions for
the \mean" of the synthetic traces and any one of them.
The \mean" is computed by combining multiple distri-
butions (i.e., summing the bin values). Our main met-
ric, the synthesis error for a trace generation approach
is the amount by which the total error exceeds the ran-
domness error (i.e., max(0, total { randomness)). We
view this as reasonable, because if the total error is less
than the randomness error, one could claim that they
are statistically indistinguishable.



Trace Length # of # of Average Percent Percent
Name (hours) Disks Requests Size Reads Seq. Reads

Cello 168 8 3,262,824 6.3 KB 46.0% 2.5%
Snake 168 3 1,133,663 6.7 KB 52.4% 18.6%
Air-Rsv 9 16 2,106,704 5.1 KB 79.3% 7.8%
Sci-TS 19.6 43 5,187,693 2.4 KB 81.5% 13.8%
Order 12 22 12,236,433 3.1 KB 86.2% 7.5%
Report 8 22 8,679,057 3.9 KB 88.6% 3.8%

Table 1: Basic characteristics of the disk request traces.

2.2 Disk Request Traces

For our experiments, we use six traces of disk activ-
ity collected from systems in use at various industrial
and research installations. We describe the traces only
brie
y as they have been described elsewhere in more de-
tail [Ramakrishnan92, Ruemmler93]. The traced work-
loads span a range of user environments, and each is at
least a full workshift (8 hours) in length. Some basic
characteristics of the traces are given in table 1. They
vary widely in read/write ratios, access sizes, arrival
rates, locality and burstiness.
Two of the traces come fromHewlett-Packard systems

running HP-UXTM , a version of the UNIXTM operating
system [Ruemmler93]. Cello comes from a server at HP
Labs used for program development, simulation, mail,
and news. Snake is from a �le server at the University
of California at Berkeley used primarily for compilation
and editing. While these traces are actually two months
in length, we report data for a single week-long snapshot
(5/30/92 to 6/6/92).
The other four traces are from commercial VAXTM

systems running the VMSTM operating system
[Ramakrishnan92]. Air-Rsv is from a transaction pro-
cessing environment in which approximately 500 travel
agents made airline and hotel reservations. Sci-TS is
from a scienti�c time-sharing environment in which an-
alytic modeling software and graphical and statistical
packages were used. Order and Report are from a ma-
chine parts distribution company. Order was collected
during daytime hours, representing an order entry and
processing workload. Report was collected at night, cap-
turing a batch environment in which reports of the day's
activities were generated.

2.3 System Under Test

We use a detailed, validated disk simulator for this work.
The simulator accurately models zoned recording, spare
regions, defect slipping and reallocation, disk bu�ers and
caches, various prefetch algorithms, fast write, bus de-
lays, and control and communication overheads. For
this work, the simulator was con�gured to model the HP
C2240 series of disk drives [HP92] using the parameters

HP C2247 Disk Drive

Formatted Capacity 1.05 GB
Rotation Speed 5400 RPM
Data Surfaces 13
Cylinders 2051
512-Byte Sectors 2054864
Zones 8
Sectors/Track 56-96
Interface SCSI-2

256 KB Cache, 2 Segments
Track Sparing/Reallocation

Table 2: Default characteristics of the HP C2247.

described in the appendix of [Worthington94]. Some de-
fault speci�cations for the HP C2247 drive (the 7-platter
member of the C2240 line) are listed in table 2.

The simulator was validated by exercising an actual
HP C2247 and capturing traces of all SCSI activity.
Each traced request stream was run through the simula-
tor, using the observed request inter-arrival delays. This
process was repeated for several synthetic workloads
with varying read/write ratios, arrival rates, request
sizes, and degrees of sequentiality and locality. The av-
erage response times of the actual disk and the simulator
match to within 0.8% in all cases. Unpredictable (from
the disk's view) host delays partially account for the
di�erence. Greater insight can be achieved by compar-
ing the response time distributions [Ruemmler94]. Fig-
ure 2 shows distributions of measured and simulated re-
sponse times for a sample validation workload of 10,000
requests. As with most of our validation results, one
can barely see that two curves are present. The root
mean square horizontal distance between the two distri-
bution curves for the validation run shown in �gure 2 is
0.07 ms, or less than 0.5% of the average response time.
The largest value observed over all validation runs was
only 1.9% of the corresponding average response time.

We simulate members of the HP C2240 series of drives
because our simulator correctly models them and be-
cause we do not have the necessary information for the
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Figure 2: Measured and simulated response time dis-
tributions for an HP C2247A disk drive. The validation

workload parameters are 50% reads, 30% sequential, 30% lo-

cal [normal with 10000 sector variance], 8KB mean request

size [exponential], interarrival time [uniform 0{22 ms].

disks used on the traced systems. This disk substitu-
tion raises a di�culty because our base disk (the HP
C2247) has a di�erent storage capacity than the disks
used by the traced systems. To better match the size of
the simulated disks to those in the traced systems, we
modify the number of platters (5 for Sci-TS, Order, and
Report; and 9 for Cello, Snake, and Air-Rsv) to create
disks large enough to contain the active data without
excessive unused media. We feel that this is a reason-
able approach, as a production line of disks often di�ers
only in the number of physical platters.

3 Access Patterns

To isolate the e�ects of the access pattern from those
of the arrival pattern, we replace all inter-arrival times
with a constant value of 10 seconds. This eliminates
all queueing and re-ordering e�ects. One impact of this
approach is that the observed response times (and there-
fore the error values) are much smaller than when queue-
ing occurs. So, the impact of small error values will, with
more realistic arrival patterns, be magni�ed.

A single disk access is de�ned by four values: the
operation type (e.g., read or write), the device number
(obviated for single disk subsystems), the starting lo-
cation, and the size. Various statistics can be used to
characterize each of these values independently as well
as inter-dependencies among them. This section evalu-
ates several options, chosen to highlight speci�c issues
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Figure 3: Access pattern synthesis for Snake.

Access Average Total Rand. Synth.
Generation Resp. time error error Error

simple 19.2 (4.6) 8.2 0.1 8.2
nonuniform 12.9 (5.5) 2.2 0.5 1.7
aggressive 12.0 (6.0) 1.3 0.9 0.4
interleave 11.5 (6.1) 0.9 0.9 0.1

Table 3: Access pattern synthesis for Snake. The average
response time for the trace is 11.3 ms (6.4).

in workload characterization/synthesis.
Figures 3{4 and tables 3{4 compare synthetic genera-

tion schemes, indicating how well they recreate observed
access patterns. All response times are in milliseconds
and values in parens are variances. The schemes shown
are:

1. trace: the observed sequence of accesses.

2. simple: uses the measured read/write percentage
and a constant (the measured average) access size.
Starting locations are independent and uniformly
distributed across device storage capacity.

3. nonuniform: same as simple, except that starting
locations are generated from the measured distri-
bution of distances from the last block accessed in
the previous request to the start of the next.

4. aggressive: same as nonuniform, except that it uses
a 2-state Markov model to decide whether read or
write, with measured values for the four transitions.
Also, uses a fraction of requests that have the same
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Figure 4: Access pattern synthesis for Order.

Access Average Total Rand. Synth.
Generation Resp. Time error error Error

simple 18.3 (4.4) 5.9 0.03 5.9
nonuniform 13.6 (6.7) 1.9 0.04 1.9
aggressive 13.5 (6.9) 1.5 0.08 1.4
interleave 12.2 (7.4) 2.2 0.12 2.1

Table 4: Access pattern synthesis for Order. The average
response time for the trace is 13.5 ms (7.3).

size as the previous request and a measured distri-
bution for those that do not.

5. interleave: same as aggressive, except that it uses
measured distributions of inter-access distances for
eight \streams" to capture interleaved streams of
localized accesses. The depth of these \interleave"
distributions is 64 sectors (32 KB) in either di-
rection from the prev-last-block. There is also a
measured distribution for the requests that are not
caught by the \interleaves".

For all six traces, the simple model results in large
synthesis error values. As seen by comparing simple to
nonuniform, much of this error is caused by the common
assumption that request starting locations are indepen-
dent and uniformly distributed across the disk. More
aggressive statistics for the operation type and request
size, as represented by aggressive, improve accuracy
slightly. The addition of interleave locality statistics im-
proves accuracy for several of the workloads (including
Snake), indicating that access streams with locality are
interleaved in these workloads. For Order, however, the

use of interleave locality statistics reduces accuracy.
We were unable to achieve close matches for several

of the workloads (e.g., Order and Sci-TS). We tried a
number of approaches involving dependencies between
statistics (e.g., separate locality statistics for reads and
writes, separate locality statistics for reads following
reads and reads following writes). Even with such com-
plexity, the synthesis errors remain large. Much remains
to be understood in the area of disk access patterns.

4 Arrival patterns

To isolate the e�ects of the arrival pattern from those of
the access pattern, we use a constant per-request access
time (12 ms). This eliminates all locality and caching
e�ects. One impact of this is that access times during
bursts are over-estimated in cases where they might oth-
erwise be reduced (e.g., due to disk scheduling). As a
result, queue times tend to be larger than is the case
with real access patterns.
Request arrival patterns are a�ected by a number of

system-speci�c details. Two important characteristics
of arrival patterns are feedback and burstiness. Feed-
back between individual request response times and sub-
sequent request arrivals can have a signi�cant impact
on performance [Ganger95]. However, it is not possible
to extract feedback information from the disk request
traces available for this work, so we do not pursue it. An
arrival pattern is bursty if it exhibits interspersed pe-
riods of high activity (small inter-arrival times) and low
activity (large inter-arrival time). More bursty work-
loads exhibit longer and/or more intense periods of high
activity relative to the low activity periods. More quan-
ti�able de�nitions and metrics for burstiness remain an
important area for future workload characterization re-
search.
Figures 5{6 and tables 5{6 compare synthetic genera-

tion schemes, indicating how well they recreate observed
arrival patterns. All response times are in milliseconds
and values in parentheses are variances. The schemes
shown are:

1. trace: the observed arrival times (from logical zero).

2. expon: uses independent and exponentially dis-
tributed inter-arrival times, with the mean set to
the measured average.

3. actdist: uses independent inter-arrival times taken
from the measured distribution.

4. 2-dists: uses inter-arrival times taken from one of
two measured distributions, depending on the im-
mediately prior inter-arrival time. The �rst is used
when the previous inter-arrival time is less than
60 ms and the other when it is greater than 60 ms.
We arrived at these values by examining the inter-
arrival distribution and selecting a knee point.
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Figure 5: Arrival pattern synthesis for Cello.

Arrival Average Total Rand. Synth.
Generation Resp. Time Error Error Error

expon 12.3 (1.1) 455 0.11 455
actdist 16.1 (8.1) 449 1.1 447
2-dists 16.5 (8.9) 448 2.9 445
3-dists 34.5 (77.3) 378 10.7 367

Table 5: Arrival pattern synthesis for Cello. The average
response time for the trace is 114 ms (436).

5. 3-dists: uses inter-arrival times taken from one of
three measured distributions, depending on the im-
mediately prior inter-arrival time. One is used
when the last inter-arrival time is less than 5 ms,
one when between 5 ms and 60 ms, and one when
greater than 60 ms.

None of the arrival pattern synthesis schemes explored
recreate the observed behavior. In particular, they all
fail to replicate the very long response times that char-
acterize intense bursts of activity. expon results in the
highest error, as an exponential distribution is a poor
match for the observed inter-arrival times. The largest
problem, however, appears to be the assumption of in-
dependence among arrival times. 2-dists and 3-dists re-
duce the synthesis error, but still do not come close to
the observed behavior. Much work is needed before an
understanding of disk request arrival patterns will be
achieved. One possible solution, self-similarity, has been
applied successfully to the characterization of network
tra�c [Leland93].
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Figure 6: Arrival pattern synthesis for Order.

Arrival Average Total Rand. Synth.
Generation Resp. Time Error Error Error

expon 14.4 (6.8) 548 0.9 547
actdist 17.7 (15.5) 542 1.8 539
2-dists 18.1 (16.8) 540 1.8 538
3-dists 20.4 (25.4) 534 3.0 530

Table 6: Arrival pattern synthesis forOrder. The average
response time for the trace is 77.6 ms (519).

5 Conclusions and Future Work

With this work, we have made a �rst step toward
understanding how to characterize a disk workload and
how to demonstrate the validity of a characterization.
However, the large synthesis error values indicate that
much work remains. We have been unable to accurately
recreate the access and arrival patterns of the traces.
These results do not argue that accurate synthesis is

impossible. However, they do show that commonly-used
simplifying assumptions about workload characteristics
are inappropriate and can lead to erroneous conclusions.
In particular, request starting locations are not (in gen-
eral) independent and uniformly distributed. Also, re-
quest arrival patterns do not match those generated by
a Poisson process. In fact, they are neither independent
nor exponentially distributed.

An accurate synthetic trace generator may not be the
appropriate solution, because standalone I/O subsys-
tem models are too narrow in scope [Ganger95]. They
tend to treat all requests equally, ignoring di�erences in
how individual requests a�ect system behavior. As a
result, they ignore or over-simplify feedback e�ects be-



tween individual request response times and subsequent
request arrivals. Also, they predict performance changes
with I/O subsystem performance metrics, which do not
(in general) correlate with changes in overall system per-
formance. [Ganger95] demonstrates these problems and
proposes a solution, system-level modeling.
A system-level approach may also be appropriate

for workload synthesis. Rather than attempting to
recreate the disk activity resulting from particular sys-
tem activity, one could use the system activity itself
to drive models (or instances) of the system. Two
promising approaches to synthetic system benchmarks
are the SPEC S-det benchmark [Gaede81, Gaede82] and
SynRGen [Ebling94], a synthetic �le reference generator.
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