
The DiskSim Simulation Environment

Version 2.0 Reference Manual

Gregory R. Ganger, Bruce L. Worthington, and Yale N. Patt

December 1999

Derived from Version 1.0 Reference Manual [Ganger98].

Copyright (c) December 1999. All rights reserved.

The DiskSim Simulation Environment

Version 2.0 Reference Manual

Gregory R. Ganger, Bruce L. Worthington, and Yale N. Patt

fgreg.gangerg@cmu.edu

December 1999

Abstract

DiskSim is an eÆcient, accurate and highly-con�gurable disk system simulator developed at the University

of Michigan to support research into various aspects of storage subsystem architecture. It includes modules

that simulate disks, intermediate controllers, buses, device drivers, request schedulers, disk block caches, and

disk array data organizations. In particular, the disk drive module simulates modern disk drives in great

detail and has been carefully validated against several production disks (with accuracy that exceeds any

previously reported simulator).

This manual describes how to con�gure and use DiskSim, which has been made publicly available with

the hope of advancing the state-of-the-art in disk system performance evaluation in the research community.

The manual also brie
y describes DiskSim's internal structure and various validation results.

TABLE OF CONTENTS

1 Introduction 1

1.1 What DiskSim does . 1

1.2 What DiskSim does not do . 2

1.3 Limitations and advantages of version 2.0 . 2

1.4 Organization of Manual . 2

2 Running DiskSim 3

2.1 Parameter Overrides . 3

2.2 Example command line . 4

2.3 Continuing a checkpointed simulation run . 4

3 The parameter �le 6

3.1 General Simulation Parameters . 6

3.2 I/O Subsystem Component Speci�cations . 8

3.2.1 Device Drivers . 8

3.2.2 Buses . 9

3.2.3 Controllers . 9

3.2.4 Storage Devices . 10

3.2.5 Disks . 10

3.2.6 Simple Disks . 21

3.2.7 Queue/Scheduler Subcomponents . 21

3.2.8 Disk Block Cache Subcomponents . 23

3.3 I/O Subsystem Interconnection Speci�cations . 25

3.4 Rotational Synchronization of Devices . 26

3.5 Disk Array Data Organizations . 27

3.6 Process-Flow Parameters . 29

4 Input workloads: traces and synthetic workloads 30

4.1 Traces . 30

4.1.1 Default format . 30

4.1.2 Adding support for new trace formats . 30

4.2 Synthetic workloads . 31

4.2.1 Con�guration . 31

4.3 Incorporating DiskSim into system-level simulators . 34

5 The output �le 36

5.1 The statdefs �le . 36

5.2 Simulation results . 37

5.2.1 Process-
ow statistics . 38

5.2.2 Validation trace statistics . 40

5.2.3 HPL trace statistics . 41

5.2.4 System-level logical organization statistics . 41

5.2.5 I/O driver statistics . 45

5.2.6 Disk statistics . 47

5.2.7 Controller statistics . 50

5.2.8 Bus statistics . 52

6 Validation 53

A Copyright notices for DiskSim 56

ii

1 Introduction

Because of trends in both computer technology advancement (e.g., CPU speeds vs. disk access times) and

application areas (e.g., on-demand video, global information access), storage system performance is becoming

an increasingly large determinant of overall system performance. As a result, the need to understand stor-

age performance under a variety of workloads is growing. Disk drives, which are still the secondary storage

medium of choice, continue to expand in capacity and reliability while decreasing in unit cost, price/capacity,

and power requirements. Performance characteristics also continue to change due to maturing technologies

as well as new advances in materials, sensors, and electronics. New storage subsystem architectures may

be needed to better exploit current and future generations of disk devices. The DiskSim simulation envi-

ronment was developed as a tool for two purposes: understanding storage performance and evaluating new

architectures.

1.1 What DiskSim does

DiskSim is an eÆcient, accurate, highly-con�gurable disk system simulator. It is written in C and requires

no special system software. It includes modules for most secondary storage components of interest, including

device drivers, buses, controllers, adapters and disk drives. Some of the major functions (e.g., request queue-

ing/scheduling, disk block caching, disk array data organizations) that can be present in several di�erent

components (e.g., operating system software, intermediate controllers, disk drives) have been implemented

as separate modules that are linked into components as desired. Some of the component modules are highly

detailed (e.g., the disk module), and the individual components can be con�gured and interconnected in a

variety of ways. DiskSim has been used in a variety of published studies (and several unpublished studies) to

understand modern storage subsystem performance [Ganger93a, Worthington94], to understand how storage

performance relates to overall system performance [Ganger93, Ganger95, Ganger95a], and to evaluate new

storage subsystem architectures [Worthington95a].

DiskSim has been validated both as part of a more comprehensive system-level model [Ganger93, Ganger95a]

and as a standalone subsystem [Worthington94, Worthington95]. In particular, the disk module (which is

extremely detailed) has been carefully validated against �ve di�erent disk drives from three di�erent manu-

facturers. The accuracy demonstrated exceeds that of any other disk simulator known to the authors (e.g.,

see [Ruemmler94]).

DiskSim can be driven by externally-provided I/O request traces or internally-generated synthetic work-

loads. Several trace formats have been used and new ones can be easily added. The synthetic trace gener-

ation module is quite
exible, particularly in the request arrival model (which can mimic an open process,

a closed process or something in between). DiskSim was originally part of a larger, system-level model

[Ganger93, Ganger95] that modeled each request's interactions with executing processes, but has been sep-

arated out for public dissemination.1 As a result, it can be integrated into full system simulators (e.g.,

simulators like SimOS [Rosenblum95]) with little diÆculty.

1The system-level model includes several portions of a proprietary OS, allowing it to achieve a close match to the real system

behavior [Ganger95] but also preventing it from being publicly released.

1

1.2 What DiskSim does not do

DiskSim, by itself, simulates and reports on only the performance-related aspects of the storage subsystem. It

does not model the behavior of the other computer system components or interactions between them and the

storage subsystem.2 Because storage subsystem performance metrics are not absolute indicators of overall

system performance (e.g., see [Ganger95a]), promising architectures should be evaluated in the context of a

more comprehensive system model or a real system. In such cases, DiskSim becomes one component of the

full model, just as a storage subsystem is one component of a full system.

DiskSim models the performance behavior of disk systems, but does not actually save or restore data

for each request. If such functionality is desired (as, for example, when building a full system simulator like

SimOS), it can easily be provided independently of DiskSim, which will still provide accurate timings for

I/O activity.

1.3 Limitations and advantages of version 2.0

DiskSim 2.0 has two main known short-comings. First, speci�cation of component interconnection in DiskSim

is less general and more complicated than it should be. Also, DiskSim is not very helpful in debugging imper-

fect interconnection speci�cations. Second, several aspects of DiskSim's software engineering are suboptimal.

DiskSim 2.0 o�ers several new features, relative to DiskSim 1.0 [Ganger98]. Speci�cally, several new

disk drive characteristics (e.g., new layout and sparing schemes) are included in the disk model. Validated

speci�cations for more recent disk drives are bundled with the release. Also, the disk model has been more

cleanly separated from the rest of DiskSim, allowing other storage devices to co-exist. Also, rudimentary

support for checkpoint/restore has been added. Finally, some aspects of the software engineering have been

improved and several bugs have been stamped.

1.4 Organization of Manual

This manual describes how to con�gure and use DiskSim and how to interpret the output generated. Section 2

explains the DiskSim command line and how to execute the simulator given the appropriate con�guration

�les. Section 3 describes the parameter �le format, the various parameters and the additional con�guration

�les required. Section 4 describes how to provide an input workload of I/O requests to DiskSim { options

include external traces, internally-generated synthetic workloads, and interactions with a larger simulation

environment. Section 5 describes the contents of the output �le. Section 6 provides validation data (all of

which has been published previously [Worthington94, Worthington95, Ganger95a]) showing that DiskSim

accurately models the behavior of several high-performance disk drives produced in the early 1990s. The

same has been found true of disk drives produced in the late 1990s [Schindler99].

This manual does not provide details about DiskSim's internals. We refer those that wish to understand

DiskSim more thoroughly and/or modify it to the appendices of [Ganger95].

2Actually, a rudimentary system model was kept in place to support the internal synthetic generation module. However, it

should not be viewed as representative of any real system's behavior.

2

2 Running DiskSim

DiskSim requires �ve command line arguments and accepts zero or more parameter override descriptions:

disksim par�le out�le tracetype trace�le synthgen? [par override ...]

where:

� disksim is the name of the executable.

� par�le is the name of the parameter �le (whose format is described in chapter 3).

� out�le is the name of the output �le (whose format is described in chapter 5). Output can be directed

to stdout by specifying \stdout" for this argument.

� tracetype identi�es the format of the trace input, if any (options are described in chapter 4).

� trace�le identi�es the trace �le to be used as input. Input is taken from stdin when \stdin" is speci�ed

for this argument.

� synthgen? determines whether or not the synthetic workload generation portion of the simulator

should be enabled (any value other than \0" enables synthetic workload generation). The synthetic

generator(s) are con�gured by values in the parameter �le, as described in chapter 4. Currently, the

simulator cannot use both an input trace and an internally-generated synthetic workload at the same

time.

� par override allows default parameter values or parameter values from par�le to be replaced by values

speci�ed in the command line. The exact syntax is described in the following section.

2.1 Parameter Overrides

When using DiskSim to examine the performance impacts of various storage subsystem design decisions

(e.g., sensitivity analyses), the experimental con�gurations of interest are often quite similar. To avoid the

need for numerous parameter �les with incremental di�erences, DiskSim allows some parameter values to be

overridden with command line arguments. The parameter overrides are applied after the parameter �le has

been read, but before the internal con�guration phase begins. Each parameter override is described by the

four command line arguments in the following sequence:

par override = module name instance range par name par value

1. module name is a string representing the module whose parameter is to be overridden. For example,

\disk" represents the disk drive module and \iosim" represents the general I/O subsystem simulation

setup.

2. instance range identi�es the range of module instances whose parameters are to be overridden, speci�ed

as \X{Y" (or \-1" to specify that all instances should be a�ected). The range is inclusive and X may

equal Y. The concept of module instances should be less ambiguous after the parameter �le description

(chapter 3) is understood.

3

3. par name is a string identifying the parameter to be overridden. The string chosen for a parameter

is generally consistent with its internal name, and the easiest way to discover the internal name is

to search (e.g., grep) the source code for the exact text that precedes the parameter value in the

parameter �le. If the parameter is for a module that is included in a more comprehensive module,

the larger module is given as module name and the \submodule" is (by convention) identi�ed in the

parameter name. So, for example, a disk request scheduling algorithm (which is a parameter of the

\ioqueue" module) is identi�ed by the string \ioqueue schedalg".

4. par value is the overriding value for the parameter for the speci�ed instances of the speci�ed module.

The set of parameters whose values can be overridden from the command line is largely de�ned as the

set of parameters incrementally varied in previous studies (as opposed to some objective decision process).

Adding new parameters to this set is straightforward: simply modify the * param override()" function of

the appropriate module to handle the new override. The error checks for the parameter should be taken from

the corresponding * readparams()" code (which, like the internal variable name, can be found by searching

the source code for speci�c text from the parameter �le) to maintain consistency.

2.2 Example command line

An example may be useful to demonstrate the command line syntax. The below text:

disksim parms.1B stdout ascii t.Jan6 0 disk 1{16 segsize 64 disk 1 ioqueue schedalg 4

executes DiskSim as follows:

� initial parameters are read from �le parms.1B;

� output (e.g., statistics) is sent to stdout;

� the ascii input trace is read from �le t.Jan6;

� there is no synthetically generated activity;

� the cache segment size parameter values of disks 1 through 16, as speci�ed in the parameter �le

(parms.1B), are overridden with a value of 64 (sectors); and

� the scheduling algorithm parameter value for all disks is overridden with a value of 4 (which corresponds

to a Shortest-Seek-Time-First algorithm).

2.3 Continuing a checkpointed simulation run

DiskSim includes support for checkpointing its internal state and for restarting execution from one of these

checkpoints. This support has not been rigorously tested, relies on the presence of the POSIX mmap()

system call, and only allows checkpointed executions to be continued on machines of the same architecture.

The command line format for this option is simply:

4

disksim checkpoint�le

where:

� checkpoint�le is the name of the �le containing the checkpoint information.

5

3 The parameter �le

DiskSim can be con�gured via the parameter �le to model a wide variety of storage subsystems. To provide

this
exibility, the parameter �le (and auxiliary con�guration �les) is very long, requiring several hundred

lines in most cases. Although it can sometimes be unwieldy, the con�guration �le is organized so as to

simplify recon�guration.

The parameter �le consists of several sections. Each section (more precisely, each line) must appear a

speci�c order. No reordering will be understood by DiskSim. The parameter �le begins with some general

I/O subsystem parameters, including directives for which results should be included in the output. This

is followed by two sections that specify the components that will be part of the simulated subsystem and

their interconnections, respectively. The separation of component de�nitions and their interconnections

greatly reduces the e�ort required to develop and integrate new components as well as the e�ort required

to understand and modify the existing components [Satya86]. This is followed by brief sections that specify

which disk drives (if any) should be rotationally synchronized with each other and which disk drives should

be part of particular disk array data organizations. The �nal section of the parameter �le, which is only

needed when the internal synthetic workload generator is used, speci�es the rough characteristics of both

the overall system and the synthetic generator.

Several example parameter �les are provided with the software distribution. The remainder of this section

describes the parameters in the order they must appear in a parameter �le. When only speci�c values are

allowed, they are shown in brackets.

3.1 General Simulation Parameters

Byte Order (Endian): String [\Big" or \Little"] specifying the endian-ness of the machine on which the

simulation will be run. This is only relevant when the simulation run uses raw (binary) input traces (which

must have an associated endian-ness) and DiskSim can not automatically determine the endian-ness of the

host machine.

Init Seed: Integer specifying the initial seed for the random number generator. The string, \TIME",

can be provided (instead of an integer) to specify that the current system time should be used as the seed.

The initial seed value is applied at the very beginning of the simulation and is used during the initialization

phase (e.g., for determining initial rotational positions). Explicitly specifying the random generator seed

enables experiment repeatability.

Real Seed: Integer specifying the simulation seed for the random number generator. The string,

\TIME", can be provided (instead of an integer) to specify that the current system time should be used as

the seed. The `real' seed value is applied after the initialization phase and is used during the simulation phase

(e.g., for synthetic workload generation). This allows multiple synthetic workloads (with di�erent simulation

seeds) to be run on equivalent con�gurations (i.e., with identical initial seeds, as speci�ed above).

Statistic warm-up period: String [\FF.FF seconds" or \III I/Os"] specifying the warm-up period,

after which the statistics will be reset to their initial values. It can be given as a Float [nonnegative (FF.FF)]

followed by the \seconds" quali�er, indicating a �xed amount of simulated time (in seconds), or as an Integer

6

[nonnegative (III)] followed by the \I/Os" quali�er, indicating a �xed number of disk requests.

Checkpoint to <�lename> every: String [\FF.FF seconds" or \III I/Os"] specifying the frequency

that checkpoints should be taken and the �le into which checkpoints should be stored. The frequency can

be given as a Float [nonnegative (FF.FF)] followed by the \seconds" quali�er, indicating a �xed amount of

simulated time (in seconds), or as an Integer [nonnegative (III)] followed by the \I/Os" quali�er, indicating

a �xed number of disk requests. At each multiple of the frequency, DiskSim's memory image will be copied

into the �le with the speci�ed �lename. DiskSim can be restarted with the saved state via command line

arguments (see Section 2).

Stat (dist) de�nition �le: String specifying the name of the input �le containing the speci�cations for

the statistical distributions to collect. This �le allows the user to control the number and sizes of histogram

bins into which data are collected. This �le is mandatory, and section 5.1 describes its use.

Output �le for trace of I/O requests simulated: String specifying the name of the output �le

to contain a trace of disk request arrivals (in the default ASCII trace format described in section 4.1).

This allows instances of synthetically generated workloads to be saved and analyzed after the simulation

completes. This is particularly useful for analyzing (potentially pathological) workloads produced by a

system-level model. A value of \0" or of \null" disables this feature.

PRINTED I/O SUBSYSTEM STATISTICS: This section contains a series of Boolean [1 or 0]

parameters that specify whether or not particular groups of statistics are reported. The driver parameters

control statistics output from both the device drivers (individual values and overall totals) and any driver-

level disk array logical data organizations (referred to as logorgs). The controller values are irrelevant

because there are no controller-level statistics in the released version of DiskSim. The device parameters

control statistics output for the devices themselves (individually, overall, and combined with the other devices

in a particular logorg). The di�erent print-control parameters (corresponding to particular statistics groups)

will be identi�ed with individual statistics in Section 5.

I/O Trace Time Scale: Float [positive] specifying a value by which each arrival time in a trace is

multiplied. For example, a value of 2.0 doubles each arrival time, lightening the workload by stretching

it out over twice the length of time. Conversely, a value of 0.5 makes the workload twice as heavy by

compressing inter-arrival times. This value has no e�ect on workloads generated internally (by the synthetic

generator).

Number of I/O Mappings: Integer [nonnegative] specifying the number of multi-purpose mappings

provided in subsequent lines of the �le that enable translation of disk request sizes and locations in an input

trace into disk request sizes and locations appropriate for the simulated environment. When the simulated

environment closely matches the traced environment, these mappings may be used simply to reassign disk

device numbers. However, if the con�gured environment di�ers signi�cantly from the trace environment, or

if the traced workload needs to be scaled (by request size or range of locations), these mappings can be used

to alter the the traced \logical space" and/or scale request sizes and locations. One mapping is allowed per

traced device.

Mapping: A mapping from a device as identi�ed in the trace to the storage subsystem device(s) being

modeled. The total number of mappings must match the value of the parameter described above. Each

mapping consists of �ve values:

7

� Hex Integer [nonnegative] specifying the traced device a�ected by this mapping.

� Hex Integer [nonnegative] specifying the simulated device such requests should access.

� Integer [positive] specifying a value by which a traced disk request location is multiplied to generate

the starting location (in bytes) of the simulated disk request. For example, if the input trace speci�es

locations in terms of 512-byte sectors, a value of 512 would result in an equivalent logical space of

requests.

� Integer [positive] specifying a value by which a traced disk request size is multiplied to generate the

size (in bytes) of the simulated disk request.

� Integer [bytes] specifying a value to be added to each simulated request's starting location. This is

especially useful for combining multiple trace devices' logical space into the space of a single simulated

device.

3.2 I/O Subsystem Component Speci�cations

DiskSim recognizes four main component types: device driver, bus, controller and device. The device

category is special in that it must be of a particular type (e.g., disk) and then con�gured accordingly. This

distinction will be more relevant when additional device models are added (e.g., RAMdisks or MEMS-based

stores) in the future. For con�guration purposes, everything falls into one of these categories. In addition,

there are two subcomponents (queues/schedulers and caches) that can be part of multiple components and

are therefore described separately. For each component, the parameter �le identi�es how many exist in the

modeled subsystem and then has one or more component speci�cations (the instances of a component need

not have identical characteristics). Each component speci�cation can de�ne one or more instances of the

component. For the interconnection speci�cations, the components of a given type are numbered 1 thru N

(in order of speci�cation). Internally, they are numbered 0 thru N-1 (in the same order).

3.2.1 Device Drivers

There must be exactly one con�gured device driver per storage subsystem con�guration for the released

version of DiskSim.

Device driver type: Integer [1] included for extensibility purposes.

Constant access time: Overloaded Float [-3.0, -2.0, -1.0, 0.0, or positive in milliseconds] specifying any

of several forms of storage simulation abstraction. A positive value indicates a �xed access time (after any

queueing delays) for each disk request. With this option, requests do not propagate to lower levels of the

storage subsystem (and the stats and con�guration of lower levels are therefore meaningless). -1.0 indicates

that the trace provides a measured access time for each request, which should be used instead of any simulated

access times. -2.0 indicates that the trace provides a measured queue time for each request, which should

be used instead of any simulated queue times. (Note: this can cause problems if multiple requests end up

outstanding simultaneously to disks that don't support queueing.) -3.0 indicates that the trace provides

8

measured values for both the access time and the queue time. Finally, 0.0 indicates that the simulation

should compute all access and queue times as appropriate given the changing state of the storage subsystem.

The next thirteen parameters in the parameter �le con�gure the queue/scheduler subcomponent of the

device driver speci�cation and are described in section 3.2.7.

Use queueing in subsystem: Boolean [1 or 0] specifying whether or not the device driver allows more

than one request to be outstanding (in the storage subsystem) at any point in time. During initialization,

this parameter is combined with the parameterized capabilities of the subsystem itself to determine whether

or not queueing in the subsystem is appropriate.

3.2.2 Buses

Bus Type: Integer [1 or 2] specifying the type of bus. 1 indicates an exclusively-owned (tenured) bus

(i.e., once ownership is acquired, the owner gets 100% of the bandwidth available until ownership is relin-

quished voluntarily). 2 indicates a shared bus where multiple bulk transfers are interleaved (i.e., each gets a

fraction of the total bandwidth).

Arbitration type: Integer [1 or 2] specifying the type of arbitration used for exclusively-owned buses

(see above parameter description). 1 indicates slot-based priority (e.g., SCSI buses), wherein the order of

attachment determines priority (i.e., the �rst device attached has the highest priority). 2 indicates First-

Come-First-Served (FCFS) arbitration, wherein bus requests are satis�ed in arrival order.

Arbitration time: Float [nonnegative milliseconds] specifying the time required to make an arbitration

decision.

Read block transfer time: Float [nonnegative milliseconds] specifying the time required to transfer a

single 512-byte block in the direction of the device driver / host.

Write block transfer time: Float [nonnegative milliseconds] specifying the time required to transfer

a single 512-byte block in the direction of the disk drives.

Print stats for bus: Boolean [1 or 0] specifying whether or not to report the collected statistics.

3.2.3 Controllers

Controller Type: Integer [1, 2, or 3] specifying the type of controller. 1 indicates a simple controller that

acts as nothing more than a bridge between two buses, passing everything straight through to the other side.

2 indicates a very simple, driver-managed controller based roughly on the NCR 53C700. 3 indicates a more

complex controller that decouples lower-level storage component peculiarities from higher-level components

(e.g., device drivers). The complex controller queues and schedules its outstanding requests and possibly

contains a cache. As indicated below, it requires several parameters in addition to those needed by the

simpler controllers.

Scale for delays: Float [nonnegative] specifying a multiplicative scaling factor for the various processing

delays incurred by the controller. Default overheads for the 53C700-based controller and the more complex

controller are hard-coded into the \read specs" procedure of the controller module (and are easily changed).

9

For the simple pass-thru controller, the scale factor represents the per-message propagation delay (because

the hard-coded value is 1.0). 0.0 results in no controller overheads or delays. When the overheads/delays

of the controller(s) cannot be separated from those of the disk(s), as is usually the case for single-point

tracing of complete systems, the various disk overhead/delay parameter values should be populated and this

parameter should be set to 0.0.

Bulk sector transfer time: Float [nonnegative milliseconds] specifying the time necessary to transfer

a single 512-byte block to, from or through the controller. Transferring one block over the bus takes the

maximum of this time, the block transfer time speci�ed for the bus itself, and the block transfer time speci�ed

for the component on the other end of the bus transfer.

Maximum queue length: Integer [nonnegative] specifying the maximum number of requests that can

be outstanding to the controller concurrently. The device driver discovers this value during initialization

and respects it during operation. For the simple types of controllers (see above parameter description), 0 is

assumed.

Print stats for controller: Boolean [1 or 0] specifying whether or not to report statistics for the

controller. It is meaningless for the simple types of controllers (see above parameter description), as no

statistics are collected for such controllers in the released version of DiskSim.

The remaining controller parameters are only included in speci�cations of the more complex controller

type (3).

The next thirteen parameters in the parameter �le con�gure the queue/scheduler subcomponent of the

device driver speci�cation and are described in section 3.2.7.

The next eighteen parameters in the parameter �le con�gure the cache subcomponent of the controller

speci�cation (for the complex controller type) and are described in section 3.2.8.

Max per-disk pending count: Integer [positive] specifying the maximum number of requests that the

controller can have outstanding to each attached disk (i.e., the maximum number of requests that can be

dispatched to a single disk). This parameter only a�ects the interaction of the controller with its attachments;

it is not visible to the device driver.

3.2.4 Storage Devices

\Storage devices" represent a generic de�nition for di�erent storage devices �tting into DiskSim. Disks

(see Section 3.2.5) and simpledisks (see Section 3.2.6) are types of storage device. The one storage device

parameter de�nes the type and determines which set of parameters must appear next.

Device type for Spec: String [\disk" or \simpledisk"] specifying the type of device in this speci�cation.

3.2.5 Disks

The parameters for a disk speci�cation can either be included in the parameter �le directly or pulled from a

separate �le. In the latter case, the main parameter �le includes just two lines, providing a unique identi�er

(e.g., product name) for the disk speci�cation and a �le name in which to �nd it. The actual speci�cation is

10

then found by searching the given �le for a duplicate of the unique identi�er. In either case, the parameters

for a disk speci�cation are:

Access time (in msecs): Overloaded Float [-2.0, -1.0, nonnegative milliseconds] specifying the method

for computing mechanical delays. A nonnegative value indicates a �xed per-request access time (i.e., actual

mechanical activity is not simulated). -1.0 indicates that seek activity should be simulated but rotational

latency is assumed to be equal to one half of a rotation, which is the statistical mean for random disk access.

-2.0 indicates that both seek and rotational activity should be simulated.

Seek time (in msecs): Overloaded Float [-5.0, -4.0, -3.0, -2.0, -1.0, nonnegative milliseconds] specifying

the method for computing seek delays. A nonnegative value indicates a �xed per-request seek time. -

1.0 indicates that the single-cylinder seek time, the average seek time and the full-strobe seek time parameters

should be used to compute the simulated seek time via linear interpolation. -2.0 indicates that the same

three parameters should be used with the seek equation described in [Lee93]:

seekT ime(x) =

(
0 : ifx = 0

a
p
x� 1 + b(x� 1) + c : ifx > 0

;where

x is the seek distance in cylinders,

a = (�10minSeek+ 15avgSeek� 5maxSeek)=(3
p
numCyl);

b = (7minSeek � 15avgSeek+ 8maxSeek)=(3numCyl); and

c = minSeek:

-3.0 indicates that the six-value \HPL" parameter (see below) should be used with the seek equation described

in [Ruemmler94]. -4.0 indicates that the six-value \HPL" parameter (see below) should be used with the seek

equation described in [Ruemmler94] for all seeks greater than 10 cylinders in length. For smaller seeks, use

the 10-value \First seeks" parameter (see below) as in [Worthington94]. -5.0 indicates that a more complete

seek curve (provided in a separate �le) should be used, with linear interpolation used to compute the seek

time for unspeci�ed distances.

Single cylinder seek time: Float [nonnegative milliseconds] specifying the time necessary to seek to

an adjacent cylinder.

Average seek time: Overloaded Float [nonnegative milliseconds] or String specifying either the mean

time necessary to perform a random seek or, if a complete seek curve is to be provided (see above), the

name of the input �le containing the seek curve data. The format of such a �le is very simple, consisting of

a single line containing the number of seek distances for which corresponding seek times are given (Integer

[positive]), followed by a line for each seek distance containing two values: the distance (Integer [positive

cylinders]) and the seek time (Float [nonnegative milliseconds]). Examples are provided with the released

software.

Full strobe seek time: Float [nonnegative milliseconds] specifying the full-strobe seek time (i.e., the

time to seek from the innermost cylinder to the outermost cylinder).

Add. write settling delay: Float [nonnegative milliseconds] specifying the additional time required

to precisely settle the read/write head for writing (after a seek or head switch). As this parameter implies,

the seek times computed using the above parameter values are for read access.

11

HPL seek equation values: Six Integers specifying the variables V1 through V6 of the seek equation

described in [Ruemmler94]:

Seek distance Seek time

1 cylinder V6

<V1 cylinders V2 + V3 *
p
dist

>=V1 cylinders V4 + V5 * dist

, where dist is the seek distance in cylin-

ders.

If V6 == �1, single-cylinder seeks are computed using the second equation. V1 is speci�ed in cylinders, and

V2 through V6 are speci�ed in milliseconds.

First 10 seek times: Ten Integers [nonnegative milliseconds] specifying the seek time for seek distances

of 1 through 10 cylinders.

Head switch time: Float [nonnegative milliseconds] specifying the time required for a head switch

(i.e., activating a di�erent read/write head in order to access a di�erent media surface).

Rotation speed (in rpms): Integer [positive rotations per minute] specifying the rotation speed of the

disk platters.

Percent error in rpms: Float [nonnegative percentage] specifying the maximum deviation in the

rotation speed speci�ed above. During initialization, the simulated rotation speed for each disk is randomly

chosen from a uniform distribution of the speci�ed rotation speed � the maximum allowed error.

Number of data surfaces: Integer [positive] specifying the number of magnetic media surfaces (not

platters!) on which data are recorded. Dedicated servo surfaces should not be counted for this parameter.

Number of cylinders: Integer [positive] specifying the number of physical cylinders. All cylinders that

impact the logical to physical mappings should be included.

Blocks per disk: Integer [positive] specifying the number of data blocks. This capacity is exported by

the disk (e.g., to a disk array controller). It is not used directly during simulation, but is compared to a

similar value computed from other disk parameters. A warning is reported if the values di�er.

Per-request overhead time: Float [nonnegative milliseconds] specifying a per-request processing over-

head that takes place immediately after the arrival of a new request at the disk. It is additive with various

other processing overheads described below, but in general either the other overheads are set to zero or this

parameter is set to zero.

Time scale for overheads: Float [nonnegative] specifying a multiplicative scaling factor for all pro-

cessing overhead times. For example, 0.0 eliminates all such delays, 1.0 uses them at face value, and 1.5

increases them all by 50%.

Bulk sector transfer time: Float [nonnegative] specifying the time for the disk to transfer a single

512-byte block over the bus. Recall that this value is compared with the corresponding bus and controller

block transfer values to determine the actual transfer time (i.e., the maximum of the three values).

Hold bus entire read xfer: Boolean [1 or 0] specifying whether or not the disk retains ownership of

the bus throughout the entire transfer of \read" data from the disk. If false (0), the disk may release the

bus if and when the current transfer has exhausted all of the available data in the on-board bu�er/cache

and must wait for additional data sectors to be read o� the disk into the bu�er/cache.

12

Hold bus entire write xfer: Boolean [1 or 0] specifying whether or not the disk retains ownership of

the bus throughout the entire transfer of \write" data to the disk. If false (0), the disk may release the bus

if and when the current transfer has �lled up the available space in the on-board bu�er/cache and must wait

for data from the bu�er/cache to be written to the disk.

Allow almost read hits: Boolean [1 or 0] specifying whether or not a new read request whose �rst

block is currently being prefetched should be treated as a partial cache hit. Doing so generally means that

the request is handled right away.

Allow sneaky full read hits: Boolean [1 or 0] specifying whether or not a new read request whose data

are entirely contained in a single segment of the disk cache is allowed to immediately transfer that data over

the bus while another request is moving the disk actuator and/or transferring data between the disk cache

and the disk media. In essence, the new read request \sneaks" its data out from the disk cache without

interrupting the current (active) disk request.

Allow sneaky partial read hits: Boolean [1 or 0] specifying whether or not a new read request whose

data are partially contained in a single segment of the disk cache is allowed to immediately transfer that

data over the bus while another request is moving the disk actuator and/or transferring data between the

disk cache and the disk media. In essence, the new read request \sneaks" the cached portion of its data out

from the disk cache without interrupting the current (active) disk request.

Allow sneaky intermediate read hits: Boolean [1 or 0] specifying whether or not the on-board

queue of requests is searched during idle bus periods in order to �nd read requests that may be partially

or completely serviced from the current contents of the disk cache. That is, if the current (active) request

does not need bus access at the current time, and the bus is available for use, a queued read request whose

data are in the cache may obtain access to the bus and begin data transfer. \Full" intermediate read hits

are given precedence over \partial" intermediate read hits.

Allow read hits on write data: Boolean [1 or 0] specifying whether or not data placed in the disk

cache by write requests are considered usable by read requests. If false (0), such data are removed from the

cache as soon as they have been copied to the media.

Allow write prebu�ering: Boolean [1 or 0] specifying whether or not the on-board queue of requests

is searched during idle bus periods for write requests that could have part or all of their data transferred

to the on-board cache (without disturbing an ongoing request). That is, if the current (active) request does

not need bus access at the current time, and the bus is available for use, a queued write request may obtain

access to the bus and begin data transfer into an appropriate cache segment. Writes that are contiguous to

the end of the current (active) request are given highest priority in order to facilitate continuous transfer to

the media, followed by writes that have already \prebu�ered" some portion of their data.

Preseeking level: Integer [0, 1, or 2] specifying how soon the actuator is allowed to start seeking

towards the media location of the next request's data. 0 indicates no preseeking, meaning that the actuator

does not begin relocation until the current request's completion has been con�rmed by the controller (via

a completion \handshake" over the bus). 1 indicates that the actuator can begin relocation as soon as the

completion message has been prepared for transmission by the disk. 2 indicates that the actuator can begin

relocation as soon as the access of the last sector of the current request (and any required prefetching) has

been completed. This allows greater parallelism between bus activity and mechanical activity.

13

Never disconnect: Boolean [1 or 0] specifying whether or not the disk retains ownership of the bus

during the entire processing and servicing of a request (i.e., from arrival to completion). If false (0), the disk

may release the bus whenever it is not needed for transferring data or control information.

Print stats for disk: Boolean [1 or 0] specifying whether or not to report statistics for the disk.

Avg sectors per cylinder: Integer [nonnegative] specifying (an approximation of) the mean number

of sectors per cylinder. This value is exported to any external schedulers3 requesting it and is not used by

the disk itself.

Max queue length at disk: Integer [positive] specifying the maximum number of requests that the

disk can have in service or queued for service at any point in time. During initialization, other components

request this information and respect it during simulation.

The next thirteen parameters in the parameter �le con�gure the queue/scheduler subcomponent of the

disk speci�cation and are described in section 3.2.7.

Number of bu�er segments: Integer [positive] specifying the number of segments in the on-board

bu�er/cache. A bu�er segment is similar to a cache line, in that each segment contains data that is disjoint

from all other segments. However, segments tend to be organized as circular queues of logically sequential

disk sectors, with new sectors pushed into an appropriate queue either from the bus (during a write) or

from the disk media (during a read). As data are read from the bu�er/cache and either transferred over the

bus (during a read) or written to the disk media (during a write), they are eligible to be pushed out of the

segment (if necessary or according to the dictates of the bu�er/cache management algorithm).

Maximum number of write segments: Integer [positive] specifying the number of cache segments

available for holding \write" data at any point in time. Because write-back caching is typically quite limited

in current disk cache management schemes, some caches only allow a subset of the segments to be used to

hold data for write requests (in order to minimize any interference with sequential read streams).

Segment size (in blks): Integer [positive sectors] specifying the size of each bu�er segment, assuming a

static segment size. Some modern disks will dynamically resize their bu�er segments (and thereby alter the

number of segments) to respond to perceived patterns of workload behavior, but DiskSim does not currently

support this functionality.

Use separate write segment: Boolean [1 or 0] specifying whether or not a single segment is stati-

cally designated for use by all write requests. This further minimizes the impact of write requests on the

caching/prefetching of sequential read streams.

Low (write) water mark: Float [0.0{1.0] specifying the fraction of segment size or request size (see

below) corresponding to the low water mark. When data for a write request are being transferred over the

bus into the bu�er/cache, and the bu�er/cache segment �lls up with \dirty" data, the disk may disconnect

from the bus while the bu�ered data are written to the disk media. When the amount of dirty data in the

cache falls below the low water mark, the disk attempts to reconnect to the bus to continue the interrupted

data transfer.

3Some scheduling algorithms available in DiskSim utilize approximations of the actual layout of data on the disk(s) when

reordering disk requests.

14

High (read) water mark: Float [0.0{1.0] specifying the fraction of segment size or request size (see

below) corresponding to the high water mark. When data for a read request are being transferred over

the bus from the bu�er/cache, and the bu�er/cache segment runs out of data to transfer, the disk may

disconnect from the bus until additional data are read from the disk media. When the amount of available

data in the cache reaches the high water mark, the disk attempts to reconnect to the bus to continue the

interrupted data transfer.

Set watermark by reqsize: Boolean [1 or 0] specifying whether the watermarks are computed as

fractions of the individual request size or as fractions of the bu�er/cache segment size.

Calc sector by sector: Boolean [1 or 0] specifying whether or not media transfers should be computed

sector by sector rather than in groups of sectors. This optimization has no e�ect on simulation accuracy,

but potentially results in shorter simulation times (at a cost of increased code complexity). It has not been

re-enabled since the most recent modi�cations to DiskSim, so the simulator currently functions as if the

value were always true (1).

Enable caching in bu�er: Boolean [1 or 0] specifying whether or not on-board bu�er segments are

used for data caching as well as for speed-matching between the bus and the disk media. Most (if not all)

modern disk drives utilize their bu�ers as caches.

Bu�er continuous read: Integer [0{4] specifying the type of prefetching performed by the disk. 0 dis-

ables prefetching. 1 enables prefetching up to the end of the track containing the last sector of the read

request. 2 enables prefetching up to the end of the cylinder containing the last sector of the read request.

3 enables prefetching up to the point that the current cache segment is full. 4 enables prefetching up to the

end of the track following the track containing the last sector of the read request, provided that the current

request was preceded in the not-too-distant past by another read request that accessed the immediately

previous track. In essence, the last scheme enables a type of prefetching that tries to stay one logical track

\ahead" of any sequential read streams that are detected.

Minimum read-ahead (blks): Integer [nonnegative] specifying the minimum number of disk sectors

that must be prefetched after a read request before servicing another (read or write) request. A positive value

may be bene�cial for workloads containing multiple interleaved sequential read streams, but 0 is typically

the appropriate value.

Maximum read-ahead (blks): Integer [nonnegative] specifying the maximum number of disk sectors

that may be prefetched after a read request (regardless of all other prefetch parameters).

Read-ahead over requested: Boolean [1 or 0] specifying whether or not newly prefetched data can

replace (in a bu�er segment) data returned to the host as part of the most recent read request.

Read-ahead on idle hit: Boolean [1 or 0] specifying whether or not prefetching should be initiated by

the disk when a read request is completely satis�ed by cached data (i.e., a \full read hit").

Read any free blocks: Boolean [1 or 0] specifying whether or not disk sectors logically prior to the

requested sectors should be read into the cache if they pass under the read/write head prior to reaching the

requested data (e.g., during rotational latency).

Fast write level: Integer [0, 1, or 2] specifying the type of write-back caching implemented. 0 indicates

15

that write-back caching is disabled (i.e., all dirty data must be written to the disk media prior to sending a

completion message). 1 indicates that write-back caching is enabled for contiguous sequential write request

streams. That is, as long as each request arriving at the disk is a write request that \appends" to the current

segment of dirty data, a completion message will be returned for each new request as soon as all of its data

have been transferred over the bus to the disk bu�er/cache. 2 indicates that write-back caching is enabled

for contiguous sequential write request streams even if they are intermixed with read or non-appending

write requests, although before any such request is serviced by the disk, all of the dirty write data must be

ushed to the media. A scheduling algorithm that gives precedence to sequential writes would maximize the

e�ectiveness of this option.

Immediate bu�er read: Boolean [1 or 0] specifying whether or not disk sectors should be transferred

into the on-board bu�er in the order that they pass under the read/write head rather than in strictly

ascending logical block order. This is known as zero-latency reads or read-on-arrival. It is intended to

improve response times by reducing rotational latency (by not rotating all the way around to the �rst

requested sector before beginning to �ll the bu�er/cache).

Immediate bu�er write: Boolean [1 or 0] specifying whether or not disk sectors should be transferred

from the on-board bu�er in the order that they pass under the read/write head rather than in strictly

ascending logical block order. This is known as zero-latency writes or write-on-arrival. It is intended to

improve response times by reducing rotational latency (by not rotating all the way around to the �rst

\dirty" sector before beginning to
ush the bu�er/cache).

Combine seq writes: Boolean [1 or 0] specifying whether or not sequential data from separate write

requests can share a common cache segment. If true (1), data are typically appended at the end of a previous

request's dirty data. However, if all of the data in a cache segment are dirty, and no mechanical activity

has begun on behalf of the request(s) using that segment, \prepending" of additional dirty data are allowed

provided that the resulting cache segment contains a single contiguous set of dirty sectors.

Stop prefetch in sector: Boolean [1 or 0] specifying whether or not a prefetch may be aborted in the

\middle" of reading a sector o� the media. If false (0), prefetch activity is only aborted at sector boundaries.

Disconnect write if seek: Boolean [1 or 0] specifying whether or not the disk should disconnect from

the bus if the actuator is still in motion (seeking) when the last of a write request's data has been transferred

to the disk bu�er/cache.

Write hit stop prefetch: Boolean [1 or 0] specifying whether or not the disk should discontinue the

read-ahead of a previous request when a write hit in the cache occurs. Doing so allows the new write request's

data to begin travelling to the disk more quickly, at the expense of some prefetching activity.

Read directly to bu�er: Boolean [1 or 0] specifying whether or not space for a sector must be available

in the bu�er/cache prior to the start of the sector read. If false (0), a separate sector bu�er is assumed to be

available for use by the media-reading electronics, implying that the data for a sector is transferred to the

main bu�er/cache only after it has been completely read (and any error-correction algorithms completed).

Immed transfer partial hit: Boolean [1 or 0] specifying whether or not a read request whose initial

(but not all) data are present in the disk bu�er/cache has that data immediately transferred over the bus.

If false (0), the data are immediately transferred only if the amount of requested data that are present in

16

the bu�er/cache exceed the high water mark (see above).

The following eight parameters specify per-request command processing overheads that are applied after

the request arrives at the disk and before any corresponding bus or read/write head activity is initiated.

Values for these parameters can be determined empirically (see [Worthington95]) or via some form of doc-

umentation (e.g., technical manual or disk descriptor �le). An additional �fteen parameters are included

for use in high-precision disk simulation. Obtaining appropriate values for these parameters may require

access to additional (e.g., con�dential) documentation or detailed analysis of a given model of disk drive in

a tightly-controlled environment.

Read hit over. after read: Float [nonnegative milliseconds] specifying the processing time for a read

request that hits in the on-board cache when the immediately previous request was also a read. This delay

is applied before any data are transferred from the disk bu�er/cache.

Read hit over. after write: Float [nonnegative milliseconds] specifying the processing time for a read

request that hits in the on-board cache when the immediately previous request was a write. This delay is

applied before any data are transferred from the disk bu�er/cache.

Read miss over. after read: Float [nonnegative milliseconds] specifying the processing time for a

read request that misses in the on-board cache when the immediately previous request was also a read. This

delay is applied before any mechanical positioning delays or data transfer from the media.

Read miss over. after write: Float [nonnegative milliseconds] specifying the processing time for a

read request that misses in the on-board cache when the immediately previous request was a write. This

delay is applied before any mechanical positioning delays or data transfer from the media.

Write hit over. after read: Float [nonnegative milliseconds] specifying the processing time for a write

request that \hits" in the on-board cache (i.e., completion will be reported before data reaches media) when

the immediately previous request was a read. This delay is applied before any mechanical positioning delays

and before any data are transferred to the disk bu�er/cache.

Write hit over. after write: Float [nonnegative milliseconds] specifying the processing time for a write

request that \hits" in the on-board cache (i.e., completion will be reported before data reaches media) when

the immediately previous request was also a write. This delay is applied before any mechanical positioning

delays and before any data are transferred to the disk bu�er/cache.

Write miss over. after read: Float [nonnegative milliseconds] specifying the processing time for a

write request that \misses" in the on-board cache (i.e., completion will be reported only after data reaches

media) when the immediately previous request was a read. This delay is applied before any mechanical

positioning delays and before any data are transferred to the disk bu�er/cache.

Write miss over. after write: Float [nonnegative milliseconds] specifying the processing time for a

write request that \misses" in the on-board cache (i.e., completion will be reported only after data reaches

media) when the immediately previous request was also a write. This delay is applied before any mechanical

positioning delays and before any data are transferred to the disk bu�er/cache.

Read completion overhead: Float [nonnegative milliseconds] specifying the processing time for com-

pleting a read request . This overhead is applied just before the completion message is sent over the

17

(previously acquired) bus and occurs in parallel with any background disk activity (e.g., prefetching or

preseeking).

Write completion overhead: Float [nonnegative milliseconds] specifying the processing time for com-

pleting a write request . This overhead is applied just before the completion message is sent over the

(previously acquired) bus and occurs in parallel with any background disk activity (e.g., preseeking).

Data preparation overhead: Float [nonnegative milliseconds] specifying the additional processing

time necessary when preparing to transfer data over the bus (for either reads or writes). This command

processing overhead is applied after obtaining access to the bus (prior to transferring any data) and occurs

in parallel with any ongoing media access.

First reselect overhead: Float [nonnegative milliseconds] specifying the processing time for recon-

necting to (or \reselecting") the controller for the �rst time during the current request.4 This command

processing overhead is applied after the disk determines that reselection is appropriate (prior to attempting

to acquire the bus) and occurs in parallel with any ongoing media access.

Other reselect overhead: Float [nonnegative milliseconds] specifying the processing time for recon-

necting to the controller after the �rst time during the current request (i.e., the second reselection, the third

reselection, etc.). This command processing overhead is applied after the disk determines that reselection is

appropriate (prior to attempting to acquire the bus) and occurs in parallel with any ongoing media access.

Read disconnect afterread: Float [nonnegative milliseconds] specifying the processing time for a

read request that disconnects from the bus when the previous request was also a read. This command

processing overhead is applied after the disk determines that disconnection is appropriate (prior to requesting

disconnection from the bus) and occurs in parallel with any ongoing media access.

Read disconnect afterwrite: Float [nonnegative milliseconds] specifying the processing time for a

read request that disconnects from the bus when the previous request was a write request. This command

processing overhead is applied after the disk determines that disconnection is appropriate (prior to requesting

disconnection from the bus) and occurs in parallel with any ongoing media access.

Write disconnect overhead: Float [nonnegative milliseconds] specifying the processing time for a write

request that disconnects from the bus (which generally occurs after the data are transferred from the host

to the on-board bu�er/cache). This command processing overhead is applied after the disk determines that

disconnection is appropriate (prior to requesting disconnection from the bus) and occurs in parallel with any

ongoing media access.

Extra write disconnect: Boolean [1 or 0] specifying whether or not the disk disconnects from the

bus after processing the write command but before any data have been transferred over the bus into the

disk bu�er/cache. Although there are no performance or reliability advantages to this behavior, it has been

observed in at least one production SCSI disk and has therefore been included in DiskSim. If true (1), the

next �ve parameters con�gure additional overhead values speci�cally related to this behavior.

4Reselection implies that the disk has explicitly disconnected from the bus at some previous point while servicing the current

request and is now attempting to reestablish communication with the controller. Disconnection and subsequent reselection result

in some additional command processing and protocol overhead, but they may also improve the overall utilization of bus resources

shared by multiple disks (or other peripherals).

18

Extradisc command overhead: Float [nonnegative milliseconds] specifying the processing time for

a write request that disconnects from the bus before transferring any data to the disk bu�er/cache. This

overhead is applied before requesting disconnection from the bus and before any mechanical positioning

delays. This parameter (when enabled) functions in place of the above \Write over." parameters.

Extradisc disconnect overhead: Float [nonnegative milliseconds] specifying the additional processing

time for a write request that disconnects from the bus before transferring any data to the disk bu�er/cache.

This overhead is also applied before requesting disconnection from the bus, but it occurs in parallel with

any mechanical positioning delays. This parameter (when enabled) functions in place of the above \Write

disconnect" parameter for initial write disconnections.

Extradisc inter-disconnect delay: Float [nonnegative milliseconds] specifying the time between the

initial disconnect from the bus and the subsequent reconnection attempt for a write request that disconnects

from the bus before transferring any data to the disk bu�er/cache. It occurs in parallel with any mechanical

positioning delays.

Extradisc 2nd disconnect overhead: Float [nonnegative milliseconds] specifying the processing time

for a write request that disconnects from the bus after data has been transferred but previously had discon-

nected without transferring any data to the disk bu�er/cache. This command processing overhead is applied

after the disk determines that disconnection is appropriate (prior to requesting disconnection from the bus)

and occurs in parallel with any ongoing media access. This parameter (when enabled) functions in place of

the above \Write disconnect" parameter for non-initial write disconnections.

Extradisc seek delta: Float [nonnegative milliseconds] specifying the additional delay between the

completion of the initial command processing overhead and the initiation of any mechanical positioning for

a write request that disconnects from the bus before transferring any data to the disk bu�er/cache. This

delay occurs in parallel with ongoing bus activity and related processing overheads.

Minimum seek delay: Float [nonnegative milliseconds] specifying the minimum media access delay

for a nonsequential write request. That is, a nonsequential write request (after any command processing

overheads) must wait at least this amount of time before accessing the disk media.

LBN-to-PBN mapping scheme: Integer [0, 1] specifying the type of LBN-to-PBN mapping used by

the disk. 0 indicates that the conventional mapping scheme is used: LBNs advance along the 0th track of

the 0th cylinder, then along the 1st track of the 0th cylinder, thru the end of the 0th cylinder, then to the

0th track of the 1st cylinder, and so forth. 1 indicates that the conventional mapping scheme is modi�ed

slightly, such that cylinder switches do not involve head switches. Thus, after LBNs are assigned to the last

track of the 0th cylinder, they are assigned to the last track of the 1st cylinder, the next-to-last track of

the 1st cylinder, thru the 0th track of the 1st cylinder. LBNs are then assigned to the 0th track of the 2nd

cylinder, and so on.

Sparing scheme used: Integer [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10] specifying the type of sparing used by

the disk. Later parameters determine where spare space is allocated. 0 indicates that no spare sectors are

allocated. 1 indicates that entire tracks of spare sectors are allocated at the \end" of some or all zones (sets

of cylinders). 2 indicates that spare sectors are allocated at the \end" of each cylinder. 3 indicates that

spare sectors are allocated at the \end" of each track. 4 indicates that spare sectors are allocated at the

\end" of each cylinder and that slipped sectors do not utilize these spares (more spares are located at the

19

\end" of the disk). 5 indicates that spare sectors are allocated at the \front" of each cylinder. 6 indicates

that spare sectors are allocated at the \front" of each cylinder and that slipped sectors do not utilize these

spares (more spares are located at the \end" of the disk). 7 indicates that spare sectors are allocated at

the \end" of the disk. 8 indicates that spare sectors are allocated at the \end" of each range of cylinders.

9 indicates that spare sectors are allocated at the \end" of each zone. 10 indicates that spare sectors are

allocated at the \end" of each zone and that slipped sectors do not use these spares (more spares are located

at the \end" of the disk).

Rangesize for sparing: Integer [1 or higher] specifying the range (e.g., of cylinders) over which spares

are allocated and maintained. Currently, this value is relevant only for disks that use "sectors per cylinder

range" sparing schemes.

Number of bands: Integer [positive] specifying the number of zones (or bands) into which the set of

disk cylinders is partitioned. Each zone (identi�ed by an increasing positive integer) is described by the

following nine parameters. A header line of the format \Band #N" precedes the parameters for each zone,

where \N" is the zone identi�er.

First cylinder number: Integer [nonnegative] specifying the �rst physical cylinder in the zone.

Last cylinder number: Integer [nonnegative] specifying the last physical cylinder in the zone.

Blocks per track: Integer [positive] specifying the number of sectors (independent of logical-to-physical

mappings) on each physical track in the zone.

O�set of �rst block: Integer [nonnegative sectors] specifying the physical o�set of the �rst logical

sector in the zone. Physical sector 0 of every track is assumed to begin at the same angle of rotation.

Empty space at zone front: Integer [nonnegative sectors] specifying the size of the \management

area" allocated at the beginning of the zone for internal data structures. This area can not be accessed

during normal activity and is not part of the disk's logical-to-physical mapping.

Skew for track switch: Integer [nonnegative] specifying the number of physical sectors that are skipped

when assigning logical block numbers to physical sectors at a track crossing point. Track skew is computed

by the manufacturer to optimize sequential access.

Skew for cylinder switch: Integer [nonnegative] specifying the number of physical sectors that are

skipped when assigning logical block numbers to physical sectors at a cylinder crossing point. Cylinder skew

is computed by the manufacturer to optimize sequential access.

Number of spares: Integer [nonnegative] specifying the number of spare storage locations (sectors or

tracks, depending on the sparing scheme chosen) allocated per region of coverage (track, cylinder, or zone,

depending on the sparing scheme chosen). For example, if the sparing scheme is 1, indicating that spare

tracks are allocated at the end of the zone, the value of this parameter indicates how many spare tracks have

been allocated for this zone.

Number of slips: Integer [nonnegative] specifying the number of previously detected defective media

locations (sectors or tracks, depending upon the sparing scheme chosen) that were skipped-over (or \slipped")

when the logical-to-physical mapping was last created. Subsequent lines in the parameter �le indicate exactly

which media locations were slipped. Each such line has the form \Slip X" where X indicates the slipped

20

(defective) location (sector or track, depending upon the sparing scheme chosen).

Number of defects: Integer [nonnegative] specifying the number of previously detected defective media

locations (sectors or tracks, depending upon the sparing scheme chosen) that have been remapped to alternate

physical locations. Subsequent lines in the parameter �le describe how the logical-to-physical mapping has

changed as a result. Each such line has the form \Defect X Y" where X indicates the original (defective)

location and Y indicates the replacement location. (Note that X and Y will both be either a physical sector

number or a physical track number, depending on the sparing scheme chosen.)

3.2.6 Simple Disks

The simpledisk module provides a simpli�ed model of a storage device that has a constant access time. It

was implemented mainly as an example and test for new storage device types in DiskSim.

Number of blocks: Integer [positive] specifying the capacity of the simpledisk in blocks.

Access time (in msecs): Float [nonnegative milliseconds] specifying the �xed per-request access time

(i.e., actual mechanical activity is not simulated).

Command overhead (in msecs): Float [nonnegative milliseconds] specifying a per-request processing

overhead that takes place immediately after the arrival of a new request at the disk.

Bus transaction latency (in msecs): Float [nonnegative milliseconds] specifying the delay involved

at the simpledisk for each message that it transfers.

Bulk sector transfer time: Float [nonnegative milliseconds] specifying the time necessary to transfer

a single 512-byte block to, from or through the controller. Transferring one block over the bus takes the

maximum of this time, the block transfer time speci�ed for the bus itself, and the block transfer time speci�ed

for the component on the other end of the bus transfer.

Never disconnect: Boolean [1 or 0] specifying whether or not the simpledisk retains ownership of the

bus during the entire processing and servicing of a request (i.e., from arrival to completion). If false (0), the

simpledisk may release the bus whenever it is not needed for transferring data or control information.

Print stats for simpledisk: Boolean [1 or 0] specifying whether or not to report statistics for the

simpledisk.

Max queue length at simpledisk: Integer [positive] specifying the maximum number of requests that

the simpledisk can have in service or queued for service at any point in time. During initialization, other

components request this information and respect it during simulation.

The next thirteen parameters in the parameter �le con�gure the queue/scheduler subcomponent of the

simpledisk speci�cation and are described in section 3.2.7.

3.2.7 Queue/Scheduler Subcomponents

Scheduling policy: Integer [1{21] specifying the primary scheduling algorithm employed for selecting the

next request to be serviced. A large set of algorithms have been implemented, ranging from common choices

21

like First-Come-First-Served (FCFS) and Shortest-Seek-Time-First (SSTF) to new algorithms like Shortest-

Positioning-(w/Cache)-Time-First (described in [Worthington94]). The full list of mappings from values to

corresponding algorithms can be found at the top of the source �le named \disksim ioqueue.c".

Cylinder mapping strategy: Integer [0{6] specifying the level of detail of physical data layout informa-

tion available to the scheduler. 0 indicates that the only information available to the scheduler is the logical

block numbers speci�ed in the individual requests. 1 indicates that the scheduler has access to information

about zone boundaries, the number of physical sectors/zone, and the number of physical sectors/track in

each zone. 2 indicates that the scheduler also has access to the layout of spare sectors or tracks in each zone.

3 indicates that the scheduler also has access to the list of any slipped sectors/tracks. 4 indicates that the

scheduler also has access to the list of any remapped sectors/tracks, thereby providing an exact data layout

(logical-to-physical mapping) for the disk. 5 indicates that the scheduler uses the cylinder number given

to it with the request, allowing experiments with arbitrary mappings. In particular, some traces include

the cylinder number as part of the request record. 6 indicates that the scheduler only has access to (an

approximation of) the mean number of sectors per cylinder. The value used in this case is that speci�ed in

the disk parameter \Avg. sectors per cylinder".

Write initiation delay: Float [nonnegative milliseconds] specifying an approximation of the write

request processing overhead(s) performed prior to any mechanical positioning delays. This value is used by

scheduling algorithms that select the order of request service based (at least in part) on expected positioning

delays.

Read initiation delay: Float [nonnegative milliseconds] specifying an approximation of the read request

processing overhead(s) performed prior to any mechanical positioning delays. This value is used by scheduling

algorithms that select the order of request service based (at least in part) on expected positioning delays.

Sequential stream scheme: Integer comprising a Boolean Bit�eld specifying the type of sequential

stream detection and/or request concatenation performed by the scheduler (see [Worthington95a] for addi-

tional details). Bit 0 indicates whether or not sequential read requests are concatenated by the scheduler.

Bit 1 indicates whether or not sequential write requests are concatenated by the scheduler. Bit 2 indicates

whether or not sequential read requests are always scheduled together. Bit 3 indicates whether or not se-

quential write requests are always scheduled together. Bit 4 indicates whether or not sequential requests of

any kind (e.g., interleaved reads and writes) are always scheduled together.

Maximum concat size: Integer [nonnegative sectors] specifying the maximum request size resulting

from concatenation of sequential requests. That is, if the sum of the sizes of the two requests to be concate-

nated exceeds this value, the concatenation will not be performed by the scheduler.

Overlapping request scheme: Integer [0-2] specifying the scheduler's policy for dealing with overlap-

ping requests. 0 indicates that overlapping requests are treated as independent. 1 indicates that requests

that are completely overlapped by a completed request that arrived after them are subsumed by that request.

2 augments this policy by also allowing read requests that arrive after the completed overlapping request

to be subsumed by it, since the necessary data are known. This support was included for experiments in

[Ganger95] in order to partially demonstrate the correctness problems of open workloads (e.g., feedback-free

request traces). In most real systems, overlapping requests are almost never concurrently outstanding.

Sequential stream di� maximum: Integer [nonnegative sectors] specifying the maximum distance

22

between two \sequential" requests in a sequential stream. This allows requests with a small stride or an

occasional \skip" to still be considered for inclusion in a sequential stream.

Scheduling timeout scheme: Integer [0, 1, or 2] specifying the type of multi-queue timeout scheme

implemented. 0 indicates that requests are not moved from the base queue to a higher-priority queue because

of excessive queueing delays. 1 indicates that requests in the base queue whose queueing delays exceed the

speci�ed timeout value (see below) will be moved to one of two higher-priority queues (the timeout queue or

the priority queue) based on the scheduling priority scheme (see below). 2 indicates that requests in the base

queue whose queueing delays exceed half of the speci�ed timeout value (see below) will be moved to the next

higher priority queue (the timeout queue). Furthermore, such requests will be moved to the highest priority

queue (the priority queue) if their total queueing delays exceed the speci�ed timeout value (see below).

Timeout time/weight: Overloaded Float [nonnegative] specifying either the timeout value (in seconds)

for excessive queueing delays or the time/aging factor used in calculating request priorities for various age-

sensitive scheduling algorithms. The time/aging factor is additive for some algorithms and multiplicative for

others.

Timeout scheduling: Integer [1{21] specifying the scheduling algorithm employed for selecting the

next request to be serviced from the timeout queue. The options are the same as those available for the

\Scheduling policy" parameter above.

Scheduling priority scheme: Boolean [1 or 0] specifying whether or not requests
agged as high priority

(i.e., time-critical or time-limited requests [Ganger93]) are automatically placed in the highest-priority queue

(the priority queue).

Priority scheduling: Integer [1{21] specifying the scheduling algorithm employed for selecting the

next request to be serviced from the priority queue. The options are the same as those available for the

\Scheduling policy" parameter above.

3.2.8 Disk Block Cache Subcomponents

The following parameters con�gure the generic disk block cache subcomponent, which is currently only used

in the intelligent controller type (3). The disk module has its own cache submodule, which is con�gured by

disk parameters described in section 3.2.5.

Cache size (in 512B blks): Integer [nonnegative 512B blocks] specifying the total size of the cache

Cache segment count (SLRU): Integer [positive] specifying the number of segments for the segmented-

LRU algorithm [Karedla94] if it is speci�ed as the cache replacement algorithm (see below). Note that the

value has a hard-coded upper limit (necessary for allocating certain static arrays) that is set to 10 in the

current release of DiskSim.

Cache line size (in blks): Integer [nonegative 512B blocks] specifying the cache line size (i.e., the unit

of cache space allocation/replacement).

Cache blocks per bit: Integer [positive 512B blocks] specifying the number of blocks covered by

each \present" bit and each \dirty" bit. The value must divide the cache line size evenly. Higher values

23

(i.e., coarser granularities) can result in increased numbers of installation reads (i.e., �ll requests required to

complete partial-line writes [Otoole94]).

Cache lock granularity: Integer [positive 512B blocks] specifying the number of blocks covered by

each lock. The value must divide the cache line size evenly. Higher values (i.e., coarser granularities) can

lead to increased lock contention.

Cache shared read lock: Boolean [1 or 0] specifying whether or not read locks are sharable. If false (0),

read locks are exclusive.

Cache max request size: Integer [nonnegative] specifying the maximum request size to be served by

the cache. This value does not actually a�ect the simulated cache's behavior. Rather, higher-level system

components (e.g., the device driver in DiskSim) acquire this information at initialization time and break up

larger requests to accommodate it. 0 indicates that there is no maximum request size.

Cache replacement policy: Integer [1{4] specifying the line replacement policy. 1 indicates First-In-

First-Out (FIFO), 2 indicates segmented-LRU [Karedla94], 3 indicates random replacement, and 4 indicates

Last-In-First-Out (LIFO).

Cache allocation policy: Integer [0 or 1] specifying the line allocation policy. 0 indicates that the

cache replacement policy is strictly followed; if the selected line is dirty, the allocation waits for the required

write-back request to complete. 1 indicates that \clean" lines are considered for replacement prior to \dirty"

lines (and background write-back requests are issued for each dirty line considered).

Cache write scheme: Integer [1, 2, or 3] specifying the policy for handling write requests. 1 indicates

that new data are always synchronously written to the backing store before indicating completion. 2 indicates

a write-through scheme where requests are immediately initiated for writing out the new data to the backing

store, but the original write requests are considered complete as soon as the new data is cached. 3 indicates

a write-back scheme where completions are reported immediately and dirty blocks are held in the cache for

some time before being written out to the backing store.

Cache
ush policy: Integer [0 or 1] specifying the policy for
ushing dirty blocks to the backing

store (assuming a write-back scheme for handling write requests). 0 indicates that dirty blocks are written

back \on demand" (i.e., only when the allocation/replacement policy needs to reclaim them). 1 indicates

write-back requests are periodically initiated for all dirty cache blocks.

Cache
ush period: Float [nonnegative milliseconds] specifying the time between periodic write-backs

of all dirty cache blocks (assuming a periodic
ush policy).

Cache
ush idle delay: Float [-1.0 or nonnegative milliseconds] specifying the amount of contiguous

idle time that must be observed before background write-backs of dirty cache blocks are initiated. Any

front-end request processing visible to the cache resets the idle timer. -1.0 indicates that idle background

ushing is disabled.

Cache
ush max line cluster: Integer [positive] specifying the maximum number of cache lines that

can be combined into a single write-back request (assuming \gather" write support).

Cache prefetch type (read): Integer [0{3] specifying the prefetch policy for handling read requests.

Prefetching is currently limited to extending requested �ll accesses to include other portions of requested

24

lines. 0 indicates that prefetching is disabled. 1 indicates that unrequested data at the start of a requested

line are prefetched. 2 indicates that unrequested data at the end of a requested line are prefetched. 3 indicates

that any unrequested data in a requested line are prefetched (i.e., full line �lls only).

Cache prefetch type (write): Integer [0{3] specifying the prefetch policy for handling installation

reads (caused by write requests). Prefetching is currently limited to extending the requested �ll accesses

to include other portions of the requested lines. 0 indicates that prefetching is disabled. 1 indicates that

unrequested data at the start of a requested line are prefetched. 2 indicates that unrequested data at the end

of a requested line are prefetched. 3 indicates that any unrequested data in a requested line are prefetched

(i.e., full line �lls only).

Cache line-by-line fetches: Boolean [0 or 1] indicating whether or not every requested cache line

results in a separate �ll request. If false (0), multi-line �ll requests can be generated when appropriate.

Cache scatter/gather max: Integer [nonnegative] specifying the maximum number of non-contiguous

cache lines (in terms of their memory addresses) that can be combined into a single disk request, assuming

that the correspond to contiguous disk addresses. (DiskSim currently treats every pair of cache lines as

non-contiguous in memory.) 0 indicates that any number of lines can be combined into a single request

(i.e., there is no maximum).

3.3 I/O Subsystem Interconnection Speci�cations

The allowed interconnections are roughly independent of the components themselves except that a device

driver must be at the \top" of any subsystem and storage devices must be at the \bottom." Exactly one

or two controllers must be between the device driver and each disk, with a bus connecting each such pair of

components along the path from driver to disk. Each disk or controller can only be connected to one bus

from the host side of the subsystem. A bus can have no more than 15 disks or controllers attached to it.

A controller can have no more than 4 back-end buses (use of more than one is not well tested). The one

allowable device driver is connected to the top-level bus.

The speci�cation of the physical component organization occurs in a speci�c order: device driver, con-

trollers, buses.

The device driver's interconnections are speci�ed by three �xed lines in the parameter �le:

Driver #1: the �rst (and only) device driver.

of connected buses: Integer [must be 1] specifying that the top-level bus is connected to the device

driver.

Connected buses: Integer [positive] specifying the bus number (bus numbers are assigned in ascending

order of the bus speci�cations, starting with \1" for the �rst speci�ed bus) of the top-level bus. The top-level

bus should be a \shared" bus (i.e., bus type 2).

The necessary controller interconnections are described by one or more sets of parameters:

Controller #X: where X is an Integer [positive] or String [\III{III"] specifying the controller or the

range of controllers covered by this speci�cation. A range of controller numbers can be speci�ed using the

25

formatted String, which contains two Integers [positive (III)] separated by a dash. Controller numbers are

assigned in ascending order of the controller speci�cations, starting with \1" for the �rst speci�ed controller.

of connected buses: Integer [positive] specifying the number of buses connected to each of the

controllers covered by this speci�cation.

For each attached bus, one instance of the following line must be present in the speci�cation.

Connected buses: Integer [positive] or String [#�III] specifying the bus or buses connected to each of

the controllers covered by this speci�cation. If the String format is used, the Integer value (�III) following
the \#" in the String is added to the corresponding controller number to determine the bus number (for

each controller). For example, if the �rst line of a controller parameter set speci�ed \Controller #5{10"

and the value of this line was \#+2", bus 7 would be attached to controller 5, bus 8 would be attached to

controller 6, and so on. If more than one controller is described by this speci�cation, then the String format

must be used.

The necessary bus interconnections are described by one or more sets of parameters:

Bus #X: where X is an Integer [positive] or String [\III{III"] specifying the bus or the range of buses

covered by this speci�cation. A range of bus numbers can be speci�ed using the formatted String, which

contains two Integers [positive (III)] separated by a dash. Bus numbers are assigned in ascending order of

the bus speci�cations, starting with \1" for the �rst speci�ed bus.

of utilized slots: Integer [positive] specifying the number of devices and/or controllers connected to

each of the buses covered by this speci�cation.

One or more instances of the following line must be present in the parameter �le in order to specify the

attachment of devices and/or controllers to the bus or buses covered by this speci�cation.

Slots: Two Strings, the �rst String [\Controllers" or \Devices"] specifying whether the current line

refers to attached controllers or devices, and the second String [\III", \III{III", or \#�III"] specifying
which instances of the devices or controllers are connected to the bus(es) covered by this speci�cation. The

second string has three potential formats: (1) an Integer [positive (III)] specifying a component number,

(2) two Integers [positive (III)] separated by a dash, specifying a range of component numbers (e.g., \5{8"),

or (3) a \#" followed by an Integer value (�III) that is added to the corresponding bus number to determine
the attached component number. For example, if the �rst line of a bus parameter set speci�ed \Bus #5{10"

and the String values on this line were \Devices" and \#+2", device 7 would be attached to bus 5, device 8

would be attached to bus 6, and so on. If more than one bus is described by this speci�cation, then the third

format must be used.

3.4 Rotational Synchronization of Devices

DiskSim can be con�gured to simulate rotationally synchronized devices via the following parameters. Rota-

tionally synchronized devices are always at exactly the same rotational o�set, which requires that they begin

the simulation at the same o�set and rotate at the same speed. Non-synchronized devices are assigned a

random initial rotational o�set at the beginning of the simulation and are individually assigned a rotational

speed based on the appropriate device parameters.

26

Number of synchronized sets: Integer [nonnegative] specifying the number of separate sets of devices

that are rotationally synchronized.

One instance of the following pair of parameters must be present in the parameter �le for each synchro-

nized set.

Number of devices in set #X: Integer [positive] specifying the number of devices in the Xth set,

where X is an Integer [positive] corresponding to the number of the set being speci�ed. The sets must be

described in ascending order, starting with \1".

Synchronized devices: String [\III{III"] specifying the range of devices to be synchronized. Two

Integers [positive (III)] in the String are separated by a dash and specify the �rst and last devices of the set

(in order of con�guration speci�cation, with the �rst speci�ed device being \1").

3.5 Disk Array Data Organizations

DiskSim can simulate a variety of logical data organizations [Ganger94], including striping and various RAID

architectures. Although DiskSim is organized so as to allow for such organizations both at the system-

level (i.e., at front end of the device drivers) and at the controller-level, only system-level organizations are

supported in the �rst released version. Each logical organization is con�gured with the following parameters:

Organization #X: Four Strings specifying the general description of the Xth logical organization of

this speci�cation, where X is an Integer [positive] corresponding to the number of the data organization

being speci�ed. The sets must be described in ascending order, starting with \1".

� The �rst String [\Array" or \Parts"] speci�es how the logical data organization is addressed. \Array"

indicates that there is a single logical device number for the entire logical organization. \Parts"

indicates that back-end storage devices are addressed as though there were no logical organization,

and requests are re-mapped appropriately.

� The second String [\Asis", \Striped", \Random", or \Ideal"] speci�es the data distribution scheme

(which is orthogonal to the redundancy scheme). \Asis" indicates that no re-mapping occurs. \Striped"

indicates that data are striped over the organization members. \Random" indicates that a random

disk is selected for each request. \Ideal" indicates that an idealized data distribution (from a load

balancing perspective) should be simulated by assigning requests to disks in a round-robin fashion.

Note that the last two schemes do not model real data layouts. In particular, two requests to the same

block will often be sent to di�erent devices. However, these data distribution schemes are useful for

investigating various load balancing techniques [Ganger93a].

� The third String [\Noredun", \Shadowed", \Parity disk", or \Parity rotated"] speci�es the redun-

dancy scheme (which is orthogonal to the data distribution scheme). \Noredun" indicates that no

redundancy is employed. \Shadowed" indicates that one or more replicas of each data disk are main-

tained. \Parity disk" indicates that one parity disk is maintained to protect the data of the other

organization members. \Parity rotated" indicates that one disk's worth of data (spread out across all

disks) are dedicated to holding parity information that protects the other N-1 disks' worth of data in

an N-disk organization.

27

� The fourth String [\Whole" or \Partial"] speci�es whether the data organization's component members

are entire disks (\Whole") or partial disks (\Partial"). Only the former option is supported in the �rst

released version of DiskSim.

Number of devices: Integer [positive] specifying the number of disks comprising the logical organiza-

tion.

Devices: String [\III{III"] specifying the range of disks comprising the logical organization. Two Integers

[positive (III)] in the String are separated by a dash and specify the �rst and last disks in the organization

(in order of con�guration speci�cation, with the �rst speci�ed disk being \1").

High-level device number: Integer [positive] specifying the device number used to address the logical

organization if \Array" addressing is speci�ed above. Otherwise, this parameter is ignored.

Stripe unit (in sectors): Integer [nonnegative 512B sectors] specifying the stripe unit size. 0 indicates

�ne-grained striping (e.g., bit or byte striping), wherein all data disks in the logical organization contain an

equal fraction of every addressable data unit.

Synch writes for safety: Boolean [1 or 0] specifying whether or not an explicit e�ort should be made

to do the N+1 writes of a parity-protected logical organization at \the same time" when handling a front-

end write request with the read-modify-write (RMW) approach to parity computation. If true (1), then all

reading of old values (for computing updated parity values) must be completed before the set of back-end

writes is issued. If false (0), then each back-end write is issued immediately after the corresponding read

completes (perhaps o�ering improved performance).

Number of copies: Integer [positive] specifying the number of copies of each data disk if the logical

organization employs \Shadowed" redundancy. Otherwise, this parameter is ignored.

Copy choice on read: Integer [1{6] specifying the policy used for selecting which disk (from a set

of \Shadowed" replicas) should service a given read request (since any of them can potentially do so).

1 indicates that all read requests are sent to a single primary replica. 2 indicates that one of the replicas

should be randomly selected for each read request. 3 indicates that requests should be assigned to replicas

in a round-robin fashion. 4 indicates that the replica that would incur the shortest seek distance should be

selected and ties are broken by random selection. 5 indicates that the replica that has the shortest request

queue should be selected and ties are broken by random selection. 6 indicates that the replica that has the

shortest request queue should be selected and ties are broken by policy 4 (see above). This parameter is

ignored if \Shadowed" replication is not chosen.

RMW vs. reconstruct: Float [0.0-1.0] specifying the breakpoint in selecting Read-Modify-Write

(RMW) parity updates (verses complete reconstruction) as the fraction of data disks that are updated. If

the number of disks updated by the front-end write request is smaller than the breakpoint, then the RMW of

the \old" data, \old" parity, and \new" data is used to compute the new parity. Otherwise, the unmodi�ed

data in the a�ected stripe are read from the corresponding data disks and combined with the new data to

calculate the new parity. This parameter is ignored unless some form of parity-based replication is chosen.

Parity stripe unit: Integer [nonnegative 512B sectors] specifying the stripe unit size used for the

\Parity rotated" redundancy scheme. This parameter is ignored for other schemes. The parity stripe unit

28

size does not have to be equal to the stripe unit size, but one must be a multiple of the other. Use of non-equal

stripe unit sizes for data and parity has not been thoroughly tested in the current release of DiskSim.

Parity rotation type: Integer [1{4] specifying how parity is rotated among the disks of the logical

organization. The four options, as described in [Lee91], are left symmetric (1), left asymmetric (2), right

asymmetric (3), and right symmetric (4). This parameter is ignored unless \Parity rotated" redundancy is

chosen.

The next four parameters con�gure DiskSim's per-logorg mechanism for collecting information about

instantaneous per-device queue lengths at regular intervals.

Time stamp interval: Float [nonnegative milliseconds] specifying the interval between \time stamps".

A value of 0.0 for this parameter disables the time stamp mechanism.

Time stamp start time: Float [nonnegative milliseconds] specifying the simulated time (relative to

the beginning of the simulation) of the �rst time stamp.

Time stamp stop time: Float [nonnegative milliseconds] specifying the simulated time (relative to the

beginning of the simulation) of the last time stamp.

Time stamp �le name: String specifying the name of the output �le to contain a log of the instan-

taneous queue lengths of each of the organization's back-end devices at each time stamp. Each line of the

output �le corresponds to a single time stamp and contains the queue lengths of each device separated by

white space. A value of \0" or of \null" disables this feature (as does disabling the time stamp mechanism).

3.6 Process-Flow Parameters

PRINTED PROCESS-FLOW STATISTICS: This section contains a series of Boolean [1 or 0] param-

eters that specify whether or not particular groups of statistics are reported. The di�erent print-control

values are identi�ed with individual statistics in section 5.

Number of processors: Integer [positive] specifying the number of processors used by the simple

system-level model. These processors (and, more generally, DiskSim's system-level model) are only used for

the synthetic generation module.

Process-Flow Time Scale: Float [nonnegative] specifying a multiplicative scaling factor for compu-

tation times \executed" by a simulated processor. For example, 2.0 doubles each computation time, and

0.5 halves each computation time.

The various parameters involved with con�guring the synthetic workload generation module are described

in section 4.2.

29

4 Input workloads: traces and synthetic workloads

DiskSim can be exercised with I/O requests in several ways, including external traces, internally-generated

synthetic workloads, and interactions with a containing simulation environment (e.g., a full system simulator).

This section describes each of these options.

4.1 Traces

DiskSim can accept traces in several formats, and new formats can be added with little diÆculty. This

subsection describes the default input format and brie
y describes how to add support for new trace formats.

The DiskSim 1.0 distribution supports the default format (\ascii"), a validation trace format (\validate"), the

raw format (\raw") of the disk request traces described in [Ganger93, Ganger93a], and the raw format (\hpl",

or \hpl2" if the trace �le header has been stripped) of the disk request traces described in [Ruemmler93].

4.1.1 Default format

The default input format is a simple ASCII stream (or �le), where each line contains values for �ve parameters

(separated by white space) describing a single disk request. The �ve parameters are:

1. Request arrival time: Float [nonnegative milliseconds] specifying the time the request \arrives"

relative to the start of the simulation (at time 0.0). Requests must appear in the input stream in

ascending time order.

2. Device number: Integer specifying the device number (i.e., the storage component that the request

accesses). The device mappings (see section 3), if any, are applied to this value.

3. Block number: Integer [nonnegative] specifying the �rst device address of the request. The value is

speci�ed in the appropriate access unit of the logical device in question, which may be modi�ed by the

device mappings (see section 3).

4. Request size: Integer [positive] specifying the size of the request in device blocks (i.e., the access unit

of the logical device in question).

5. Request
ags: Hex Integer comprising a Boolean Bit�eld specifying additional information about the

request. For example, bit 0 indicates whether the request is a read (1) or a write (0). Other bits specify

information that is most appropriate to a full system simulation environment (e.g., request priority).

Valid bit�eld values are listed in \disksim global.h".

An example trace in this format is included with the distribution.

4.1.2 Adding support for new trace formats

Adding support for a new trace format requires only a few steps:

30

1. Add a new trace format constant to \disksim global.h".

2. Select a character string to represent the trace format on the command line. Add a format name

comparison to \iotrace set format" in \disksim iotrace.c".

3. Create a procedure (\iotrace XXXX get ioreq event") in \disksim iotrace.c" to read a single disk re-

quest description from an input trace of the new format (\XXXX") and construct a disk request event in

the internal format (described brie
y below). The functions \iotrace read [char,short,int32]" can sim-

plify this process. Incorporate the new function into main switch statement in \iotrace get ioreq event".

The internal DiskSim request structure (at request arrival time) is not much more complicated than

the default (ascii) trace format. It contains \time", \devno", \blkno", \bcount", and \
ags" �elds

that correspond to the �ve non-auxiliary �elds described above. The other �elds do not have to be

initialized, except that \opid" should be zeroed. See \iotrace ascii get ioreq event" for an example.

4. If the trace �le has an informational header (useful or otherwise), then create a procedure (\io-

trace XXXX initialize �le") in \disksim iotrace.c" and add it into the if/else statement in \iotrace initialize �le".

4.2 Synthetic workloads

DiskSim includes a simple synthetic workload generating module that can be used to drive storage subsystem

simulations. The parameter �le speci�es the number of generators (similar to processes) and the character-

istics of the workloads generated by each. Each synthetic generator \executes" as a process in a very simple

system-level model, issuing I/O requests after periods of \think time" and, when appropriate, waiting for

them to complete. This module can be con�gured to generate a wide range of synthetic workloads, both

with respect to the disk locations accessed and the request arrival times.

4.2.1 Con�guration

The synthetic generation module is con�gured with the parameters (described below) speci�ed in the last

section of the parameter �le. The other \Process-Flow Input Parameters" are also relevant. In particular,

the number and time scaling of the simulated processors is important, since these processors \execute" the

inter-request think times as computation times (one process's computation per processor at a time).

The parameters for the synthetic generation module are:

Number of generators: Integer [positive] specifying the number of independent, concurrent, request-

generating processes.

Number of I/O requests to generate: Integer [positive] specifying the maximum number of I/O

requests to generate before ending the simulation run. A simulation run continues until either the speci�ed

number of requests is generated or the maximum simulation time (see below) is reached.

Maximum time of trace generated (in seconds): Integer [positive seconds] specifying the maximum

simulated time of a simulation run driven by a synthetic workload. A simulation run continues until either

the maximum number of requests (see above) is generated or the speci�ed maximum simulation time is

reached.

31

System call/return with each request: Boolean [1 or 0] specifying whether or not each request

occurs within the context of a system call (which may a�ect the behavior of the associated process in the

system-level model). If true (1), each request will be preceded by a system call event and followed by a

system call return event.

Think time from call to request: Float [milliseconds] specifying the think time (i.e., computation

time) between the system call event and the disk request event. This parameter is only relevant if the above

Boolean parameter is set to true (1).

Think time from request to return: Float [milliseconds] specifying the think time (i.e., computation

time) between the disk request event and the system call return event. This parameter is only relevant if

the above Boolean parameter is set to true (1).

One or more instances of the following parameters must be present in the parameter �le in order to

specify the con�guration of the individual generator(s).

Generator description #X: where X is an Integer [positive] specifying the number of the generator

type being speci�ed. Generator types are assigned in ascending order of the generator speci�cations, starting

with \1" for the �rst speci�ed generator type.

Generators with description: Integer [positive] specifying the number of generators (out of the total

number speci�ed) that conform to the current speci�cation.

Storage capacity per device (in blocks): Integer [positive] specifying the number of unique storage

addresses per storage device (in the corresponding device's unit of access) accessible to generators of this

type.

Number of storage devices: Integer [positive] specifying the number of storage devices accessible to

generators of this type. The generated device numbers will range from X to this value minus one, where X

is the next value.

First storage device: Integer [non-negative] specifying the �rst storage device number from this gen-

erator's point of view. Device numbers in generated requests will range from this number to this number

plus the previous value minus one.

Blocking factor: Integer [positive] specifying a unit of access for generated requests that is a multiple

of the storage devices' unit of access. All generated request starting addresses and sizes will be a multiple

of this value.

Probability of sequential access: Float [0.0{1.0] specifying the probability that a generated request

is sequential to the immediately previous request. A sequential request starts at the address immediately

following the last address accessed by the previously generated request.

Probability of local access: Float [0.0{1.0] specifying the probability that a generated request is \local"

to the immediately previous request. A local request begins some short distance away from the previous

request's starting address, where the distance is computed via a random variable de�nition described below.

These last two values (probabilities) determine how a generated request's starting address is assigned.

Their sum must be less than or equal to 1.0. Each request's starting address is sequential, local or random.

32

A random request is assigned a device and starting address from a uniform distribution spanning the entire

available storage space (as speci�ed by the above parameters).

Probability of read access: Float [0.0{1.0] specifying the probability that a generated request is a

read. (Otherwise, it is a write.)

Probability of time-critical request: Float [0.0{1.0] specifying the probability that a generated

request is time-critical. That is, the corresponding generator process \blocks" and waits for the request to

complete before continuing with its sequence of work (i.e., its next think time) [Ganger93, Ganger95].

Probability of time-limited request: Float [0.0{1.0] specifying the probability that a generated

request is time-limited. That is, the corresponding generator process \blocks" and waits for the request to

complete (if it is not already complete) after a given amount of think time (speci�ed by the below \time

limit" parameters) [Ganger93, Ganger95].

These last two values (probabilities) determine how a generated request's criticality is assigned. Their

sum must be less than or equal to 1.0. Each request is time-critical, time-limited or time-noncritical. A

generator process nevers \blocks" and waits for time-noncritical requests; it simply generates them and

continues with its work.

With these probabilities, the synthetic generators can be con�gured to emulate open and closed subsystem

models, as well as a range of intermediate options. An open subsystem model (like most trace-driven

simulations) generates new requests independently of the completion times of previous requests. It can

be created by setting the probabilities of time-critical and time-limited requests both to zero (0.0) and

con�guring the system-level model to have the same number of processors as there are generators. The

inter-request computation times will therefore be the inter-arrival times (per generator). A closed subsystem

model (like many queueing models) generates a new request only after the previous request completes,

keeping a constant number of requests in the system (either hidden in think times or being serviced). It can

be created by setting the probability that a request is time-critical to one (1.0). Setting the inter-request

computation times (below) to zero (0.0) eliminates think times and results in a constant number of requests

\in service" at all times.

The remaining six parameters specify the random variable distributions of the various times, sizes, and

distances encountered when generating streams of requests. The values for a parameter consists of an

Integer [0{4] specifying the type of distribution followed by up to three additional values necessary to fully

specify the con�guration of the chosen distribution. The number of parameters and their purposes depends

on the value given for the type of distribution:

� 0 indicates a uniform distribution, requiring two additional Floats specifying minimum and maximum

values.

� 1 indicates a normal distribution, requiring two additional Floats specifying mean and variance values.

As the second value is a variance, it must be nonnegative.

� 2 indicates an exponential distribution, requiring two additional Floats specifying base and mean values.

� 4 indicates a poisson distribution, requiring two additional Floats specifying base and mean values.

33

� 5 indicates a \two value" distribution, requiring three additional Floats specifying a default value, a

secondary value, and a probability indicating how often the secondary value should be returned. As

the last Float is a measure of probability, it must be between 0.0 and 1.0.

All of the distributions are computed as speci�ed, but value generation is repeated whenever an illegal

value results (e.g., a negative inter-arrival time).

Time-limited think times (in milliseconds): A random variable distribution specifying the time

limit for a time-limited request. Note that the generated time limit (i.e., the computation time occuring

before the generator process \blocks" and waits for the request to complete) may di�er from the actual time

limit (due to CPU contention).

General inter-arrival times (in milliseconds): A random variable distribution specifying the inter-

request think time preceding the generated request if the generated request's starting address is unrelated

to the previous request's starting address (i.e., if the generated request's address is \random" rather than

\sequential" or \local").

Sequential inter-arrival times (in milliseconds): A random variable distribution specifying the

inter-request think time preceding the generated request if the generated request's starting address is \se-

quential" to the previous request's starting address.

Local inter-arrival times (in milliseconds): A random variable distribution specifying the inter-

request think time preceding the generated request if the generated request's starting address is \local" to

the previous request's starting address.

Local distances (in blocks): A random variable distribution specifying the distance from the previous

request's starting address when generating a \local" request's starting address.

Size (in blocks): A random variable distribution specifying the request size.

4.3 Incorporating DiskSim into system-level simulators

With a modicum of e�ort, DiskSim can be incorporated into a full system-level simulator in order to provide

accurate timings for the handling of storage I/O requests. This section brie
y describes one method for doing

so, and \disksim interface.c" stubs out a possible implementation. Using this approach (which assumes only

a few characteristics of the system simulator), DiskSim will act as a slave of the system simulator, providing

disk request completion indications in time for an interrupt to be generated in the system simulation.

Speci�cally, DiskSim code will only be executed when invoked by one of the following procedures, called as

appropriate by the containing simulator:

� disksim initialize: for initializing the DiskSim state.

� disksim shutdown: for printing statistics at the end of a simulation run.

� disksim dump stats: for printing the current running statistics during the simulation (e.g., at a

statistics checkpoint).

34

� disksim internal event: for \calling back" into DiskSim so that it can update its internal simulation

\time" to match the system-level simulator's global \time" and handle any internal DiskSim events

that occur in the intervening time. Note that this function is called by the system-level simulator on

behalf of DiskSim, since DiskSim no longer has control over the global simulation \time." Additional

details are given below.

� disksim request arrive: for issuing an I/O request into DiskSim.

Using this interface requires only two signi�cant functionalities of the system simulation environment:

1. The ability to function correctly without knowing when a disk request will complete at the time that

it is initiated. The system simulation will be informed at some later point (in its view of time) that

the request is completed. At this time, the appropriate \disk request completion" interrupt could be

inserted into the system simulation.

2. The ability for DiskSim to register callbacks with the system simulation environment. That is, this

interface code must be able to request (of the sytem-level simulator) an invocation of a callback function

(such as disksim internal event, described above) when the simulated time reaches a DiskSim-speci�ed

value. It is also helpful (but not absolutely necessary) to be able to \de-schedule" a callback at some

point after it has been requested. For example, a callback requested to indicate the end of some disk

prefetching activity may be superceded by a new request arriving at the disk (and interrupting the

ongoing prefetch).

If the actual content on the disk media (i.e., the \data") must be maintained during the course of a

system-level simulation, this functionality can easily be provided by code outside of DiskSim, which does

not itself provide such functionality.

35

5 The output �le

At the beginning of the simulation, the values for the numerous con�guration parameters are copied into

the beginning of the output �le. The remainder of the output �le contains the aggregate statistics of the

simulation run, including both the characteristics of the simulated workload (if enabled) and the performance

indicators of the various storage components. Each line of the latter portion of the output �le (excluding the

statistic distributions) is unique, simplifying the process of searching through the �le for a particular result.

DiskSim collects a large number of statistics about the simulated storage components. As discussed in

section 3, the size of the output �le can be reduced by con�guring DiskSim not to report undesired sets

of statistics. At each statistic is described below, it will also be noted whether or not the statistic can be

pruned from the output �le via corresponding Boolean (enable/disable) input parameters.

5.1 The statdefs �le

Although some of the results collected by DiskSim are simple counts or sums, aggregate statistics (average,

standard deviation, distribution) are collected for many values. In particular, statistics reported as distri-

butions make use of the statdefs �le for con�guring the \bins" which capture speci�c ranges of observed

values. Each statistic description consists of four lines, as described below. Comments or other extraneous

information may be placed within the �le as long as each 4-line description is contiguous.

1. String specifying the name of the statistic being described. DiskSim searches for this value on a line by

itself to identify the beginning of the corresponding statistic description. So, the order of the statistics

in the statdefs �le is unimportant.

2. Distribution size: Integer [positive] specifying the number of bins into which to partition the observed

values. When this value is less than or equal to the internal DiskSim constant DISTSIZE, the entire

distribution are reported on two lines (for output �le compactness and readability). The output for

larger distributions consists of one bin per line.

3. Scale/Equals: Two Integers separated by a \/". The �rst Integer [nonzero] speci�es a multiplication

factor to be applied to observed values before selecting an appropriate bin. It is useful mainly because

the bin boundaries are speci�ed as Integers (see below). For example, if a speci�c \response time"

statistic's distribution is speci�ed using microsecond-based boundaries, the \Scale" value should be set

to 1000 (since internal times in DiskSim millisecond-based). The second Integer [nonnegative] speci�es

how many of the bins (starting from the �rst one) should collect only observed values that are exactly

equal to the speci�ed boundary, rather than values that are less than the boundary (see below).

4. A description of the bin boundaries, in one of two formats. If the number of bins is less than or equal to

the internal DiskSim constant DISTSIZE, then this line contains nine Integers. If the \Equals" value

(see above) is set to N, the �rst N Integers specify bins that will hold exact observed values rather

than ranges of observed values. The remaining Integers specify bins holding observed values below the

speci�ed Integer boundary. When DiskSim categorizes an observed value, the bins are checked in the

36

sequence in which they are found on the line. So, bin boundaries beyond the \Equals" values should

be in ascending order to avoid unclear results.

If the number of bins is greater than DISTSIZE, the format of this line is a String [\Start III step III

grow III"] containing three Integers (III). The �rst speci�es the �rst bin boundary, the second speci�es

a constant value to be added to the current boundary value when computing the next boundary value,

and the third speci�es a percent of the previous bin value to be added to the current boundary value

when computing the next boundary value. The combination of a multiplicative scaling factor (\Scale"),

an additive step function (\step"), and a multiplicative step function (\grow") provides the
exibility

to concisely specify a wide range of typical statistic distributions.

5.2 Simulation results

Each statistic in the output �le is identi�ed by a unique string. A typical single-value statistic is reported as

\SSS: VVV" where the initial String (SSS) uniquely identi�es the statistic and the value (VVV) speci�es the

observed value. In some cases a single value is inadequate to describe the statistic, so a set of four aggregate

statistics are reported instead: the average value, the standard deviation (\std.dev."), the maximum value,

and the distribution (as speci�ed by the corresponding entry in the statdef �le).

The format for reporting the �rst three aggregates mentioned above is \SSS: VVV", where the initial

String (SSS) contains the context of the statistic (e.g., \Disk #2"), the name of the statistic used to index

into the statdef �le, and the aggregate type [\average", \std.dev.", or \maximum"]. The corresponding

result value (VVV) is speci�ed on the same line. The format for reporting distributions is similar to the

other three aggregates, but the value (VVV) is reported on lines following the indentifying String (SSS). If

the number of bins speci�ed in the corresponding entry in the statdefs �le is greater than DISTSIZE, then

the distribution is reported on two lines: one for the bin boundaries and one for the observed bin counts.

Otherwise, the distribution is reported on the next N lines, where N is the number of bins. Each line contains

four values: (1) the bin boundary, (2) the count of observed values falling into the bin, (3) the measured

probability that an observed value falls into the bin (i.e., the count divided by the number of observations),

and (4) the measured probability that an observed value falls in the bin or any previous bin.

Each individual statistic found in the output �le is described below. Unless otherwise speci�ed, all

statistics measuring simulation \time" are reported in milliseconds.

Total time of run: The simulated time at the end of the simulation run.

Warm-up time: The simulation warm-up time not covered by the reported statistics.

The next set of statistics falls into one of several categories, depending on the style of input. If synthetic

generation is used, then statistics for the simple system-level model are reported (section 5.2.1). If a validation

trace is used, then statistics about the behavior measured for the real disk are reported (section 5.2.2). If

the traces described in [Ruemmler93] (referred to in DiskSim as \HPL" traces) are used, then statistics

about performance observed for the traced system are reported (section 5.2.3). If any other external trace

is used, then no statistics are reported in this section of the output �le, and the I/O driver statistics are

next in the output �le (section 5.2.5), followed by the disk drive statistics (section 5.2.6), controller statistics

(section 5.2.7), and bus statistics (section 5.2.8).

37

5.2.1 Process-
ow statistics

The following statistics are reported only when the internal synthetic workload generator is enabled.

CPU Total idle milliseconds: the sum of the idle times for all CPU's.

CPU Idle time per processor: the average per-CPU idle time.

CPU Percentage idle cycles: the average percentage of time that each CPU spent idle.

CPU Total false idle ms: the sum of the false idle times for all CPU's. \False idle time" is that time

that a processor spends idle because processes are blocked waiting for I/O (e.g., disk requests), as opposed

to real idle time during which there is no work for the CPU to do.

CPU Percentage false idle cycles: the average percentage of each CPU's time that was consumed

by false idle time.

CPU Total idle work ms: the sum of the idle work times for all CPU's. \Idle work time" is useful

computation (e.g., interrupt handlers and background tasks) completed while in the idle state (because no

user processes are runnable).

CPU Context Switches: the number of context switches.

CPU Time spent context switching: the aggregate CPU time consumed by context switch overheads

on all CPU's.

CPU Percentage switching cycles: the average percentage of each CPU's time that was consumed

by context switching overheads.

CPU Number of interrupts: the total number of interrupts received by all CPU's.

CPU Total time in interrupts: the total computation time consumed by interrupt handlers.

CPU Percentage interrupt cycles: the average percentage of each CPU's time that was consumed

by interrupt handling.

CPU Time-Critical request count: the total number of time-critical requests generated.

CPU Time-Critical Response time stats: aggregate statistics for the response times observed for

all time-critical requests.

CPU Time-Limited request count: the total number of time-limited requests generated.

CPU Time-Limited Response time stats aggregate statistics for the response times observed for all

time-limited requests.

CPU Time-Noncritical request count: the total number of time-noncritical requests generated.

CPU Time-Noncritical Response time stats aggregate statistics for the response times observed

for all time-noncritical requests.

The next four statistics are not reported if \Print all interrupt stats?" is set to false (0).

CPU Number of IO interrupts: the total number of I/O interrupts received by all CPU's.

38

CPU Time spent in I/O interrupts: the total computation time spent on I/O interrupt handlers.

CPU Number of clock interrupts: the total number of I/O interrupts received by all CPU's.

CPU Time spent in clock interrupts: the total computation time spent on clock interrupt handlers.

The next four statistics are not reported if \Print sleep stats?" is set to false (0).

Number of sleep events: the total number of sleep events \executed" by all processes.

Number of I/O sleep events: the total number of sleep events \executed" in order to wait for I/O

requests.

Average sleep time: the average length of time between a sleep event and the corresponding wake-up

event.

Average I/O sleep time: the average length of time that between a sleep event that waits for an I/O

request and the corresponding wake-up event (i.e., the I/O request's completion).

If there is more than one CPU, then per-CPU statistics are reported. The per-CPU statistics are the

same as the aggregate CPU statistics described above. The per-CPU statistics are not reported if \Print

per-CPU stats?" is set to false (0).

Process Total computation time: the total computation time of all processes (other than the idle

processes) in the system.

Process Last event time: the simulated time of the last process event \executed".

Process Number of I/O requests: the total number of I/O requests generated.

Process Number of read requests: the total number of read I/O requests generated.

Process Number of C-switches: the total number of context switches to or from non-idle processes.

Process Number of sleeps: the total number of sleep events \executed."

Process Average sleep time: the average time between a process's sleep event and the corresponding

wake-up event.

Process Number of I/O sleeps: the total number of sleep events \executed" in order to wait for I/O

requests.

Process Average I/O sleep time: the average time between a process's sleep event that waits for an

I/O request and the corresponding wake-up event (i.e., the I/O request's completion).

Process False idle time: the total amount of false idle time. This value can be greater than the total

measured false idle time because more than one process can contribute to any given period of false idle time.

Process Read Time limits measured: the number of time limits observed for read I/O requests.

(This value di�ers from the number of time-limited read requests if the simulation ends before one or more

read I/O request time limits expire.)

Process Read Time limit duration stats: aggregate statistics for read I/O request time limits.

Process Write Time limits measured: the number of time limits measured for write I/O requests.

39

(This value di�ers from the number of time-limited write requests if the simulation ends before one or more

write I/O request time limits expire.)

Process Write Time limit duration stats: aggregate statistics for write I/O request time limits.

Process Read Time limits missed: the number of time limits missed by read I/O requests.

Process Missed Read Time limit duration stats: aggregate statistics for missed read I/O request

time limits.

Process Write Time limits missed: the number of time limits missed by write I/O requests.

Process Missed Write Time limit duration stats: aggregate statistics for the missed write I/O

request time limits.

If there is more than one simulated process, then per-process statistics are reported. The per-process

statistics are the same as the aggregate process statistics described above. The per-process statistics are not

reported if \Print per-process stats?" is set to false (0).

5.2.2 Validation trace statistics

The following statistics are reported only when an external validation trace (with a format of \validate") is

used as the input workload.

VALIDATE Trace access time stats: aggregate statistics for the access times measured for the

corresponding real storage subsystem. (The access time measured for each request is part of the input trace

format.)

VALIDATE Trace access di� time stats: aggregate statistics for the per-request di�erences between

the simulated and measured access times.

VALIDATE Trace write access di� time stats: aggregate statistics for the measured access times

for write requests.

VALIDATE Trace write access di� time stats: aggregate statistics for the per-request di�erences

between the simulated and measured access times for write requests.

The remaining statistics for validate workloads are historical in nature and are primarily useful for

debugging DiskSim's behavior. The information needed to trigger them is not included in most of the

validation traces.

VALIDATE double disconnects: the number of requests incurring two bus disconnects during the

request's lifetime.

VALIDATE triple disconnects: the number of requests incurring three bus disconnects during the

request's lifetime.

VALIDATE read bu�er hits: the number of read requests that were serviced directly from the disk's

on-board cache.

VALIDATE bu�er misses: the number of requests that required actual magnetic media access.

40

5.2.3 HPL trace statistics

The following statistics are reported only when an external HPL trace (i.e., a trace in the HPLabs SRT

format) is used as the input workload.

Total reads: the number of read requests in the trace, followed by the fraction of all requests that were

reads.

Total writes: the number of write requests in the trace, followed by the fraction of all requests that

were writes.

Sync Reads: the number of read requests marked (by a
ag value) as synchronous, meaning that an

application process will be blocked until the request completes. This value is followed by the fraction of all

requests that were synchronous reads and the fraction of all read requests that were synchronous.

Sync Writes: the number of write requests marked (by a
ag value) as synchronous, meaning that an

application process will be blocked until the request completes. This value is followed by the fraction of all

requests that were synchronous writes and the fraction of write requests that were synchronous.

Async Reads: the number of read requests not marked as synchronous, followed by the fraction of

requests that were asynchronous reads and the fraction of all read requests that were asynchronous.

Async Writes: the number of write requests not marked as synchronous, followed by the fraction of all

requests that were asynchronous writes and the fraction of all write requests that were asynchronous.

Mapped disk #X Trace queue time stats: aggregate statistics for the per-request queue times

measured for disk X in the traced system.

Mapped disk #X Trace response time stats: aggregate statistics for the per-request response times

(i.e., request arrival to request complete, including queue delays and service time) measured for disk X in

the traced system.

Mapped disk #X Trace access time stats: aggregate statistics for the per-request access times (i.e.,

service times) measured for disk X in the traced system.

Mapped disk #X Trace queue length stats: aggregate statistics for the instantaneous queue lengths

observed by each request for disk X in the traced system.

Mapped disk #X Trace non-queue time stats: aggregate statistics for the measured per-request

times spent in the device driver for disk X in the traced system between request arrival and delivery to the

storage controller when no other requests are pending. This provides insight into the device driver overheads

for the traced systems.

5.2.4 System-level logical organization statistics

The following statistics are reported for each system-level logical organization. (Note: every DiskSim simu-

lation involves at least one system-level logical organization, even if it simply maps each logical device onto

an equivalent physical device.)

41

System logorg #X Number of requests: the number of requests submitted to the front-end of logical

organization x.

System logorg #X Number of read requests: the number of read requests submitted to the front-

end of logical organization X, followed by the fraction of all front-end requests that were reads.

System logorg #X Number of accesses: the number of accesses passed to the back-end of logical

organization X. Striping, data redundancy, and other logical aspects can cause this value to di�er from the

number of front-end requests.

System logorg #X Number of read accesses: the number of accesses passed to the back-end of

logical organization X in response to front-end read requests, followed by the fraction of all back-end requests

that were reads.

System logorg #X Average outstanding: the average number of front-end requests in progress at

any point in time to logical organization X.

System logorg #X Maximum outstanding: the maximum number of front-end requests in progress

at any point in time to logical organization X.

System logorg #X Avg nonzero outstanding: the average number of front-end requests in progress

at times when there was at least one outstanding request to logical organization X.

System logorg #X Completely idle time: the amount of time during which no front-end requests

are outstanding to logical organization X.

System logorg #X Response time stats: aggregate statistics for the response times observed for all

front-end requests to logical organization X.

System logorg #X Time-critical reads: the number of front-end read requests to logical organiza-

tion X marked (by a
ag �eld) as time-critical.

System logorg #X Time-critical write: the number of front-end write requests to logical organiza-

tion X marked (by a
ag �eld) as time-critical.

The next ten statistics are not reported if \Print driver locality stats?" is set to false (0).

System logorg #X Inter-request distance stats: aggregate statistics for the distances between the

starting addresses of subsequent accesses to the same device in logical organization X.

System logorg #X Sequential reads: the number of back-end read accesses whose starting addresses

were sequential to the immediately previous access to the same device in logical organization X, followed

by the fraction of back-end accesses that were sequential reads and the fraction of back-end reads that were

sequential.

System logorg #X Sequential writes: the number of back-end write accesses whose starting addresses

were sequential to the immediately previous access to the same device in logical organization X, followed by

the fraction of back-end accesses that were sequential writes and the fraction of back-end writes that were

sequential.

System logorg #X Interleaved reads: the number of back-end read accesses whose starting addresses

42

were almost sequential to (i.e., less than 16 sectors beyond the end of) the immediately previous access to

logical organization X, followed by the fraction of back-end accesses that were \interleaved" reads and the

fraction of back-end reads that were \interleaved."

System logorg #X Interleaved writes: the number of back-end write accesses whose starting ad-

dresses were almost sequential to (i.e., less than 16 sectors beyond the end of) the immediately previous

access to logical organization X, followed by the fraction of back-end accesses that were \interleaved" writes

and the fraction of back-end writes that were \interleaved."

System logorg #X Logical sequential reads: the number of front-end read requests whose starting

addresses were logically sequential to the immediately previous request to logical organization X.

System logorg #X Logical sequential writes: the number of front-end write requests whose starting

addresses were logically sequential to the immediately previous request to logical organization X.

System logorg #X Sequential disk switches: the number of back-end accesses generated for logically

sequential front-end requests for logical organization X that (because of striping or some such) accessed a

di�erent device than the immediately previous request.

System logorg #X Logical local accesses: the number of front-end requests marked (by a
ag) as

logically \local" to the immediately previous request to logical organization X.

System logorg #X Local disk switches: the number of back-end accesses generated for front-end

requests marked (by a
ag) as logically \local" that (because of striping or some such) accessed a di�erent

device than the immediately previous request to logical organization X.

The next two statistics are not reported if \Print driver interfere stats?" is set to false (0).

System logorg #X Sequential step S: the number of back-end accesses to logical organization X

that were sequential to the back-end access S+1 accesses prior, followed by the fraction of back-end accesses

that fall into this category. These statistics are only reported if the fraction is greater than 0.002.

System logorg #X Local (D) step S: the number of back-end accesses to logical organization X

whose starting addresses were D device sectors from the back-end access S+1 accesses prior, followed by the

fraction of back-end accesses that fall into this category. These statistics are only reported if the fraction is

greater than 0.002.

The next two statistics are not reported if \Print driver blocking stats?" is set to false (0).

System logorg #X Blocking factor: B: the number of back-end accesses to logical organization X

whose size is an integer multiple of B sectors, followed by the fraction of back-end accesses that fall into this

category. These statistics are only reported if the fraction is greater than 0.002.

System logorg #X Alignment factor: A: the number of back-end accesses to logical organization X

whose starting address is an integer multiple of A sectors, followed by the fraction of back-end accesses that

fall into this category. These statistics are only reported if the fraction is greater than 0.002.

The next three statistics are not reported if \Print driver intarr stats?" is set to false (0).

System logorg #X Inter-arrival time stats: aggregate statistics for the inter-arrival times of front-

end requests to logical organization X.

43

System logorg #X Read inter-arrival time stats: aggregate statistics for the inter-arrival times of

front-end read requests to logical organization X.

System logorg #X Write inter-arrival time stats: aggregate statistics for the inter-arrival times

of front-end write requests to logical organization X.

The next two statistics are not reported if \Print driver streak stats?" is set to false (0).

System logorg #X Number of streaks: the number of sequences of back-end accesses to logical

organization X addressed to the same device with no interleaved accesses to other devices.

System logorg #X Streak length stats: aggregate statistics for the lengths of sequences of back-end

accesses to logical organization X addressed to the same device with no interleaved accesses to other devices.

The next three statistics are not reported if \Print driver stamp stats?" is set to false (0).

System logorg #X Timestamped # outstanding distribution: a distribution of the number of

requests outstanding to logical organization X at regular simulated time intervals (speci�ed by the \Time

stamp interval" parameter).

System logorg #X Timestamped avg # outstanding di�erence distribution: a distribution

of the average di�erence between the number of requests outstanding to each back-end device of logical

organization X and the average number of requests outstanding per back-end device of logical organization X

(measured at regular simulated time intervals).

System logorg #X Timestamped max # outstanding di�erence distribution: a distribution

of the maximum di�erence between the number of requests outstanding to a particular back-end device

of logical organization X and the average number of requests outstanding per back-end device of logical

organization X (measured at regular simulated time intervals).

The next three statistics are not reported if \Print driver size stats?" is set to false (0).

System logorg #X Request size stats: aggregate statistics for the sizes of front-end requests to

logical organization X.

System logorg #X Read request size stats: aggregate statistics for the sizes of front-end read

requests to logical organization X.

System logorg #X Write request size stats: aggregate statistics for the sizes of front-end write

requests to logical organization X.

The next two statistics are not reported if \Print driver idle stats?" is set to false (0).

System logorg #X Number of idle periods: the number of time periods during which no requests

were outstanding to logical organization X.

System logorg #X Idle period length stats: aggregate statistics for the durations of time periods

during which no requests were outstanding to logical organization X.

The remaining system-level logorg statistics are aggregate statistics over the set of disks in the logical

organization. The statistics reported are the same as those described in section 5.2.6 under \Disk statistics".

44

5.2.5 I/O driver statistics

All of the I/O driver statistics are generated by the request queue module (which is also used by the disk

and controller modules). None of them are reported if \Print driver queue stats?" is set to false (0).

IOdriver Total Requests handled: the number of requests completed from the driver's point of view.

IOdriver Requests per second: the number of requests completed per second of simulated time.

IOdriver Completely idle time: the total amount of time that no requests were outstanding.

IOdriver Response time stats: aggregate statistics for request response times.

IOdriver Overlaps combined: the number of requests made unnecessary because they completely

overlap with another outstanding request, followed by the fraction of requests that fall into this category.

(Note that this is an extremely unusual event in real systems, but the situation may arise frequently in

trace-driven simulation [Ganger95].)

IOdriver Read overlaps combined: the number of read requests made unnecessary because they

completely overlap with another outstanding request, followed by the fraction of requests that fall into this

category.

The next eight statistics are not reported if \Print driver crit stats?" is set to false (0).

IOdriver Critical Reads: the number of read requests marked (by a
ag) as time-critical, followed by

the fraction of requests that are time-critical reads.

IOdriver Critical Read Response time stats: aggregate statistics for the response times of read

requests marked time-critical.

IOdriver Non-Critical Reads: the number of read requests not marked (by a
ag) as time-critical,

followed by the fraction of requests that are reads not marked time-critical.

IOdriver Non-Critical Read Response time stats: aggregate statistics for the response times of

read requests not marked time-critical.

IOdriver Critical Writes: the number of write requests marked (by a
ag) as time-critical, followed

by the fraction of requests that are time-critical writes.

IOdriver Critical Write Response time stats: aggregate statistics for the response times of write

requests marked time-critical.

IOdriver Non-Critical Writes: the number of write requests not marked (by a
ag) as time-critical,

followed by the fraction of requests that are writes not marked time-critical.

IOdriver Non-Critical Write Response time stats: aggregate statistics for the response times of

write requests not marked time-critical.

IOdriver Number of reads: the number of read requests, followed by the fraction of requests that are

reads.

IOdriver Number of writes: the number of write requests, followed by the fraction of requests that

are writes.

45

IOdriver Sequential reads: the number of read requests whose starting addresses are sequential to

the immediately previous request to the same device, followed by the fraction of requests that are sequential

reads.

IOdriver Sequential writes: the number of write requests whose starting addresses are sequential to

the immediately previous request to the same device, followed by the fraction of requests that are sequential

writes.

The next twelve statistics are not reported if \Print driver queue stats?" is set to false (0).

IOdriver Average # requests: the average number of requests outstanding (in queues or in service).

IOdriver Maximum # requests: the maximum number of requests outstanding.

IOdriver end # requests: the number of requests outstanding when the simulation ended.

IOdriver Average queue length: the average length of the request queue.

IOdriver Maximum queue length: the maximum length of the request queue.

IOdriver End queued requests: the length of the request queue when the simulation ended.

IOdriver Queue time stats: aggregate statistics for the queue times incurred by requests.

IOdriver Avg # read requests: the average number of read requests outstanding.

IOdriver Max # read requests: the maximum number of read requests outstanding.

IOdriver Avg # write requests: the average number of write requests outstanding.

IOdriver Max # write requests: the maximum number of write requests outstanding.

IOdriver Physical access time stats: aggregate statistics for the request access times (i.e., excluding

any queueing times).

The next three statistics are not reported if \Print driver intarr stats?" is set to false (0).

IOdriver Inter-arrival time stats: aggregate statistics for request inter-arrival times.

IOdriver Read inter-arrival time stats: aggregate statistics for read request inter-arrival times.

IOdriver Write inter-arrival time stats: aggregate statistics for write request inter-arrival times.

The next two statistics are not reported if \Print driver idle stats?" is set to false (0).

IOdriver Number of idle periods: the number of time periods during which no requests were out-

standing.

IOdriver Idle period length stats aggregate statistics for the durations of time periods during which

no requests were outstanding.

The next three statistics are not reported if \Print driver size stats?" is set to false (0).

IOdriver Request size stats: aggregate statistics for the sizes of requests.

IOdriver Read request size stats: aggregate statistics for the sizes of read requests.

46

IOdriver Write request size stats: aggregate statistics for the sizes of write requests.

IOdriver Instantaneous queue length stats: aggregate statistics for the queue lengths observed at

the points in time when each new request arrived.

IOdriver Sub-optimal mapping penalty stats: aggregate statistics for the seek distance penal-

ties incurred due to the use of inaccurate mapping information in translating request starting locations to

cylinder/track/sector locations (by a scheduler).

Some of the disk request scheduling algorithms supported by DiskSim employ more than one sub-queue

(e.g., for request prioritization). If this is the case, then several of the above statistics (from \IOdriver

Response time stats" to \IOdriver Physical access time stats") are reported for each of the sub-queues in

addition to the above aggregate values. Also, depending upon which sub-queues are employed, up to four

additional statistics may be reported:

IOdriver Requests switched to timeout queue: the number of requests that were switched to the

higher priority timeout queue (as described in section 3.2.7), because they were queued in the base queue for

longer than their speci�ed timeout time.

IOdriver Timed out requests: the number of requests that did not complete within their timeout

value. Such requests are only switched to the timeout queue if they have not yet been initiated.

IOdriver Half-way timed out requests: the number of requests that did not complete within half

of their timeout value. One of the supported scheduler options gives such requests an intermediate priority

level for the remainder of their timeout period.

IOdriver Requests switched to priority queue: the number of requests that were switched to the

high-priority timeout queue because of information delivered from higher-level system components (e.g., the

process scheduler) after the request was queued. One reason for such a switch might be that a process must

wait for the request to complete [Ganger93]; if a high-priority process is waiting on the request completion,

the request's priority may be increased at the I/O driver.

If there is more than one device (or more than one driver), then separate per-driver-per-device statistics

are reported. The statistics reported are the same as those described above (as aggregate \IOdriver" statis-

tics). The per-driver-per-device statistics are not reported if \Print driver per-device stats?" is set to false

(0).

5.2.6 Disk statistics

The �rst set of disk statistics is generated by the request queue module. The speci�c statistics reported

are the same as the \IOdriver" statistics described in section 5.2.5, except that they apply to each disk's

individual request queue(s) (and are denoted accordingly). The \Print ... stats?" parameters for the queue

statistics are the same as for the corresponding driver parameters with the word, \driver", replaced by

\disk".

The next three statistics are not reported if \Print device seek stats?" is set to false (0).

Disk Seeks of zero distance: the number of requests resulting in media accesses that require no \seek"

47

(i.e., movement of the disk's read/write head from one cylinder to another), followed by the fraction of all

requests requiring no seek.

Disk Seek distance stats: aggregate statistics for the seek distances observed for requests requiring

media access.

Disk Seek time stats: aggregate statistics for the seek times observed for requests requiring media

access.

The next three statistics are not reported if \Print device latency stats?" is set to false (0).

Disk Full rotation time: the amount of time required for the disk platters to complete a full revolution.

This statistic is only reported for single-disk con�gurations or in sets of per-disk statistics (see below).

Disk Zero rotate latency: the number of media accesses that incur no rotational latency, followed by

the fraction of all media accesses incurring no rotational latency.

Disk Rotational latency stats: aggregate statistics for the rotational latencies for requests requiring

media access.

The next statistic is not reported if \Print device xfer stats?" is set to false (0).

Disk Transfer time stats: aggregate statistics for the media transfer times for requests requiring media

access.

The next two statistics are not reported if \Print device acctime stats?" is set to false (0).

Disk Positioning time stats: aggregate statistics for positioning times (seek time plus rotational

latency) for requests requiring media access.

Disk Access time stats: aggregate statistics for media access times for requests requiring media access.

The next two statistics are not reported if \Print device interfere stats?" is set to false (0).

Disk Sequential interference: the number of requests marked (by a
ag) as logically sequential that

were not temporally and physically sequential due to interference with other request streams or data mapping

algorithms (e.g., striping).

Disk Local interference: the number of requests marked (by a
ag) as logically \local" that were not

temporally or physically local due to interference with other request streams or data mapping algorithms

(e.g., striping).

The next seventeen statistics are not reported if \Print device bu�er stats?" is set to false (0).

Disk Number of bu�er accesses: the number of requests that check the disk's on-board cache for

speci�c contents.

Disk Bu�er hit ratio: the number of requests that check the disk's on-board cache and �nd some

\usable" data, followed by the fraction of all requests that check the disk's on-board cache and �nd some

\usable" data. For example, a read request whose �rst sector of requested data is in the cache (or is currently

being read into the cache) would fall into this category. Also, a write request may fall into this cateogory if

the on-board controller allows its data to be appended or prepended to an existing quantity of \dirty" data.

48

In the latter case, the existing dirty data is \usable" because the new request may be combined with it (i.e.,

is logically sequential to it).

Disk Bu�er miss ratio: the number of requests that check the disk's on-board cache and do not �nd

any \usable" data, followed by the fraction of all requests that check the disk's on-board cache and do not

�nd some \usable" data. For example, a read request whose �rst sector of requested data is not in the cache

(and is not currently being read into the cache) would certainly fall into this category. Also, a write request

would fall into this cateogory if the request's data cannot be combined with any existing \dirty" data in the

cache.

Disk Bu�er read hit ratio: the number of read requests that check the disk's on-board cache and �nd

all of the requested data already present, followed by the fraction of all read requests and the fraction of all

requests that fall into this category.

Disk Bu�er prepend hit ratio: the number of all write requests that check the disk's on-board cache

and are combined with existing write requests where the new request's data are logically prepended to the

existing \dirty" data, followed by the fraction of all write requests that fall into this category.

Disk Bu�er append hit ratio: the number of all write requests that check the disk's on-board cache

and are combined with existing write requests where the new request's data are logically appended to the

existing \dirty" data, followed by the fraction of all write requests that fall into this category.

Disk Write combinations: the number of all write requests that check the disk's on-board cache and

are combined with existing write requests (either logically prepended or appended), followed by the fraction

of all write requests that are combined with existing write requests.

Disk Ongoing read-ahead hit ratio: the number of all read requests that check the disk's on-board

cache and �nd an initial portion of the requested data already present and additional data being actively

prefetched into the same cache segment, followed by the fraction of all read requests and the fraction of all

requests that fall into this category.

Disk Average read-ahead hit size: the average amount of requested data found in the cache for

read requests that check the disk's on-board cache and �nd an initial portion of the requested data already

present and additional data being actively prefetched into the same cache segment.

Disk Average remaining read-ahead: the average amount of requested data remaining to be fetched

into the cache for read requests that check the disk's on-board cache and �nd an initial portion of the

requested data already present and additional data being actively prefetched into the same cache segment.

Disk Partial read hit ratio: the number of read requests that check the disk's on-board cache and �nd

an initial portion of the requested data already present (with no ongoing prefetch), followed by the fraction

of all read requests and the fraction of all requests that fall into this category.

Disk Average partial hit size: the average amount of requested data found in the cache for read

requests that check the disk's on-board cache and �nd an initial portion of the requested data (with no

ongoing prefetch).

Disk Average remaining partial: the average amount of requested data remaining to be fetched into

the cache for read requests that check the disk's on-board cache and �nd an initial portion of the requested

49

data (with no ongoing prefetch).

Disk Total disk bus wait time: the total amount of time spent waiting for access to a bus (i.e., arbi-

tration delay).

Disk Number of disk bus waits: the total number of times a delay occured when attempting to access

the bus (i.e., the bus was \owned" by another entity when access was requested).

Per-disk statistics are reported for multi-disk con�gurations. Statistics for speci�c disks can be enabled

or disabled by setting the corresponding \Print stats for disk" con�guration parameter (see section 3.2.5)

true (1) or false (0).

5.2.7 Controller statistics

No statistics are reported for the two simple controller models. The following statistics are reported only

for \CTLR SMART" controllers, which include a cache and are capable of queueing/scheduling requests

for one or more attached storage devices. All of the cache statistics are reported for individual controllers

only (i.e., no aggregates across controllers are reported). The controller cache statistics are not reported if

\Print controller cache stats?" is set to false (0).

Controller #X cache requests: the number of requests serviced by the cache of controller X.

Controller #X cache read requests: the number of read requests serviced by the cache of controller X,

followed by the fraction of serviced requests that are reads.

Controller #X cache atoms read: the number of cache atoms accessed by read requests to con-

troller X, followed by the fraction of cache atom accesses that are reads. A \cache atom" is the minimal unit

of cache access. In the current version of DiskSim, the cache atom size is always equal to the sector size of

the underlying storage devices.

Controller #X cache read misses: the number of cache read requests to controller X for which no

useful data are found in the cache, followed by the fraction of all requests that are cache read misses and

the fraction of all read requests that are misses.

Controller #X cache read full hits: the number of cache read requests to controller X for which all

necessary data are found in the cache, followed by the fraction of all requests that are cache read full hits

and the fraction of all read requests that are full hits.

Controller #X cache �lls (read): the number of cache �ll accesses issued to the underlying storage

devices by controller X, followed by the fraction of requests that require a cache �ll and the fraction of read

requests that require a cache �ll.

Controller #X cache atom �lls (read): the number of atoms read by cache �ll accesses issued to

the underlying storage devices by controller X, followed by the fraction of cache atom accesses that require

a cache �ll and the fraction of cache atom read accesses that require a cache �ll.

Controller #X cache write requests: the number of write requests serviced by the cache of con-

troller X, followed by the fraction of requests that are writes.

50

Controller #X cache atoms written: the number of cache atoms written by write requests to

controller X, followed by the fraction of cache atom accesses that are writes.

Controller #X cache write misses: the number of cache write requests to controller X that do not

overlap at all with data found in the cache, followed by the fraction of all requests that are cache write misses

and the fraction of write requests that are misses.

Controller #X cache write hits (clean): the number of cache write requests to controller X that

overlap only with clean data found in the cache, followed by the fraction of all requests that are clean cache

write hits and the fraction of write requests that are clean hits.

Controller #X cache write hits (dirty): the number of cache write requests to controller X that

overlap with some amount of dirty data found in the cache, followed by the fraction of all requests that are

dirty cache write hits and the fraction of write requests that are dirty hits.

Controller #X cache �lls (write): the number of cache �ll accesses (i.e., installation reads [Otoole94])

that were required to complete write requests to controller X, followed by the fraction of all requests that

require an installation read and the fraction of all write requests that require an installation read.

Controller #X cache atom �lls (write): the number of atoms read into the cache in order to complete

write requests to controller X, followed by the fraction of all cache atom accesses requiring an installation

read and the fraction of all cache atom writes requiring an installation read.

Controller #X cache destages (write): the number of destage accesses (i.e., write-backs) initiated

by controller X, followed by the fraction of all requests that (eventually) generated a destage access and the

fraction of all write requests that generated a destage access.

Controller #X cache atom destages (write): the number of atoms written back from the cache of

controller X to the storage devices, followed by the fraction of all atom accesses generating (eventually) a

destage access and the fraction of all atom write accesses generating a destage access.

Controller #X cache end dirty atoms: the number of dirty atoms left in the cache of controller X

at the end of the simulation, followed by the fraction of all cache atom accesses that remain dirty at the end

of the simulation.

In addition to the per-controller cache statistics, a set of per-controller aggregate queue statistics are

generated by the request queue module. That is, queue statistics are reported for each individual controller

across all storage devices attached to that controller. The speci�c statistics reported are the same as the

\IOdriver ..." statistics described in section 5.2.5, except that they apply to each controller's back-end,

per-device request queues (and are denoted accordingly). The \Print ... stats?" parameters for the queue

statistics are the same as for the corresponding driver parameters with the word, \driver", replaced by

\controller".

If there are multiple devices attached to a controller, then the corresponding per-device queue statistics

are also reported for each device (i.e., in addition to the aggregate statistics described above). The per-device

statistics will not be reported if \Print controller per-device stats?" is set to false (0).

Total controller bus wait time: the total amount of time spent by all controllers waiting for access

to a bus (i.e., arbitration delay).

51

5.2.8 Bus statistics

No aggregate statistics (across sets of buses) are reported.

Bus #X Total utilization time: the amount of time (in milliseconds) that the bus was not idle during

the simulation run. Utilization as a fraction of total simulation time is also reported on this line.

The following set of statistics are not reported if \Print bus idle stats?" is set to false (0).

Bus #X Idle period length stats: aggregate statistics for the lengths of idle periods (i.e., periods

during which the bus was unused) observed for bus X.

The remaining statistics are not reported if \Print bus arbwait stats?" is set to false (0).

Bus #X Number of arbitrations: the number of arbitration decisions made for bus X, including

those that involved only a single requester.

Bus #X Arbitration wait time stats: aggregate statistics for bus X acquisition delays experienced by

attached components. Such delays include both the bus arbitration overhead and any wait time experienced

while other components �nish their bus transfers.

52

HP Seagate DEC HP HP

Parameter C2247A ST41601N RZ26 C2490A C3323A

Formatted Capacity 1.05 GB 1.37 GB 1.03 GB 2.13 GB 1.05 GB

RPM 5400 5400 5400 6400 5400

Diameter 3 1=2
00

5 1=4
00

3 1=2
00

3 1=2
00

3 1=2
00

Height 1:6300 3:2500 1:6300 1:6300 1:0000

Data Surfaces 13 17 14 18 7

Cylinders 2051 2098 2570 2582 2910

Zones 8 14 1 11 8

Sectors/Track 56{96 61{85 58 68{108 72-120

Table 1: Basic disk drive parameters.

6 Validation

The disk module of the storage subsystem simulator has been validated by exercising �ve disk drives (rep-

resenting three di�erent disk manufacturers; see table 1) and capturing traces of the resulting I/O activity.

Using the observed inter-request delays, each traced request stream was also run through the simulator,

which was con�gured to emulate the corresponding real subsystem. For each disk, this process was repeated

for several synthetic workloads with varying read/write ratios, arrival rates, request sizes and degrees of

sequentiality and locality. The measured and simulated response time averages match to within 0.8% for all

validation runs. (The bus, controller and device driver modules have also been validated as part of a more

comprehensive, system-level simulation environment [Ganger95a].)

Greater insight into the validity of a storage subsystem model can be gained by comparing measured

and simulated response time distributions [Ruemmler94]. Figures 1 and 2 show distributions of measured

and simulated response times for a sample validation workload of 10,000 requests. Ruemmler and Wilkes

de�ne the root mean square horizontal distance between the two distribution curves as a demerit �gure

for disk model calibration. The demerit �gure for each of the curves is given in the corresponding caption.

The worst-case demerit �gure observed over all validation runs was only 2.0% of the corresponding average

response time. To our knowledge, no previous disk drive simulator has achieved this level of accuracy.

To accurately mimic the performance behavior of a disk drive, the parameter values used to con�gure

the simulator must accurately re
ect the behavior of the actual device. The extremely close match shown

in �gure 1 was realized by measuring parameter values directly with a logic analyzer attached to the SCSI

bus. The con�guration values for the other four disks were obtained with an automatic (software) extraction

tool (described in [Worthington95]). While still accurate and much less time-consuming, these values are

not quite as precise as those obtained with the logic analyzer. We have further observed that using the

few, combined values generally present in disk drive speci�cations yields much larger discrepancies between

simulated and observed performance.

53

0 10 20 30 40

Response Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 R

eq
ue

st
s

Measured
Simulated

Figure 1: Measured and Simulated Response Time Distributions for an HP C2247A Disk Drive. The demerit

�gure for this validation run is 0.07 ms, or 0.5% of the corresponding mean response time. Characteristics of the HP

C2247A can be found in table 1 and in [HP92, Worthington94]. The validation workload parameters are 50% reads,

30% sequential, 30% local [normal with 10000 sector variance], 8KB mean request size [exponential], interarrival time

[uniform 0{22 ms].

54

0 10 20 30 40

Response Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 R

eq
ue

st
s

Measured
Simulated

0 10 20 30 40

Response Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 R

eq
ue

st
s

Measured
Simulated

(a) DEC RZ26 (b) Seagate Elite ST41601N

0 10 20 30

Response Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 R

eq
ue

st
s

Measured
Simulated

0 10 20 30 40

Response Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 R

eq
ue

st
s

Measured
Simulated

(c) HP C2490A (d) HP C3323A

Figure 2: Measured and Simulated Response Time Distributions for 4 Disk Drives. The demerit �gures for

these validation runs are 0.19 ms, 0.075 ms, 0.26 ms and 0.32 ms, respectively (or 1.2%, 0.5%, 2.0% and 1.9% of the

corresponding mean response times). drives can be found in table 1 and in [Seagate92, Seagate92a, HP93, HP94,

Worthington96]. The validation workload parameters are 50% reads, 30% sequential, 30% local [normal with 10000

sector variance], 8KB mean request size [exponential], interarrival time [uniform 0{22 ms].

55

A Copyright notices for DiskSim

DiskSim Storage Subsystem Simulation Environment (Version 2.0)

Revision Authors: Greg Ganger

Contributors: Ross Cohen, John GriÆn, Steve Schlosser

Copyright (c) of Carnegie Mellon University, 1999.

Permission to reproduce, use, and prepare derivative works of this software for internal use is granted

provided the copyright and "No Warranty" statements are included with all reproductions and derivative

works. This software may also be redistributed without charge provided that the copyright and "No War-

ranty" statements are included in all redistributions.

NO WARRANTY. THIS SOFTWARE IS FURNISHED ON AN "AS IS" BASIS. CARNEGIE MEL-

LON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED

AS TO THE MATTER INCLUDING, BUT NOT LIMITED TO: WARRANTY OF FITNESS FOR PUR-

POSE OR MERCHANTABILITY, EXCLUSIVITY OF RESULTS OR RESULTS OBTAINED FROM USE

OF THIS SOFTWARE. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY

OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT

INFRINGEMENT.

DiskSim Storage Subsystem Simulation Environment

Authors: Greg Ganger, Bruce Worthington, Yale Patt

Copyright (C) 1993, 1995, 1997 The Regents of the University of Michigan

This software is being provided by the copyright holders under the following license. By obtaining, using

and/or copying this software, you agree that you have read, understood, and will comply with the following

terms and conditions:

Permission to use, copy, modify, distribute, and sell this software and its documentation for any purpose

and without fee or royalty is hereby granted, provided that the full text of this NOTICE appears on ALL

copies of the software and documentation or portions thereof, including modi�cations, that you make.

THIS SOFTWARE IS PROVIDED \AS IS," AND COPYRIGHT HOLDERS MAKE NO REPRESEN-

TATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIM-

ITATION, COPYRIGHT HOLDERS MAKE NO REPRESENTATIONS OR WARRANTIES OF MER-

CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE

SOFTWARE OR DOCUMENTATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPY-

RIGHTS, TRADEMARKS OR OTHER RIGHTS. COPYRIGHT HOLDERS WILL BEAR NO LIABILITY

FOR ANY USE OF THIS SOFTWARE OR DOCUMENTATION.

This software is provided AS IS, WITHOUT REPRESENTATION FROM THE UNIVERSITY OF

MICHIGAN AS TO ITS FITNESS FOR ANY PURPOSE, AND WITHOUT WARRANTY BY THE UNI-

VERSITY OF MICHIGAN OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING WITH-

OUT LIMITATION THE IMPLIED MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-

56

POSE. THE REGENTS OF THE UNIVERSITY OF MICHIGAN SHALL NOT BE LIABLE FOR ANY

DAMAGES, INCLUDING SPECIAL , INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES,

WITH RESPECT TO ANY CLAIM ARISING OUT OF OR IN CONNECTION WITH THE USE OF OR

IN CONNECTIONWITH THE USE OF THE SOFTWARE, EVEN IF IT HAS BEEN OR IS HEREAFTER

ADVISED OF THE POSSIBILITY OF SUCH DAMAGES

The names and trademarks of copyright holders or authors may NOT be used in advertising or publicity

pertaining to the software without speci�c, written prior permission. Title to copyright in this software and

any associated documentation will at all times remain with copyright holders.

57

References

[Ganger93] G. Ganger, Y. Patt, \The Process-Flow Model: Examining I/O Performance from the System's Point of

View", ACM SIGMETRICS Conference, May 1993, pp. 86{97.

[Ganger93a] G. Ganger, B. Worthington, R. Hou, Y. Patt, \Disk Subsystem Load Balancing: Disk Striping vs.

Conventional Data Placement", Hawaii International Conference on System Sciences, January 1993, pp. 40{49.

[Ganger94] G. Ganger, B. Worthington, R. Hou, Y. Patt, \Disk Arrays: High Performance, High Reliability Storage

Subsystems", IEEE Computer, Vol. 27, No. 3, March 1994, pp. 30{36.

[Ganger95] G. Ganger, \System-Oriented Evaluation of Storage Subsystem Performance", Ph.D. Dissertation, CSE-

TR-243-95, University of Michigan, Ann Arbor, June 1995.

[Ganger95a] G. Ganger, \Generating Representative Synthetic Workloads An Unsolved Problem", Computer Mea-

surement Group (CMG) Conference, Decemeber 1995, pp. 1263{1269.

[Ganger98] G. Ganger, B. Worthington, Y. Patt, \The DiskSim Simulation Environment Version 1.0 Reference

Manual", Technical Report CSE-TR-358-98, University of Michigan, Ann Arbor, February 1998.

[Holland92] M. Holland, G. Gibson, \Parity Declustering for Continuous Operation in Redundant Disk Arrays",

ACM International Conference on Architectural Support for Programming Languages and Operating Systems,

October 1992, pp. 23{35.

[HP91] Hewlett-Packard Company, \HP C2247 3.5-inch SCSI-2 Disk Drive { Technical Reference Manual", Edition

1, Draft, December 1991.

[HP92] Hewlett-Packard Company, \HP C2244/45/46/47 3.5-inch SCSI-2 Disk Drive Technical Reference Manual",

Part Number 5960-8346, Edition 3, September 1992.

[HP93] Hewlett-Packard Company, \HP C2490A 3.5-inch SCSI-2 Disk Drives, Technical Reference Manual", Part

Number 5961-4359, Edition 3, September 1993.

[HP94] Hewlett-Packard Company, \HP C3323A 3.5-inch SCSI-2 Disk Drives, Technical Reference Manual", Part

Number 5962-6452, Edition 2, April 1994.

[Karedla94] R. Karedla, J. S. Love, B. Wherry, \Caching Strategies to Improve Disk System Performance", IEEE

Computer, Vol. 27, No. 3, March 1994, pp. 38{46.

[Lee91] E. Lee, R. Katz, \Peformance Consequences of Parity Placement in Disk Arrays", ACM International Con-

ference on Architectural Support for Programming Languages and Operating Systems, 1991, pp. 190{199.

[Lee93] E. Lee, R. Katz, \An Analytic Performance Model of Disk Arrays", ACM Sigmetrics Conference, May 1993,

pp. 98-109.

[NCR89] NCR Corporation, \NCR 53C700 SCSI I/O Processor Programmer's Guide", 1989.

[NCR90] NCR Corporation, \Using the 53C700 SCSI I/O Processor", SCSI Engineering Notes, No. 822, Rev. 2.5,

Part No. 609-3400634, February 1990.

[NCR91] NCR Corporation, \Class 3433 and 3434 Technical Reference", Document No. D2-0344-A, May 1991.

[Otoole94] J. O'Toole, L. Shrira, \Opportunistic Log: EÆcient Installation Reads in a Reliable Storage Server",

USENIX Symposium on Operating Systems Design and Implementation (OSDI), November 1994, pp. 39{48.

[Ousterhout85] J. Ousterhout, H. Da Costa, D. Harrison, J. Kunze, M. Kupfer, J. Thompson, \A Trace-Driven

Analysis of the UNIX 4.2 BSD File System", ACM Symposium on Operating System Principles, 1985, pp. 15{24.

[Rosenblum95] M. Rosenblum, S. Herrod, E. Witchel, A. Gupta, \Complete Computer Simulation: The SimOS

Approach", IEEE Journal of Parallel and Distributed Technology, Winter 1995, pp. 34-43.

58

[Ruemmler93] C. Ruemmler, J. Wilkes, \UNIX Disk Access Patterns", Winter USENIX Conference, January 1993,

pp. 405{420.

[Ruemmler94] C. Ruemmler, J. Wilkes, \An Introduction to Disk Drive Modeling", IEEE Computer, Vol. 27, No. 3,

March 1994, pp. 17{28.

[Satya86] M. Satyanarayanan, Modeling Storage Systems, UMI Research Press, Ann Arbor, MI, 1986.

[Schindler99] J. Schindler, G. Ganger, \Automated Disk Drive Characterization", Technical Report CMU-CS-99-176,

Carnegie Mellon University, December 1999.

[Seagate92] Seagate Technology, Inc., \SCSI Interface Speci�cation, Small Computer System Interface (SCSI), Elite

Product Family", Document Number 64721702, Revision D, March 1992.

[Seagate92a] eagate Technology, Inc., \Seagate Product Speci�cation, ST41600N and ST41601N Elite Disc Drive,

SCSI Interface", Document Number 64403103, Revision G,

[Thekkath94] C. Thekkath, J. Wilkes, E. Lazowska, \Techniques for File System Simulation", Software { Practice

and Experience, Vol. 24, No. 11, November 1994, pp. 981{999.

[Worthington94] B. Worthington, G. Ganger, Y. Patt, \Scheduling Algorithms for Modern Disk Drives", ACM

SIGMETRICS Conference, May 1994, pp. 241{251.

[Worthington95] B. Worthington, G. Ganger, Y. Patt, J. Wilkes, \On-Line Extraction of SCSI Disk Drive Parame-

ters", ACM SIGMETRICS Conference, May 1995, pp. 146{156.

[Worthington95a] B. Worthington, \Aggressive Centralized and Distributed Scheduling of Disk Requests", Ph.D.

Dissertation, CSE-TR-244-95, University of Michigan, Ann Arbor, June 1995.

[Worthington96] B. Worthington, G. Ganger, Y. Patt, J. Wilkes, \On-Line Extraction of SCSI Disk Drive Parame-

ters", Technical Report, University of Michigan, Ann Arbor, 1996, in progress.

59

