
 Appeared in the Proceedings of the ACM Sigmetrics Conference, May, 1993, pp. 86-97.

The Process-Flow Model: Examining I/O Performance from the

System's Point of View

Gregory R. Ganger, Yale N. Patt

Department of Electrical Engineering and Computer Science

University of Michigan, Ann Arbor 48109-2122

ganger@eecs.umich.edu

Abstract

Input/output subsystem performance is currently

receiving considerable research attention. Signi�cant

e�ort has been focused on reducing average I/O re-

sponse times and increasing throughput for a given

workload. This work has resulted in tremendous ad-
vances in I/O subsystem performance. It is unclear,

however, how these improvements will be re
ected in

overall system performance. The central problem lies in

the fact that the current method of study tends to treat

all I/O requests as equally important. We introduce

a three class taxonomy of I/O requests based on their

e�ects on system performance. We denote the three

classes time-critical, time-limited, and time-noncritical.

A system-level, trace-driven simulation model has been

developed for the purpose of studying disk scheduling

algorithms. By incorporating knowledge of I/O classes,

algorithms tuned for system performance rather than

I/O subsystem performance may be developed. Tra-

ditional I/O subsystem simulators would rate such al-

gorithms unfavorably because they produce suboptimal

subsystem performance. By studying the I/O subsys-

tem via global, system-level simulation, one can more

easily identify changes that will improve overall system

performance.

0

1 Introduction

Input/output subsystem performance is currently re-

ceiving considerable research attention. Signi�cant ef-

fort has been focused on reducing average response

times and increasing throughput for a given workload

(whether synthetically generated or traced from real-

world environments). The results of this work are tre-

mendous advances in I/O subsystem performance. Un-

fortunately, in many cases it is not clear how these im-

provements will be re
ected in overall system perform-

ance. The central problem lies in the fact that the cur-

rent method of study tends to treat all I/O requests

as equally important. We believe, however, that there

are at least three distinct classes of I/O requests in

terms of their e�ect on system performance. We de-

note these three classes of I/O requests as time-critical,

time-limited and time-noncritical.

A request is time-critical if the process (the term we

will use to describe any instruction stream) which gen-

erated it, either implicitly or explicitly, must halt ex-

ecution until the request has completed. Time-limited

requests are those which must be completed within some

amount of time or they will become time-critical. Lastly,

time-noncritical signi�es a request which does not re-

quire any process to wait for its completion, yet must be

completed to maintain the accuracy of the non-volatile

storage and to free any resources (e.g., memory) that

are held on its behalf.

We denote the two most important negative per-

formance consequences of input/output as false idle

time and false computation time. False idle time is that

time during which a processor executes the idle loop

because all active processes are blocked waiting for I/O

requests to complete. This is di�erentiated from regu-

lar idle time which is due to a lack of available work in
the system. False computation time denotes time that

is wasted handling a process that has blocked waiting

for an I/O request to complete. This includes the time

required to disable the process, context switch to a new

process and, upon completion, re-enable the process.

To reduce the negative impacts of I/O on system

performance, time-critical requests should be completed

as quickly as possible, time-limited requests should be

completed within their time limits, and time-noncritical

requests should be completed in a timely manner with

deference to the �rst two I/O classes. Of course, achiev-

ing these goals requires that the I/O subsystem have full

knowledge of the appropriate classi�cation for each in-

coming request.

Taking a "systems" approach to I/O research may

require a methodology beyond conventional trace-driven

simulation of the I/O subsystem and graphs of response

time and throughput for streams of I/O requests. These

component metrics fail to capture the e�ect of I/O sub-

system modi�cations on overall system performance.

To understand the performance interaction between the

I/O subsystem and the rest of the system, a more com-

plete method of study is required. Toward this end, the

conventional subsystem simulation model is supplemen-

ted with a system-level model and the I/O traces are re-

placed by traces of system activity (including I/O activ-

ity). We call our simulation environment the process-

ow model.

The process-
ow model reproduces the
ow of work

in the system and its interaction with the I/O subsys-

tem. Rather than focusing simply on the stream of I/O

requests emanating from the system, the process-
ow

model focuses on the processes which reside in the sys-

tem at any point in time. Each process is represented

by a stream of I/O requests and other important events

which may change the state of the process (or another

process). In UNIX TM such events would include fork,

exit, sleep, wakeup, kernel entry, and kernel exit. The

time between each event is computation (think) time.

External interrupts, such as clock interrupts, are also

included in the simulation. I/O requests are sent to an

I/O subsystem simulator which generates interrupts in

the process-
ow model at the appropriate times. By

simulating the way in which processes interact with

their I/O requests, this model provides for recognizing

the class to which each I/O request belongs. In addi-

tion, changes in I/O performance can be measured in

terms of their e�ect on overall system performance.

Our contribution is not the development of a

new model of system activity, but rather the use of

this model in examining the performance interaction

between the I/O subsystem and the rest of the system.

We have instrumented the operating system to produce

traces of system activity for input to our process-
ow

simulator as well as for validation purposes. Our ini-

tial experiments center on alternative disk scheduling

strategies using class information about pending I/O

requests. We �nd that recognizing and scheduling re-

quests based on class membership improves system per-

formance even though I/O performance as measured by

component metrics is degraded. This observation in-

dicates the potential importance of system-level models

like the process-
ow model in focusing the study of I/O

performance on those aspects which will most improve

overall system performance.

The remainder of the paper is organized as follows.

Section 2 acknowledges previous work related to study-

ing the I/O subsystem in terms of system performance

and identifying classes of I/O requests. Section 3 ex-

pands the description of our I/O request taxonomy.

Section 4 describes our process-
ow model. Section 5

discusses the remainder of our experimental apparatus.

Section 6 investigates disk scheduling algorithms which

use knowledge of I/O request classes to improve system

performance. Section 7 presents our conclusions and

some areas for future work.

2 Previous Work

As with many other topics in computer design, one �nds

discussions of system-level modeling in the archives of

IBM. [Seam69] and [Chiu78], for example, describe such

modeling e�orts used mainly for examining various sys-

tem con�gurations and evaluating proposed changes.

Our process-
ow model revisits this methodology and

extends it. [Haig90] describes a system performance

measurement technique which is very similar to our tra-

cing methodology. However, the end purpose for this

technique is to measure system performance under vari-

ous workloads rather than as input to a simulator to

study various system design options. [Rich92] describes

a set of tools under development which are intended to

allow for studying I/O performance in much the same

fashion as ours. The major di�erence is that they are

basing their tools on instruction-level traces. While cer-

tainly the ideal case (i.e., simulating the entire activity

of the system is more accurate than abstracting part of

it away), we do not believe that it is practical at this

time. The enormous simulation times and instruction
trace storage requirements, as well as the need for in-

struction level traces of operating system functionality,

make this approach both time- and cost-prohibitive. Fi-

nally, [Mill91] makes use of a simple system-level model

to study the e�ects of read-ahead and write bu�ering

on supercomputer applications.

Although we have found no previous work which

speci�cally attempts to classify I/O requests as is done

in this paper, previous researchers have noted di�er-

ences between various I/O requests. Many have recog-

nized that synchronous (time-critical) �le system writes

are undesirable [Oust90] [McVo91]. [Ruem93] recog-

nizes the di�erence between synchronous (time-critical)

and asynchronous (time-limited and time-noncritical)

disk requests. They captured this information (as

agged by the �le system) in their extensive traces of

disk behavior. They found that 50-75% of disk requests

are synchronous, partially due to the write-through

meta-data cache on the systems traced. It has also been

noted that bursts of delayed (time-noncritical) writes

caused by periodic update policies can seriously degrade

performance. [Cars92] and [Cars92a] argue that disk

cache performance should be measured in terms of its

e�ect on read performance. They study di�erent update

policies with analytical models using read performance

as their metric. They suggest that a disk scheduling

algorithm which gives preference to reads may provide

signi�cant improvements. While not describing and dis-

tinguishing between the classes of I/O requests as we

have done, they do make a solid distinction between

two types of I/O requests based on process interaction.

3 I/O Request Taxonomy

3.1 Three Classes

We separate I/O requests into three classes | time-

critical, time-limited and time-noncritical. This tax-

onomy is based upon the interaction between the I/O

request and the process which generated it (explicitly or

implicitly). An I/O request is time-critical if the pro-

cess which generated it must stop execution until the

I/O is complete. Examples of time-critical I/O requests

include page faults, synchronous �le system writes and

database block reads. Time-limited requests are those

that will become time-critical if not completed within

some time limit. Bene�cial �le system read-aheads are

an example of this. The third class of requests is time-

noncritical. These are the requests which no process

waits for but which must be completed to maintain

a stable copy of the data and to free the resources

(e.g., memory) held on their behalf. Examples of time-

noncritical requests are delayed �le system writes and

database writes for which the log has already been writ-

ten.

Both time-critical requests and time-noncritical re-

quests can be viewed as special cases of time-limited

requests. Time-critical requests are time-limited re-

quests with in�nitely short time lmiits, whereas time-

noncritical requests are time-limited requests with an

in�nite time limit.

3.2 Performance Impact

Storage accesses interfere with system performance in

several ways. Some of these, such as increased system

bus and memory bank contention, depend simply on the

quantity and timing of the accesses and are essentially

independent of our taxonomy. Others, such false com-

putation time and false idle time, are highly dependent

on the class of the I/O request. We designate false com-

putation time as that computation required to stop a

process that must wait for an I/O request. This time

includes removing the process from the runnable queue,

context-switching to another process, and re-enabling

the original process when the I/O completes. We desig-

nate false idle time as the time that the CPU executes
the idle loop because all processes are waiting for I/O

requests to complete rather than because there is no

work in the system at all.

Time-critical accesses, by de�nition, cause the pro-

cesses which initiate them to block and wait for their
completion. In addition to false computation time, false

idle time is accumulated if there are no other processes

which can be executed when the current process blocks.

This is certainly the largest concern, as it completely

wastes the CPU for some period of time (independent of

the processor speed) rather than a set number of cycles.

To reduce false idle time, time-critical requests must be

expedited.

Time-limited requests are similar to time-critical re-

quests in their e�ect on performance. The major di�er-

ence is that they are characterized by a time window

in which they must complete. If completed within this

window they cause no false idle time and no false com-

putation time. Therefore, it is critical to complete these

requests within their time limits. Time-limited requests

are often speculative in nature, such as read-aheads. If

such prefetched blocks are not accessed, performance

may be nagetively a�ected. Sending any request to

the I/O subsystem and handling the subsequent inter-

rupt(s) requires CPU time, which in this case can be

considered false computation time. Any useless requests

will not directly cause any process to stop, but they may

interfere with the completion of time-critical and useful

time-limited requests. Also, the cache of disk blocks will

be polluted with useless blocks, which may lower its hit

rate causing additional I/O requests to be generated.

Time-noncritical requests impact performance in-

directly. They can interfere with the completion of time-

limited and time-critical requests, causing added false

idle time and false computation time. Time-noncritical

requests are often write requests which must be com-

pleted both to bring the on-disk copy of the data up-

to-date and to free the system resources (e.g., memory)

that are held on their behalf. Delays in completing these

requests can reduce the e�ectiveness of the in-memory

disk cache. Because dirty blocks cannot be replaced un-

til their contents have been written to the next lower
level in the hierarchy, either other (potentially useful)

blocks must be replaced or the process which needs the

new block must wait for the write of the dirty block to

be completed. The �rst option can reduce the hit rate of

the cache causing additional I/O requests. The second

option has the e�ect of converting the time-noncritical

request into a time-critical request. Time-noncritical

requests can also be given time limits if the guarantees

o�ered by the system require that written data must

reach stable storage within a given amount of time.

These requests are not really time-limited because a

process will not block if they don't complete within the

guaranteed time, but the I/O subsystem must be de-

signed to match such guarantees. Further, these time

limits are usually su�ciently large to o�er a good deal

of latitude in scheduling.

3.3 Workloads

For purposes of clari�cation, we will describe several

possible workloads in terms of our I/O taxonomy.

Consider a workload which consists solely of time-

noncritical requests. This would be the case if all reads

are handled by the in-memory disk cache and the only

requests to the I/O subsystem are updates for dirty

cache blocks and background activity such as disk reor-

ganization. Given such a workload, changes to the I/O

subsystem could alter system performance in two ways.

First, if the time required to compute time-noncritical

requests were increased, a less e�ective cache would res-

ult. Second, if the subsystem throughput was insuf-

�cient to handle the
ow of time-noncritical requests,

the I/O subsystem would become a true bottleneck to

overall system performance. As an aside, we note that

(ignoring these two possible performance problems) this

is precisely the type of system which is modeled by

trace-driven simulation of the I/O subsystem. That is,

changes to the completion times of I/O requests do not

e�ect the generation of subsequent requests.

Another possible workload could consist exclusively

of time-critical requests. This might occur if all writes

were synchronous and there was no read-ahead. Such

a system would tend to be limited by the I/O subsys-

tem. Certainly false computation time could be a prob-

lem and, if there were not enough work to cover the

time during which processes are blocked, false idle time

would be evident. If the computation time between I/O

requests is assumed to be zero, this represents the type

of system modeled by I/O subsystem simulators assum-

ing a constant number of outstanding requests.

Far more likely than either of these cases is a mix-

ture of time-critical, time-limited and time-noncritical

requests. In such a workload, false computation time

will accumulate as time-critical requests are serviced.

This is also true for time-limited requests which fail

to complete within their time limits. False idle time

will �ll the time during which all active processes are

blocked waiting for I/O requests. To reduce false idle

time, it is important to complete time-critical requests

as quickly as possible. Further, time-limited requests

must be completed within their time limits to avoid

both false computation time and false idle time. Fi-

nally, time-noncritical requests should be completed in

a timely manner with deference to the goals related to

time-limited and time-critical requests. If there is suf-

�cient work for the CPU, it is not clear whether it is

more important to handle time-limited requests or to

handle time-critical requests. Another open question

is when (if ever) delaying time-noncritical requests will

have the negative indirect impacts on performance de-

scribed above. These are items for future research.

In addition to using class information to tune the

I/O subsystem for system performance, this informa-

tion can be used to improve the storage management

software which utilizes the I/O subsystem. The im-

provements should center on reducing the number of

I/O requests (obviously), but also on reducing the crit-

icality associated with each request. For example, time-

critical requests should be made time-limited or time-

noncritical. Also, the time limits associated with time-

limited requests should be maximized.

3.4 Class Identi�cation

Dynamically identifying the class to which an I/O re-

quest belongs should not require changes to user ap-

plications. Some changes to the system code which

makes calls to the device driver may be required. We as-

sume that the interface between these two components

is clean, as with the DDI/DKI [DDI90] in UNIX TM .

The key then is to get the class information past the in-

terface. The various pieces of system code which call the

device driver to initiate the requests can generally infer

the proper I/O classi�cation based on their higher-level

function. Examples of such code include the �le system,

virtual memory manager and application processes (via

Event Description
Fork Process creation
Exit Process completion
Sleep Disable current process

Wakeup Enable blocked process
System call Kernel entry

Trap Kernel entry (if user)
Return Kernel exit
Dispatch Make dispatch decision
Switch Context switch
Request I/O request generation
Access I/O access initiation

Interrupt Interrupt system
Int. end Interrupt complete

Table 1: List of major events in process-
ow model.

system calls). If the class for a request is not known at

the time it is initiated, the identi�cation must be done

through a new interface to the device driver.

Identifying the time limits associated with time-

limited requests is more di�cult. For example, the time-

limit for a bene�cial �le system read-ahead will depend

upon how much computation must be done before the

data is required and whether the process in question gets

context switched out and must wait for another (prob-

ably higher-priority) process. Therefore, the time limit

can only be estimated. This estimate should be as high

as possible to allow latitude in scheduling decisions, but

at the same time as low as necessary to avoid the penal-

ties associated with overshooting the actual time limit.

Examining various methods of estimating the time limit

for time-limited requests and the penalties associated

with each is an item for future research.

4 Process-Flow Model

The process-
ow model is a high-level, trace-driven

simulator of a computer system. It models the pro-

cessor(s), the processes, the dispatcher, the interrupt

controller, and the I/O subsystem (including the device

drivers). It is driven by traces of key system-level events

(see table 1). For validation purposes, the model is de-

signed speci�cally to model NCR's System 3000 level

3, 4, and 5 computer systems running under a version

of UNIX TM . However, it has been built in a highly

modular, parameterized fashion to allow the study of a

wider range of design choices.

Because of the high-level nature of the events which

drive the model, some of the hardware-speci�c behavior

is not modeled. For example, we do not model the cold-

cache e�ect caused by context switches. Further, we do

not model system bus contention or memory bank con-

tention caused by multiple processors and I/O requests.

While these e�ects will reduce the accuracy of our res-

ults to some degree, we believe that the abstraction is

not unreasonable. A detailed study of how this abstrac-

tion a�ects our simulation results and how these issues
might be incorporated is an item for future research.

5 Experimental Apparatus

5.1 Trace Collection

To validate and experiment with the process-
ow model,

we have used traces of real system activity. SVR4 MP

UNIX TM , a production multiprocessor version of Sys-

tem V Release 4 UNIX developed at NCR Columbia,

has been instrumented to collect such traces. The in-
formation is gathered in real-time and stored in kernel

memory. These traces allow us to accurately recreate

the system activity present during the traced period.

For each event, we capture a timestamp, the event type

and any additional information required to fully under-

stand the event (such as the new process id for a fork

or the interrupt vector for an interrupt). The resolution

of the timestamps is less than 840 nanoseconds. Our

instrumentation was designed to be as unobtrusive as

possible, increasing the dynamic instruction count by

less than 0.1% in the worst case. Also, to prevent unne-

cessary paging due to the use of main memory as a trace

bu�er, the trace machine was equipped with additional

main memory. The experimental system was an NCR

3433, a 33MHz Intel 80486 machine equipped with 48

MB of main memory (44 MB for system use and 4 MB

for the trace bu�er) and 535 MB of secondary storage

(a Maxtor LXT-535SY hard drive).

5.2 Traced Workloads

While many traces were gathered for use in validating

the simulator, the data presented in section 6 are for

only one of these traces. We chose a �le compression

trace for the experiments due to its signi�cant I/O re-

quirements. The trace was captured while compressing

two large (30-40 MB) �les simultaneously. Two pro-

cesses (one to compress each �le) were started at approx-

imately the same time. The completion times presented

in section 6 represent the times when the last of the two

processes ends execution.

To understand the behavior of the I/O stream in the

trace, one must understand the nature of the sources of

the I/O requests. The compression processes sequen-

tially read a large �le and sequentially write out a large

�le. The �rst read request is time-critical because the

block is not in the cache. The �le system, which is based

on the Berkeley Fast File System [McKu84], also gener-

ates a time-limited read-ahead request. Each time the

previous read-ahead block is accessed, a time-limited

read request is generated for the next block. So, es-

sentially all of the reads are time-limited. The writes,

however, are delayed by the �le system so that the pro-

cesses do not have to wait for them to actually be sent

to disk. The dirty blocks are sent to the I/O subsystem

at some later point in time by a system-resident back-

ground process awakened once per second. It checks the

blocks in one-sixtieth of the cache, marks all dirty blocks

and initiates write requests for them. This algorithm

represents a signi�cant reduction in write burstiness

(as studied in [Cars92]), but does not completely al-

leviate this phenomenon. With the exception of one

time-critical write caused by each �le creation, all of

the writes are time-noncritical.

5.3 Simulator Validation

As mentioned above, the tracing mechanism gathers

enough information to allow for both execution and

validation of the process-
ow model. The process-
ow

model was validated by using an I/O subsystem model

which uses the additional I/O access information to re-

create the exact behavior of the traced I/O subsystem.

Utilizing this model, our process-
ow simulator pro-

duced an identical ordering of events, with timestamps

Processors 1

Clock Interrupt Frequency �10 ms
Avg. Clock Intr. Handler 92 �s
Avg. I/O Completion Intr. 380 �s

Avg. Context Switch 62 �s

Disks 1
Data Surfaces 11
Spindle RPM 3600
Avg. Seek 12.0 ms

Read Bu�er Size 64 KB
Write Bu�er Size 64 KB

Zones 8
Blocks Per Track 46-71

Table 2: System Parameters.

very close to those traced (less than 0.05 percent de-

viation). The I/O subsystem simulator was validated

by comparing the time required to complete requests in

the simulatorwith the actual response times traced. Be-

cause we simulated only the disk (rather than the disk,

the busses, the controller, etc...), the variation was more

substantial. After allowing for average interconnection

overheads, we found that our I/O subsystem simulation

was within 10% of the actual system for the I/O streams

validated.

6 Disk Scheduling Experiment

6.1 Priority Scheduling

Table 2 lists important parameters used for the ex-

periments presented in this section. They match the

observed values of the system from which the traces

were gathered.

There have been many studies of alternative

disk scheduling algorithms [Teor72] [Geis87] [Selt90]

[Jaco91]. Most of them use request sorting to reduce

seek times while incorporating some type of fairness

algorithm. Some of the more recent work has added

rotational position to the equation, targeting a reduc-

tion in total access time [Selt90] [Jaco91]. In all these

cases, however, the work is limited by the fact that all

requests are treated equally. As described in section

3, we have separated I/O requests into three distinct

classes. From a short-term viewpoint, time-critical I/O

requests are clearly more important to system perform-

ance than time-noncritical requests. On the other hand,

if time-noncritical requests are consistently starved for

disk time, the system may run out of memory resources,

changing the status of these requests to time-critical.

Three disk scheduling algorithms are compared in

this section. The �rst algorithm is the standard elevator

sort, also known as the modi�ed SCAN or LOOK al-

gorithm. The second algorithm, Priority #1, maintains

two separate request queues. Time-critical and time-

limited requests are placed in the high-priority queue

and scheduled by shortest seek. Requests to the same

cylinder are sorted in ascending order to take advant-

age of the disk bu�er. Combining time-critical and

time-limited requests into a single queue does not ex-

ploit the di�erence between the two but result in a ma-

jor performance bene�t by separating them from time-

noncritical requests. When a disk completes its current

access, the next request from its high-priority queue is

sent to the disk. Time-noncritical requests are placed

in the second queue and scheduled by the modi�ed

SCAN algorithm. If the high-priority queue is empty,

the next request from the low-priority queue is sched-

uled. When the higher-priority requests interrupt the

modi�ed SCAN of the low-priority queue, the state of

the SCAN is retained. That is, when the disk completes

all requests from the high-priority queue, it returns to

its previous place in the modi�ed SCAN of the low-

priority queue. The third sorting algorithm, Priority

#2, di�ers from Priority #1 in that it restarts the low-

priority queue SCAN at the nearest cylinder which has

a pending request rather than returning to the previous

SCAN point.

Table 3 presents performance data for three dif-

ferent scheduling algorithms. The priority-based al-

gorithms provide 13-14% improvement in system per-

formance by distinguishing between the various classes

of I/O requests. We measure system performance as

the time required to complete the application processes

in the system. This means that the queue may con-

tain an increased number of pending time-noncritical

requests at the completion of the application. If the

system continues to be extremely busy (i.e., no period

of low activity), additional problems may be presented

by this large queue. In our trace, the CPU is idle after

Elevator Sort Priority #1 Priority #2

Execution Time (ms) 555193 479435 477755
% of Base 100.0 86.35 86.05

False Idle Time (ms) 114101 35848 34357
Context Switches 6523 14026 14122

Critical Requests 4 4 4

Time-Limited Requests 17777 17777 17777
Avg. Time Limit (ms) 34.9 44.6 44.1
% Satis�ed In Time 89.14 66.11 66.32

Avg. Response Time (ms) 36.3 43.3 43.7
Max. Response Time (ms) 1035.81 159.37 123.40

Non-Critical Requests 8364 8364 8364
Avg. Response Time (ms) 118 14960 16307

Avg. Access Time (ms) 7.58 14.10 14.11
% of Base 100.00 186.02 186.15
Bu�er Hits 13157 8056 8045

Avg. Seek Distance 148.2 409.2 409.7
Avg. Seek Time (ms) 3.44 9.70 9.72

Table 3: Performance Data for the Disk Scheduling Algorithms.

the completion of these two processes. This allows for

the backlog of time-noncritical requests to be serviced.

Due to the delaying nature of the �le system, not all

of the write requests which make up the �le have even

been initiated at this point. In all of our experiments,

the last I/O request of the compressed �les was com-

pleted at approximately the same time.

The improvement in system performance is derived

mainly from the 68-70% reduction in false idle time.

While the average response time for time-limited re-

quests has increased, its variation has been reduced. In

particular, the lengthy response times which are seen

during bursts of activity do not a�ect the time-limited

requests under a class-based scheme nearly as much as

with the elevator algorithm. This is evident in the or-

der of magnitude reduction in maximum response time

for time-limited requests. The average response time

for time-limited requests is much lower for the elevator

sort, but most of these time-limited requests far under-

shoot the time limit (due to hitting in the read bu�er).

Having the request complete just prior to the time limit

is no worse in terms of system performance than having

it complete in zero time.

While system performance is increased, the per-

formance of the I/O subsystem (as measured by com-

ponent metrics) is degraded. The average seek times are

increased by over 180%. This occurs because the sort-

ing algorithm deviates from seek-optimal ordering to

expedite high-priority requests. In addition, the num-

ber of hits in the read bu�er is reduced by over 35%.

The reason for this is less obvious. Rather than letting

processes block until most or all of the time-noncritical

requests complete, the class-based algorithms force the

requests for which processes would block to be handled

immediately. Time-noncritical write requests and time-

limited read requests are therefore interleaved, which

reduces the performance of the disk read bu�er. The in-

creased seek times and reduced bu�er hit ratio account
for only an 86% increase in access times. The remainder

of the increase in average response time is due to queue

times. Part of this increase is a secondary e�ect of the

increased access times. More importantly, however, be-

cause time-limited requests are given precedence over

time-noncritical requests, the processes continue to ex-

ecute and create new I/O requests. This increases the

rate at which I/O requests are generated, which in turn

increases the queue times in the I/O subsystem.

Finally, Priority #1, which returns to the previ-

Elevator Sort Priority #2
Preempt Non-preempt Preempt Non-preempt

Execution Time (ms) 555,193 553,006 477,755 463,392
% of Base 100.0 99.61 86.05 83.47

False Idle Time (ms) 114,101 111,182 34,357 21,034
Context Switches 6523 6219 14,026 10,745

Critical Requests 4 4 4 4

Time-Limited Requests 17,777 17,777 17,777 17,777
Avg. Time Limit (ms) 34.9 31.0 44.1 29.5
% Satis�ed In Time 89.14 84.15 66.32 61.11

Avg. Response Time (ms) 36.3 38.8 43.7 43.5
Max. Response Time (ms) 1035.81 1616.69 123.40 133.02

Non-Critical Requests 8364 8364 8364 8364
Avg. Response Time (ms) 118 1936.8 16307 20782

Avg. Access Time (ms) 7.58 8.30 14.11 14.21
% of Base 100.00 109.50 186.15 187.47
Bu�er Hits 13,157 12,506 8045 8913

Avg. Seek Distance 148.2 181.7 409.7 492.2
Avg. Seek Time (ms) 3.44 4.22 9.72 11.22

Table 4: Performance Data Related to CPU Preemption upon I/O Completion.

ous location in the elevator sort after completing high-

priority requests, performs slightly worse than Priority

#2, which moves to the nearest cylinder with a request

and continues to SCAN. This results in a longer seek in

the former case, which could potentially delay the ser-

vicing of a time-limited request which arrives before the

current request has completed.

6.2 Preempting upon I/O Completion

While system performance is improved by reducing the

amount of false idle time, we did �nd that the improve-

ment was not equal to the reduction in false idle time.

The major reason for this is a large increase (over 115%)

in the number of context switches, most of which add to

false computation time. The additional context switches

are caused by a reduction in the percentage of time-

limited read requests which are satis�ed within their

time limits. Whereas the elevator algorithm tends to

allow the processes to block until a large burst of time-

noncritical activity passes, the priority algorithms do

not. Although the class-based algorithms give priority

to time-limited (and time- critical) requests, they can

not predict when these requests will arrive. The res-

ult is an interleaving of low-priority requests and high-

priority requests, which in turn results in the increase

in missed time limits and context switches.

Table 4 provides data related to whether or not pro-

cesses which are blocked waiting for I/O requests should

preempt the currently running process when they are

awakened. The class-based schemes tend to cause an
increased number of process switches due to missing

time limits, since the time-limited and time-critical I/O

requests which cause these context switches will tend

to complete before the next process reaches a stopping

point. Preempting the current process increases false

computation time and can increase the interleaving of

sequential read requests with other requests. A policy

which does not preempt an active process in favor of a

newly enabled process improves system performance by

about 3% when using the class-based algorithms. The

improvement comes from a 23% reduction in the number

of context switches and an 11% increase in the number
of read bu�er hits. These improvements also streamline

process execution, resulting in a 35-40% reduction in

false idle time. It is interesting to note that with a con-

ventional sorting algorithm (represented by the elevator

 Preempt on Wake - Priority #1
 No Preempt - Priority #1
 3Q - No Preempt - Priority #1
 3Q - No Preempt - Priority #2

|
0

|
30

|
60

||460

|470

|480

|490

|500

|510

|520

|530

|540

|550

|560

 Timeout Value (sec)

 T
ot

al
 E

xe
cu

tio
n

Ti
m

e (
se

c)

Unlimited

Figure 1: System performance using timeouts

sort), this decision provides a small improvement in per-

formance (about 0.4%). The implication is that it may

be necessary to re-examine process scheduling method-

ology when implementing these new disk scheduling al-

gorithms.

6.3 Timeouts

Scheduling algorithms which expedite the completion

of time-critical and time-limited I/O requests get the

majority of their performance by postponing the com-

pletion of time-noncritical requests. If the system is ex-

tremely busy (as is the case in our environment), time-

noncritical requests may be starved for extended peri-

ods of time. Depending on the guarantees which the

system must provide to its users and the problem of

resource (e.g., main memory) contention, excessive re-

quest completion times may be unacceptable. Figure

1 shows total execution time for two di�erent timeout
schemes (with some parameter alterations) given dif-

ferent timeout values. A timeout value of zero corres-
ponds to the shortest seek algorithm employed by the

high priority queue (all requests are immediately timed

out). An unlimited timeout value (or no timeout value)

corresponds to the original priority schemes.

The �rst scheme (represented by Preempt on

Wake - Priority #1 and No Preempt - Priority

#1) simply causes a request to be moved from the low-

priority queue to the high-priority queue if it waits in

the queue for longer than the timeout value. The second

scheme (identi�ed by 3Q) maintains a third queue for

partially timed-out requests. When a low-priority re-

quest has waited for longer than half of the timeout

value, it is moved to the timed-out queue. Requests

are chosen from the timed-out queue before the low-

priority queue. Requests are still chosen from the high-

priority queue �rst. This scheme improves performance

by allowing the disk to selectively handle low-priority

requests which are in danger of becoming high-priority

requests before the other low-priority requests. The im-

provement to system performance is minimal (less than

1% di�erence between No Preempt - Priority #1

and 3Q - No Preempt - Priority #1).

Figure 1 also indicates that preemption on wakeup

still degrades performance when timeouts are in e�ect.

On the other hand, the Priority #2 scheme performs

slightly worse than the Priority #1 scheme for some

timeout values. We attribute this to the fact that Pri-
ority #1 tends to handle older requests by continuing

its elevator sort from the location at which the SCAN
was interrupted.

Timeouts signi�cantly reduce the performance of

the class-based priority sorting algorithms when the

I/O subsystem becomes saturated (as is the case here).

These algorithms still provide signi�cant improvements

to system performance, but the improvements are re-

duced because of the scheduling restrictions imposed

by timeouts. As discussed in Section 3, the timed-

out time-noncritical requests are not time-limited in our

taxonomy. The timeouts are simply a design restric-

tion for the I/O subsystem. In many environments,

unlike our experimental environment, system activity

is quite bursty in nature [McNu86] [Zhou88] [Baker91]

[Ruem93]. We believe that periods of low activity will

allow time-noncritical requests to be serviced in the

background (i.e., without interfering with the comple-

tion of time-critical and time-limited requests).

7 Conclusions

We have introduced a taxonomy of I/O requests, divid-

ing them into three sets | time-critical, time-limited,

and time-noncritical. This classi�cation is based upon

the fashion in which a process interacts with a particular

I/O request. That is, the classes are de�ned by whether

or not the creating process waits for the request to com-

plete and, if so, at what point this waiting begins. We

believe that recognizing the classes to which I/O re-

quests belong and taking advantage of that information

can lead to signi�cant improvements in system perform-

ance. The initial study of disk scheduling algorithms

presented in this paper supports this premise.

We also promote the use of a system-level model for

studying the e�ect of I/O subsystem performance on

system performance. We have described the initial im-

plementation of a system-level simulator, the process-

ow model, and presented data from several experi-

ments. Using this model it was found that changing the

disk scheduling algorithm to incorporate I/O request

classi�cation and ordering the requests on the basis of

this information can signi�cantly improve system per-

formance (13-17% in our experiments). The majority

of this improvement comes from a 68-82% decrease in

false idle time.

Giving priority to time-critical and time-limited re-

quests over time-noncritical requests can lead to starva-

tion of time-noncritical requests if the system is satur-

ated (as it was in our environment). The use of timeouts

can limit this starvation, but only at the cost of redu-

cing the performance gains. Fortunately, in many en-

vironments the system activity is very bursty [McNu86]

[Zhou88] [Baker91] [Ruem93]. Periods of relative in-

activity should allow for completion of time-noncritical

requests.

Our experimentation also suggests that changing

disk scheduling algorithms to incorporate class informa-

tion may require re-examining current process schedul-

ing algorithms. Preempting the currently executing pro-

cess in favor of a process newly enabled by the comple-

tion of an I/O request was found to reduce system per-

formance by as much as 3% when employing class-based

disk scheduling algorithms.

It would be di�cult to reach such conclusions if
we focused only on the component metrics of the I/O

subsystem, because the changes we have made to the

scheduling algorithm actually reduce performance as

seen by the I/O subsystem. In our experiments, the

average service time increased by 86% and average re-

sponse time increased by two orders of magnitude. Fur-

ther, traditional I/O subsystem simulation does not

provide any information about how system performance

is a�ected by changes in I/O subsystem performance.

We believe that using a system-level model is superior

to traditional I/O subsystem simulation for these reas-
ons.

Our study of disk scheduling algorithms is far from

complete. First, only a single workload was studied.

More workloads must be examined before drawing �-

nal conclusions about scheduling algorithms. Second,

more disk scheduling algorithms must be considered. It

has been noted that sorting based on both seek time

and rotation time is often superior to sorting on seek

time alone [Selt90] [Jaco91]. Also, we have not yet ex-

ploited the di�erence between time-critical requests and

time-limited requests. Third, many state-of-the-art disk

drives are equipped with request queues. Queueing re-

quests at the disk (or at the disk controller) can signi-

�cantly reduce the turn-around time between requests

by not requiring system involvement between every pair

of I/O accesses.

In order to generalize our results and address new

items of interest, we intend to instrument a number of

systems under a variety of workloads both to capture

traces and to collect simple run-time statistics. Also, we

will implement class-based disk scheduling algorithms in

several systems to validate the results in this paper.

Finally, we expect to re�ne the process-
ow model

to increase our capability to study I/O performance.

Both the I/O subsystem simulation and the process-
ow

simulation will be expanded. We plan to study shared-

memory multiprocessors as well as uniprocessors. The

system side will be augmented to include simulation of

system calls related to the storage management soft-

ware (e.g., �le systems, virtual memory, and system

calls which directly request I/O). Controllers, buses and

other hardware options will be included in the I/O sub-

system side. We believe that the process-
ow model

shows great promise as a tool for studying I/O subsys-

tem performance in terms of system performance.

8 Acknowledgements

Wewish to acknowledge both the �nancial and technical

support of NCR Corporation. NCR has been extremely

generous with equipment gifts that have been invaluable

to our experimental work. In addition, discussions with

Jim Browning, Rusty Ransford and Charles Gimarc, all

of NCR, have been very useful in understanding the

NCR system used in the experiments reported in this

paper. We also thank Richie Lary of Digital Equipment

Corporation, David Ja�e of Micro Technology Incorpor-

ated, and Joe Pasquale of the University of San Diego

for their insights on various I/O issues. As always, we

appreciate the other members of our research group at

the University of Michigan for providing the stimulating

environment that characterizes our workday.

Finally, our research group is very fortunate to

have the �nancial and technical support of several addi-

tional industrial partners. We are pleased to acknow-

ledge them. They include Intel, Motorola, Scienti�c

and Engineering Software, HaL, Digital Equipment Cor-

poration, Micro Technology Incorporated and Hewlett-

Packard.

References

[Baker91] M. Baker, J. Hartman, M. Kupfer, K. Shirri�, J.

Ousterhout, \Measurements of a Distributed File Sys-

tem", SOSP Proceedings, 1991, pp. 198-212.

[Cars92] S. Carson, S. Setia, \Analysis of the Periodic Up-

date Write Policy for Disk Cache", IEEE Transactions

on Software Engineering, January, 1992.

[Cars92a] S. Carson, S. Setia, \Optimal Write Batch Size in

Log-Structured File Systems", Proceedings of USENIX

File Systems Workshop, 1992, pp. 79-91.

[Chiu78] W. Chiu, W. Chow, \A Performance Model of

MVS", IBM System Journal, Vol. 17, No. 4, 1978, pp.

444-463.

[DDI90] Device Driver Interface/Driver-Kernel Interface

(DDI/DKI) Reference Manual, UNIX System V/386

Release 4, AT&T, 1990.

[Geis87] R. Geist, S. Daniel, \A Continuum of Disk Schedul-

ing Algorithms", ACM Transactions on Computer Sys-

tems, February 1987, pp. 77-92.

[Geis87a] R. Geist, R. Reynolds, E. Pittard, \Disk Schedul-

ing in System V", Performance EvaluationReview, May

1987, pp. 59-68.

[Haig90] P. Haigh, \An Event Tracing Method for UNIX

Performance Measurement", CMG Proceedings, 1990,

pp. 603-609.

[Jaco91] D. Jacobson, J. Wilkes, \Disk Scheduling Al-

gorithms Based on Rotational Position", Hewlett-

Packard Technical Report, HPL-CSP-91-7, Feb. 26,

1991.

[Kim86] M. Kim, \Synchronized Disk Interleaving", IEEE

Transactions on Computers, November 1986, pp. 978-

988.

[McKu84] M. McKusick, W. Joy, S. Le�er, R. Fabry, \A

Fast File System for UNIX", ACM Transactions on

Computer Systems, August 1984, pp. 181-197.

[McNu86] B. McNutt, \An Empirical Study of Variations in

DASD Volume Activity", CMG Proceedings, 1986, pp.

274-283.

[McVo91] L. McVoy, S. Kleiman, \Extent-like Performance

from a UNIX File System", Winter USENIX Proceed-

ings, 1991, pp. 1-11.

[Mill91] E. Miller, R. Katz, \Input/Output Behavior of Su-

percomputing Applications", Proceedings of Supercom-

puting, 1991, pp. 567-576.

[Oust90] J. Ousterhout, \Why Aren't Operating Systems

Getting Faster As Fast as Hardware?", Summer

USENIX Proceedings, 1990, pp.247-256.

[Rich92] K. Richardson, M. Flynn, \TIME: Tools for In-

put/Output and Memory Evaluation", Proceedings of

the Hawaii International Conference on Systems Sci-

ences, 1992, pp. 58-66.

[Ruem93] C. Ruemmler, J. Wilkes, \UNIX Disk Access Pat-

terns", Winter USENIX Proceedings, 1993.

[Seam69] P. Seaman, R. Soucy, \Simulating Operating Sys-

tems", IBM System Journal, No. 4, 1969, pp. 264-279.

[Selt90] M. Seltzer, P. Chen, J. Ousterhout, \Disk Schedul-

ing Revisited", Winter USENIX Proceedings, 1990, pp.

313-324.

[Teor72] T. Teorey, T. Pinkerton, \A Comparative Analysis

of Disk Scheduling Policies", Communications of the

ACM, March 1972, pp. 177-184.

[Zhou88] S. Zhou, \A Trace-Driven Simulation Study of Dy-

namic Load Balancing", IEEE Transactions on Soft-

ware Engineering, Volume 14, No. 9, September 1988,

pp. 1327-1341.

