
TVLSI-00069-2003.R1 BANERJEE ET AL “OVERVIEW OF COMPILER,” IEEE TRANS. VLSI SYSTEMS 1

Abstract— This paper describes a behavioral synthesis tool
called AccelFPGA which reads in high-level descriptions of
DSP applications written in MATLAB, and automatically
generates synthesizable RTL models and simulation
testbenches in VHDL or Verilog. The RTL models can be
synthesized using commercial logic synthesis tools and place
and route tools onto FPGAs. The paper describes how
powerful directives are used to provide high-level
architectural tradeoffs for the DSP designer. Experimental
results are reported on a set of eight MATLAB benchmarks
that are mapped onto the Xilinx Virtex II and Alter a Stratix
FPGAs.

Index Terms— High level synthesis, MATLAB, RTL,
VHDL, Verilog, FPGAs.

Manuscript received March 5, 2003; revised August 1, 2003 and
September 15, 2003.

Prith Banerjee is the Founder of AccelChip, Inc., He is currently with
the Electrical and Computer Engineering Department, Northwestern
University, Evanston, IL-60208, USA (email:
banerjee@ece.northwestern.edu).
 Malay Haldar was with AccelChip, Inc. He is now working for
Calypto Design Systems, 2903 Bunker Hill Lane, Suite 208, Santa
Clara, CA 95054 (email: malay@calypto.com).
 Anshuman Nayak was with AccelChip, Inc. He is now working for
Atrenta (I) Pvt. Ltd., A 10 Ground Floor, Sector 9, Noida, 201 301, UP,
India (email: nayak@atrenta.com).
 Victor Kim was with AccelChip, Inc. He is now working for Calypto
Design Systems, 2903 Bunker Hill Lane, Suite 208, Santa Clara, CA
95054 (email: vkim@calypto.com)
 Vikram Saxena was with AccelChip, Inc. He is now working for
Synopsys, Inc., 700 East Middlefield Road, Mountain View, CA 94043,
USA (email: vikram@synopsys.com).
 Steven Parkes was with AccelChip, Inc. He is now working for IBM
Almaden Research Center, 650 Harry Road, San Jose, CA-95120, USA.
(email: steven@almaden.ibm.com).
 Debabrata Bagchi was with AccelChip, Inc. He is now working for
Atrenta (I) Pvt. Ltd., A 10 Ground Floor, Sector 9, Noida, 201 301, UP,
India (email: bagchi@atrenta.com)
 Satrajit Pal was with AccelChip, Inc. He is now working for Atrenta
(I) Pvt. Ltd., A 10 Ground Floor, Sector 9, Noida, 201 301, UP, India
(email: satrajit@atrenta.com).
 Nikhil Tripathi was with AccelChip, Inc. He is now working for
Atrenta (I) Pvt. Ltd., A 10 Ground Floor, Sector 9, Noida, 201 301, UP,
India (email: nikhil@atrenta.com).

 David Zaretsky was with AccelChip. He is currently with the
Electrical and Computer Engineering Department, Northwestern
University, Evanston, IL-60208, USA (email: dcz@northwestern.edu).
 Robert Anderson is with AccelChip, Inc., 1900 McCarthy Blvd.,
Suite 204 , Milpitas, CA 95035 USA (email: robert@accelchip.com).
 Juan Ramon Uribe is with AccelChip, Inc., 1900 McCarthy Blvd.,
Suite 204 , Milpitas, CA 95035 USA (email: uribe@accelchip.com).

Overview of a Compiler for Synthesizing
MATLAB Programs onto FPGAs

P. Banerjee, Fellow, IEEE, M. Haldar, A. Nayak, V. Kim, V. Saxena, S. Parkes, D. Bagchi, S. Pal, N.
Tripathi, D. Zaretsky, R. Anderson, J. R. Uribe

TVLSI-00069-2003.R1 BANERJEE ET AL “OVERVIEW OF COMPILER,” IEEE TRANS. VLSI SYSTEMS 2

I. INTRODUCTION

HE performance requirements of today’s
communication systems, such as 3G and 4G wireless

communication systems, MPEG4 video and Video over
IP, now exceed the capabilities of general-purpose
processors. With the introduction of advanced Field-
Programmable Gate Array (FPGA) architectures such as
the Xilinx Virtex-II [14], and the Altera Stratix [2], a new
hardware alternative is available for DSP designers that
combines all the benefits of general-purpose processors
with the performance advantage of ASICs.

 DSP design has traditionally been divided into two
types of activities – systems/algorithm development and
hardware/software implementation. The majority of DSP
system designers and algorithm developers use the
MATLAB language [9]. The first step in this flow is the
conversion of the floating point MATLAB algorithm into
a fixed point version using quantizers from the Filter
Design and Analysis (FDA) Toolbox for MATLAB.
Algorithmic tradeoffs such as the precision of filter
coefficients, rounding modes, and the number of taps used
in a filter are performed at the MATLAB level. Hardware
design teams take the specifications created by the
systems engineers and algorithm developers (in the form
of a fixed point MATLAB code) and create a physical
implementation of the DSP design. If the target is an
FPGA, or PLD, the first task is to create a register transfer
level (RTL) model in a hardware description language
(HDL) such as VHDL and Verilog. The RTL HDL is
synthesized by a logic synthesis tool, and placed and
routed onto an FPGA using backend tools. The process of
creating an RTL model and a simulation testbench takes
about one to two months with the tools currently used
today.

 This paper described the AccelFPGA compiler which
directly reads in fixed point MATLAB behavioral models
and automatically outputs synthesizable RTL models and
simulation testbenches in VHDL or Verilog. The
resultant RTL is bit-true with the original fixed point
MATLAB specification. The current manual and new
automated flow is shown in Figure 1. AccelFPGA also
allows users to perform quick iterations of hardware
designs, allowing area and speed trade offs and
architecture exploration.

Figure 1. Automated design using AccelFPGA.

II. RELATED WORK

The problem of translating a high-level or behavioral

language description into a register transfer level
representation is called high-level synthesis [6]. Synopsys
developed one of the first successful commercial
behavioral synthesis tools in the industry, the Behavioral
Compiler [12], which took behavioral VHDL or Verilog
and generated RTL VHDL or Verilog. Recently, there
have been several efforts to develop compilers that
compile high-level languages such as C into VHDL or
Verilog [7,10]. Commercial products are offered by
companies such as Adelante [1], Celoxica [3], C Level
Design [4] and Cynapps [5]. SystemC is a new language
developed by the SystemC consortium which allows users
to write hardware system descriptions using a C++ class
library [11]. Synopsys has a tool called Cocentric which
takes SystemC and generates RTL VHDL/Verilog. There
have been some system level tools that take graphical
descriptions of systems and generate HDL code.
Examples include SPW from Cadence [13], System
Generator from Xilinx [14], and DSP Builder from Altera
[2].

 While there are some related tools that convert C or
C++ into VHDL and Verilog, this paper describes a
compiler that takes behavioral MATLAB descriptions (the
default language of DSP design) and generates RTL
VHDL and Verilog for FPGA design. Some of the
unique and challenging features of the MATLAB
language are the support for array operations (operating
on matrices instead of scalars), an interpretive
environment where the types and shapes of variables are
not declared at compile time but inferred at runtime, and a
very powerful set of built in library functions. Examples
of such functions are “”filter” and “fft”. AccelFPGA
supports a subset of the fixed point built-in functions of
MATLAB in hardware in the form of AccelWare
functions. The MATCH compiler project [8] at

T

TVLSI-00069-2003.R1 BANERJEE ET AL “OVERVIEW OF COMPILER,” IEEE TRANS. VLSI SYSTEMS 3

Northwestern University has built a compiler that took the
MATLAB applications and produced synthesizable RTL
VHDL. The technology for the AccelFPGA compiler
described in this paper is an outgrowth of the MATCH
Compiler project.

III. AN EXAMPLE DESIGN IN MATLAB

We will illustrate the use of the AccelFPGA compiler

using a 16 tap finite impulse response (FIR) filter
example. Let us first look at how such a filter can be
represented in MATLAB using a floating point
representation.

% 16-tap FIR filter demonstration - Floating point
version.
% read input from file
x = load('sines.txt'); % input data
indata = x;
NUMTAPS = 16; % number of taps
NUMSAMPS = length(x); % number of samples
% define filter coefficients
% 16-tap low-pass filter; sampling rate 8000 Hz, bandpass
cutoff 2000 Hz; bandstop start 3000 Hz
coeff = 100 * [-0.024750172265052, -
0.030362659582556, 0.037764386593039,
0.048119075484636, ...

 -0.063925788455935, -0.091690255759161,
0.155281320470888, 0.469564093514142, ...

 0.469564093514142, 0.155281320470888, -
0.091690255759161, -0.063925788455935, ...

 0.048119075484636, 0.037764386593039, -
0.030362659582556, -0.024750172265052];
% apply filter to each input sample
for n = NUMTAPS:NUMSAMPS
 % initialize sum of products

 sum = 0;
 % perform sum of products
 for k = 1:16,
 mult = indata(n-k+1) * coeff(k);
 sum = sum + mult;
 end
 % store output
 outdata(n) = sum;

end

The first step in this flow is the conversion of the

floating point MATLAB algorithm into a fixed point
version using “quantizers” from the Filter Design and
Analysis (FDA) Toolbox for MATLAB [9]. One
specifies a quantizer as

qresults = quantizer('fixed','floor','wrap',[16,0]) ;
The quantizer is actually used in a subsequent

multiplication computation as
mult = quantize(qresults , (indata(n-k+1) *

coeff(k)));
which means that the multiplication operation is

performed, and the output is stored in 16 bit precision,
with 0 bits after the decimal point, and uses the “floor”
mode for rounding, and “wrap” mode for overflow
computations.

 Algorithmic tradeoffs such as the precision of filter
coefficients and the number of taps used in a filter are
performed at the MATLAB level. We now show the fixed
point version of the MATLAB algorithm for a FIR filter
below.

% Example MATLAB code for 16 tap FIR filter with
fixed point quantization
% read input from file
x = load('sines.txt'); % input data
NUMTAPS = 16; % number of taps
NUMSAMPS = length(x); % number of samples
% define fixed-point parameters
qpath = quantizer('fixed','floor','wrap',[8,0]); %
quantization of inputs in data path
qresults = quantizer('fixed','floor','wrap',[16,0]) ; %
quantization of operation results
indata = quantize(qpath,x);
% define filter coeffients
% 16-tap low-pass filter; sampling rate 8000 Hz, bandpass
cutoff 2000 Hz; bandstop start 3000 Hz
coeff = quantize(qpath, [-2.4750172265052; -
3.0362659582556; 3.7764386593039; 4.8119075484636;
...

 -6.3925788455935; -9.1690255759161;
15.5281320470888; 46.9564093514142; ...

 46.9564093514142; 15.5281320470888; -
9.1690255759161; -6.3925788455935; ...

 4.8119075484636; 3.7764386593039; -
3.0362659582556; -2.4750172265052]);
for n = NUMTAPS:NUMSAMPS

 sum = 0;
 % perform sum of products
 for k = 1:16
 mult = quantize(qresults , (indata(n-k+1) *

coeff(k)));
 sum = quantize(qresults , (sum + mult));
 end
 outdata(n) = quantize(qresults,sum);

end
 We now apply various AccelFPGA directives to the

fixed point MATLAB. AccelFPGA compiler directives

TVLSI-00069-2003.R1 BANERJEE ET AL “OVERVIEW OF COMPILER,” IEEE TRANS. VLSI SYSTEMS 4

are used to bridge the gap between the MATLAB source
and the synthesis of the computational structures created
by AccelFPGA. Every compiler directive is prefixed by
“%!ACCEL”. This makes the directives appear as
comments to other environments dealing with MATLAB
since all comments in MATLAB start with %.

 The first step in the process of hardware design is to
add a TARGET directive which tells the compiler that it
needs to generate HDL code for specific FPGA device.
AccelFPGA uses a Resource Description Language that
describes the architecture, routing and internal execution
resources of FPGAs from all the major FPGA vendors.
AccelFPGA uses the RDL to create synthesizable RTL
code that is uniquely optimized for each device.
AccelFPGA supports various FPGA devices using the
TARGET directive. By specifying the %!ACCEL
TARGET XC2V250 directive, the compiler becomes
aware of the characteristics of that target Virtex II
architecture, namely that it can support 1536
Combinational Logic Blocks, 48 Kbits of distributed
RAM, 24 embedded multipliers, 24 embedded RAM
blocks.

 The next step is to use hardware partitioning
directives. AccelFPGA allows the user to use hardware
partitioning directive to demarcate parts of the input
source that are targeted for hardware synthesis and parts
that are not. The BEGIN_HARDWARE and
END_HARDWARE directives indicate a section of
MATLAB code that is intended for hardware synthesis.
The BEGIN-HARDWARE directive takes as a parameter
the input data port for the hardware part. The END-
HARDWARE directive takes as a parameter the output
data port for the hardware part.

 The next step is to use a STREAM directive. The
purpose of the STREAM directive is the specification of
the type of data flow that inputs and outputs of the
synthesized hardware will handle. Streaming data is
defined as data with a regular rate of flow through the
hardware. For systems that will handle streaming data,
AccelFPGA supports the automatic creation of ports with
the required buffering mechanisms to sustain the regular
flow of data with the use of the STREAM directive. These
mechanisms include ‘double-buffering’ to allow
concurrent processing of data and buffering of new data
samples. It should also be noted that the fixed point code
got modified to add some explicit buffering of input and
output data for the parts of the code in the hardware
component. For example the input data “indata” gets
copied to “indatabuf” before the actual computation of the
FIR computation.

 The resultant FIR filter code with AccelFPGA
directives is shown below.

% Example MATLAB code for 16 tap FIR filter with
basic AccelFPGA directives
% Specif\y hardware target Xilinx Virtex2 FPGA
%!ACCEL TARGET XC2V250
% read input from file
x = load('sines.txt'); % input data
NUMTAPS = 16; % number of taps
NUMSAMPS = length(x); % number of samples
% define fixed-point parameters
qpath = quantizer('fixed','floor','wrap',[8,0]); %
quantization of inputs in data path
qresults = quantizer('fixed','floor','wrap',[16,0]); %
quantization of operation results
indata = quantize(qpath,x);
% define filter coeffients
% 16-tap low-pass filter; sampling rate 8000 Hz, bandpass
cutoff 2000 Hz; bandstop start 3000 Hz
coeff = quantize(qpath, [-2.4750172265052; -
3.0362659582556; 3.7764386593039; 4.8119075484636;
...

 -6.3925788455935; -9.1690255759161;
15.5281320470888; 46.9564093514142; ...

 46.9564093514142; 15.5281320470888; -
9.1690255759161; -6.3925788455935; ...

 4.8119075484636; 3.7764386593039; -
3.0362659582556; -2.4750172265052]);
% apply filter to each input sample
%!ACCEL STREAM n
for n = NUMTAPS:NUMSAMPS

 %!ACCEL BEGIN_HARDWARE indata
 indatabuf = quantize(qpath, indata(n-15:n));
 % initialize sum of products
 sum = quantize(qresults,0);
 % perform sum of products
 for k = quantize(qpath,1:16),
 mult = quantize(qresults , (indatabuf(k) * coeff(k)));
 sum = quantize(qresults , (sum + mult));
 end
 outdatabuf = quantize(qresults, sum);
 % store output
 outdata(n) = quantize(qresults,outdatabuf);
 %!ACCEL END_HARDWARE outdata

end

 The basic MATLAB FIR filter algorithm performs

the 16 tap FIR filter operation using 16 iterations using
one adder and one multiplier per iteration. This
particular design with these AccelFPGA directives when
compiled by the AccelFPGA compiler requires 143
LUTs, 75 multiplexers, 1 multiplier, 8 ROMs, runs at 82.9
MHz, and has a latency of 23 cycles, and an initiation rate

TVLSI-00069-2003.R1 BANERJEE ET AL “OVERVIEW OF COMPILER,” IEEE TRANS. VLSI SYSTEMS 5

of 19 cycles (one new data sample every 19 cycles). In
terms of DSP filter performance, this design performs FIR
filtering at a rate of 82.9/19*1000 = 4363 Kilo-samples
per second (KSPS) as shown in Table 2. We will show in
the next section how the performance of this filter can be
improved.

IV. DESIGN SPACE EXPLORATION USING THE
ACCELFPGA COMPILER

AccelFPGA allows the user to use compiler directives

to perform design space exploration of various area-
performance tradeoffs. AccelFPGA performs high-level
estimates of area by counting the number of functional
unites such as adders, multipliers, multiplexers and
registers and reporting that to the user during synthesis.
We combine this unit count with area models for
functional units that are parameterized with respect to the
bit widths of the devices [15]. AccelFPGA estimates
performance (latency, throughput) in terms of clock cycles
used in the scheduling. The latency is measured by the
number of clock cycles needed to generate an output in
response to an input. The initiation rate is the number of
clock cycles between successive inputs. Throughput is
defined as the worst-case clock frequency of the design
divided by the initiation rate. The latency, initiation rate
and throughput numbers are reported to the user as part of
the high-level synthesis. We will now describe the
various directives available for the user to perform these
tradeoffs.

A. UNROLL Directive

The UNROLL directive is a mechanism to expand the

source MATLAB to create more copies of loop bodies,
thereby increasing performance optimizations as
illustrated below.

 Let us consider the for loop in the example MATLAB
code for the FIR filter.

sum = 0;
 for k = 1:16
 mult = quantize(qresults , (indatabuf(k) * coeff(k)));
 sum = quantize(qresults , (sum + mult));
 end

 The MATLAB code has one addition and one

multiplication operation in the data flow graph of its basic
block hence the AccelFPGA compiler will generate an
RTL VHDL or Verilog which will use one adder and one
multiplier to schedule this computation which will take 16
cycles.

 If the code were to be unrolled as shown below

sum = 0;
 %!ACCEL UNROLL 4
 for k = 1:16
 mult = quantize(qresults , (indatabuf(k) * coeff(k)));
 sum = quantize(qresults , (sum + mult));
 end

 The loop body will be replicated 4 times and the loop

indices in successive iterations are incremented. In
addition, scalars that carry values from one iteration to
another iteration are renamed. For example, the scalar
“sum” and “mult” would be renamed in successive copies.
This exposes opportunities to chain operations to the
compiler.

sum=0;
for i = 1:4:16
 mult1 = quantize(qresults , (indatabuf(k) *

coeff(k)));
 sum1 = quantize(qresults , (sum + mult1));
 mult2 = quantize(qresults , (indatabuf(k+1) *

coeff(k+1)));
 sum2 = quantize(qresults , (sum1 + mult2));
 mult3 = quantize(qresults , (indatabuf(k+2) *

coeff(k+2)));
 sum3 = quantize(qresults , (sum2 + mult3));
 mult4 = quantize(qresults , (indatabuf(k+3) *

coeff(k+3)));
 sum4 = quantize(qresults , (sum3 + mult4));

end;

AccelFPGA now recognizes four addition and four

multiplication operations in each basic block hence it will
schedule it across four cycles using four adders and four
multipliers in parallel.

If the code were to be unrolled fully as shown below

sum = 0;
 %!ACCEL UNROLL 16
 for k = 1:16
 mult = quantize(qresults , (indatabuf(k) * coeff(k)));
 sum = quantize(qresults , (sum + mult));
 end

The loop body will be replicated completely 16 times

and the for loop will be eliminated.

sum=0;

TVLSI-00069-2003.R1 BANERJEE ET AL “OVERVIEW OF COMPILER,” IEEE TRANS. VLSI SYSTEMS 6

 mult1 = quantize(qresults , (indatabuf(k) *
coeff(k)));

 sum1 = quantize(qresults , (sum + mult1));
 mult2 = quantize(qresults , (indatabuf(k+1) *

coeff(k+1)));
 sum2 = quantize(qresults , (sum1 + mult2));
…
…
 mult15 = quantize(qresults , (indatabuf(k+14) *

coeff(k+14)));
 sum15 = quantize(qresults , (sum14 + mult15));
 mult16 = quantize(qresults , (indatabuf(k+15) *

coeff(k+15)));
 sum16 = quantize(qresults , (sum15 + mult16));

end;

For this particular choice of UNROLL 16, AccelFPGA

produces a design that requires 259 LUTs, 399
multiplexers, 16 multipliers, 8 ROMs. This design has a
reduced latency of 5 cycles, and initiation rate of 1 cycle,
however, it operates at a frequency of 76.9 MHz owing to
a large critical path involving 16 adders and 1 multiplier
in one cycle. In terms of FIR filter performance, even
though the clock frequency has gone down, the throughput
has gone up to 76,900 Kilo-samples per second as shown
in Table 2.

The UNROLL directive is therefore used by the user to

generate different area-delay hardware alternatives.

B. PIPELINE Directive

Pipelining increases the throughput of a datapath by

introducing registers in the datapath. This increase in
throughput is particularly important when the datapath is
iterated in the overall design. The PIPELINE directive is
placed just before the loop, whose body is to be pipelined.
For pipelining function bodies the directive is placed just
above the function definition. Let us consider the for loop
in the example MATLAB for the FIR filter.

sum = 0;
 for k = 1:16
 mult = quantize(qresults , (indatabuf(k) * coeff(k)));
 sum = quantize(qresults , (sum + mult));
 end

 If the code were to be pipelined as shown below

sum = 0;
 %!ACCEL PIPELINE
 for k = 1:16

 mult = quantize(qresults , (indatabuf(k) * coeff(k)));
 sum = quantize(qresults , (sum + mult));
 end

 AccelFPGA will now unroll the 16 tap for loop into a

data flow graph consisting of 16 multipliers and 16
adders, and breaks off the data flow graph into 16 stages
of a pipeline, with each stage having one multiplier and
one adder, amnd insert registers between each stage

 For our FIR filter example, AccelFPGA now
produces a design which improves the frequency of
operation of the design to 134.2 MHz, but suffers a large
latency of 20 cycles, however, the initiation rate is now at
1 cycle per operation. This design therefore works at
134,200 Kilo-samples per second as shown in Table 2.

C. MEM_MAP Directive

The AccelFPGA compiler by default maps all variables

to registers in the hardware implementation. In many
cases if the variables are arrays of large size, this may
results in large hardware resources in the forms of large
multiplexers. The memory map directive indicates that
the given array variable should be mapped to a specific
memory resource in the target architecture. The
MEM_MAP directive can be used to map array variables
to embedded RAMs on a Xilinx Virtex II or Virtex-E
device or Altera APEX or Stratix device.

 Let us consider the MATLAB code for the FIR filter
which illustrates the MEM_MAP directive.

for n = NUMTAPS:NUMSAMPS
%!ACCEL MEM_MAP indatabuf TO ram_s9_s9(0)

AT 0
%!ACCEL BEGIN_HARDWARE indata
 indatabuf = quantize(qpath, indata(n-15:n));
 sum = 0;
 for k = 1,16
 mult = quantize(qresults , (indatabuf(k) * coeff(k)));
 sum = quantize(qresults , (sum + mult));
 end
 outdatabuf = quantize(qresults, sum);
 outdata(n) = quantize(qresults,outdatabuf);
 %!ACCEL END_HARDWARE outdata
end

 In this example, the user wants to map the array

indatabuf to the embedded memory on an Xilinx VirtexII
device named “ram_s9_s9” with instance “0” starting at
memory location “0” using the following directive:

TVLSI-00069-2003.R1 BANERJEE ET AL “OVERVIEW OF COMPILER,” IEEE TRANS. VLSI SYSTEMS 7

%!ACCEL MEM_MAP indatabuf TO
ram_s9_s9(0) AT 0

For our running design of the 16 tap FIR filter,

AccelFPGA produces a design that requires only 126
LUTs, 47 multiplexers, 1 multiplier, 8 ROMs and 1
BlockRAM. However, the latency goes up to 73 cycles,
and the throughput goes to 67 cycles between consecutive
data streams. Hence even though the number of
multiplexers has gone down from 75 to 47, and the
number of LUTS has gone down from 143 to 126, the FIR
filter throughput is 115.1/67 = 1717 Kilosamples per
second. This is clearly not a good choice of the directive.
However, as we will show later on, this will be a good
choice if the FIR were a 64 tap filter.

D. TILE Directive

Tiling enables the user to specify an array of

computation that happens concurrently on data that is
stored in a distributed manner across multiple memories to
provide higher memory bandwidth. Independent memory
and resources can be specified for each tile concisely. The
compiler generates hardware where each of the “tile” is
scheduled concurrently. This allows the user to exploit
large amount of data parallelism typically present in DSP
applications. Let us consider the case of a 64 Tap FIR, as
shown below.

sum = 0;
for k = 1:64
 mult = quantize(qresults , (indatabuf(k) * coeff(k)));
 sum = quantize(qresults , (sum + mult));
end

 No memory maps are provided for the indatabuf() and

coeff() arrays, implying they are mapped to registers.
However, to access a register array of 64 elements, one
needs a multiplexer (mux) with 64 inputs. Each input to
the mux corresponds to a register of the array, and the
mux is controlled by the array index. Hence, for
generating this hardware, the arrays in the above example
need to be mapped to memories. For the sake of
illustration, let us assume that there is a RAM of 64
entries with a single read port, called ram_s9_s9 , on the
architecture on which we want to map the 64 Tap FIR.
The modified code is shown below which maps the
indatabuf to the RAM instance called ram_s9_s9(0) on
the Xilinx Virtex II device.

sum = 0

%!ACCEL MEM_MAP indatabuf() TO ram_s9_s9(0)
AT 0

for k = 1:64
 mult = quantize(qresults , (indatabuf(k) * coeff(k)));
 sum = quantize(qresults , (sum + mult));
end

However, this now restricts the inner loop to only one

read access for indatabuf per cycle assuming that the
RAM allows a single read operation per port per cycle. In
order to get more reads accomplished per cycle, one needs
to use multiple memory banks.

One can rewrite the above loop as follows.

for t = 1:16
 sum(t) = 0;
end;

for k = 1:4
 for t1 = 1:16
 mult = quantize(qresults , (indatabuf(k,t1) *

coeff(k,t1)));
 sum(t1) = quantize(qresults , (sum(t1) + mult));
 end
end;
final_sum = 0;
for t2 = 1:16
 final_sum = quantize(qresults, final_sum + sum(t2));
end;

The loop running over the number of tiles t1 is referred

to as the Tiling Loop and is indicated by the TILE
directive. Combining this with the memory maps split
over 16 RAMS, we get a tiled version of the 64 tap FIR
filter shown below.

%!ACCEL STREAM n
for n = 64:1024
 %!ACCEL BEGIN_HARDWARE indata
 indatabuf = quantize(qpath, reshape(indata(n-

63:n),4,16));
 %!ACCEL TILE t
 % initialize sum of products
 for t = 1:16
 sum(t) = 0;
 end;
 %!ACCEL PIPELINE
 for k = 1:4
 %!ACCEL TILE t1
 %!ACCEL MEM_MAP indatabuf(:,t1) TO

ram_s9_s9(t1) AT 0

TVLSI-00069-2003.R1 BANERJEE ET AL “OVERVIEW OF COMPILER,” IEEE TRANS. VLSI SYSTEMS 8

 for t1 = 1:16
 mult = quantize(qresults , (indatabuf(k,t1) *

coeff(k,t1)));
 sum(t1) = quantize(qresults , (sum(t1) + mult

));
 end
 end;
 final_sum = 0;
 for t2 = 1:16
 final_sum = quantize(qresults, final_sum +

sum(t2));
 end;
 outdatabuf = quantize(qresults, final_sum);
 % store output
 outdata(n) = quantize(qresults,outdatabuf);
 %!ACCEL END_HARDWARE outdata
end

The impact of tiling can be shown as follows. The 64

tap FIR filter with pipelining and no memory mapping
would require 2066 LUTs and 971 multiplexers, and
operate at a frequency of 83.7 with a throughput of 2041.5
KSPS. However, if one were to tile the 64 tap filter and
memory map the indatabuf buffer across 16 memories, the
design requires 1654 LUTS, 330 muxes, operates at 79.7
MHz, and has a throughput of 1449 KSPS as shown in
Table 2.

V. COMPILER OVERVIEW

AccelFPGA is built as a set of compiler passes

operating on different intermediate representations as
shown in Figure 2. The front-end of AccelFPGA reads in
MATLAB m-files including various directives, performs
various syntax analysis and error reporting, and translates
the MATLAB program into a high level intermediate
representation (HIR). The HIR representation is similar
to Abstract Syntax Tree (AST) representation of a
traditional compiler. It stores the information regarding a
given source MATLAB program in a tree form with
information about expressions, assignment statements,
conditional statements, loop statements, functions and
procedures. A set of compiler passes perform various
transformations on the HIR representation. These passes
are described briefly.

A. Shape Inferencing

The shape inferencing pass infers the shapes of most of

the scalar and array variables in the program for parts of

the MATLAB models that will be mapped to hardware
(separated by BEGIN-HARDWARE and END-
HARDWARE directives). The algorithm is based on a
lattice theoretic shape algebra. Details of our automatic
type/shape inferencing algorithm are outside the scope of
this paper, and the readers are referred to [17].

B. Scalarization and Levelization

The scalarization pass takes a vectorized MATLAB

statement and converts it into scalar form using enclosing
FOR loops. The levelization pass takes a MATLAB
assignment statement consisting of complex expressions
on the right hand side and converts it into a set of
statements each of which is in a single operator form. This
pass operates on both scalar and array operations.

C. Auto-quantization

The auto-quantization phase takes in floating-point

MATLAB computations for parts of the MATLAB
models that will be mapped into hardware and translates
them to fixed-point MATLAB design. The algorithms for
auto-quantization are described in [16]. This algorithm
takes in a scalarized and levelized MATLAB program
with some of the quantizations of input variables
specified, and computes the initial value ranges for each
variable in the program. The next step takes the partial
value ranges of the variables obtained at the previous step
and propagates the value ranges in the forward direction
using use-def analysis. The algorithm handles simple
blocks of assignment statements, conditionals such as IF-
THEN-ELSE, and FOR loops. The next step propagates
the value ranges of variables in the backward direction. If
the user has only specified the quantizers of the output
variables, the back propagation pass will propagate the
results to the right-hand side of an assignment statement.
The algorithm is similar to Forward propagation. The final
step assigns values of quantizers based on the value
ranges of various variables.

D. Unrolling

The Unrolling pass interprets the UNROLL directives
and generates an unrolled form of the HIR representation
of a FOR loop or a vector statement of an original
MATLAB program based on the UNROLL directive. It
takes the data flow graph representation of the statement
in a loop body and replicates it by an amount equal to the
UNROLL factor as described in Section 4.1.

TVLSI-00069-2003.R1 BANERJEE ET AL “OVERVIEW OF COMPILER,” IEEE TRANS. VLSI SYSTEMS 9

E. Streaming

The Stream Compiler pass handles the STREAM
directive which is used by the user to represent streaming
data as described in Section 3. The stream compiler takes
care of creating corresponding input and output ports,
creating buffers between functional blocks and manages
the streaming of sample-based and frame-based data.

Figure 2. Overview of various compiler passes.

All these passes perform operation on the High-level

intermediate representation.

F. Scheduling and Binding

The Scheduling and Binding pass performs behavioral

synthesis on the HIR representation and generates a Low-
level Intermediate Representation (LIR). The LIR
representation has the notion of concurrency of processes,
variables and signals, states and state transitions, similar
to constructs in VHDL and Verilog. From the data flow
graph of each basic block in the program, it schedules the
computations onto various resources (adders, multipliers,
etc). The type and quantity of each of these architectural
resources are described using the Resource Description
Language (RDL). Several well-known scheduling
algorithms [6] such as As Soon As Possible (ASAP) and
As Late As Possible (ALAP), Resource Constrained
ASAP, and Resource Constrained ALAP scheduling
based on List Scheduling, have been developed as part of
this framework. Our high-level synthesis algorithms
handle multi-cycle operators during scheduling, as well as
multi-cycle memory read and write accesses. An example
of a Resource Constrained ALAP scheduling on a CDFG
is shown in Figure 3. In the figure, the CDFG graph
shown on the left has 10 operation nodes. Using the
RCALAP algorithm, these operations are scheduled onto
limited resources of one adder and one multiplier using 6

scheduling steps as shown on the right. Once this
scheduling is performed, RTL VHDL or Verilog can be
generated using 6 RTL states in a state machine, and the
corresponding RTL operations per state.

G. Memory Mapping and Tiling

The Memory Mapping pass interprets the MEM_MAP

directive described earlier and maps data into memory
structures on the target FPGA such as the BlockRAMs on

Figure 3. Example of Resource Constrained ALAP Scheduling on

CDFG framework with constraints of one adder and one multiplier.

a Xilinx Virtex II FPGA as described in Section 4.3. An

example of memory mapping is shown in Figure 4 for a
system being synthesized for two IP blocks on a streaming
data system. Two functions compute1() and compute2()
are synthesized by the compiler into datapaths. The
buffers from which the functions perform omputations are
mapped onto the embedded RAMs with two ports (one for
reading, one for writing) in order to allow parallel
operations of the two IP blocks.

The tiling pass interprets the TILE directive and tiles an

unrolled computation among multiple memories
instantiated by the Memory Mapping pass and thereby
exploits parallel memory accesses across multiple
memories as described in Section 4.4.

TVLSI-00069-2003.R1 BANERJEE ET AL “OVERVIEW OF COMPILER,” IEEE TRANS. VLSI SYSTEMS 10

Figure 4. Example of memory mapping.

H. Pipelining

The Pipelining pass interprets the PIPELINE directive

as described in Section 4.2 and performs block level
pipelining of any computation block (for loops and
functions) that is associated with the PIPELINE directive.

I. System Interfacing

The System Interfacing pass generates a unified way to

interconnect function blocks together using an
asynchronous protocol which uses handshaking between
consecutive blocks. It also generates the controller state
machines to coordinate these asynchronous data transfers.

 Figure 5(a) shows the interface for a hypothetical
compiled device with two inputs, a and b, and two
outputs, x and y. This device would be one of the IP
blocks shown in Figure 4. The signals on the device fall
into two groups, global device signals (Clock and Reset),
and I/O specific signals. Each signal shown as a pin in the
figure is represented by a port in the HDL. All the signals
related to a MATLAB variable are termed a channel.
The example has four channels, a, b, x, and y. The ports
related to channel a are a_in, ND_a_in, and RFND_a_in.

 The ND and Done signals indicate that the signals
attached to the data port have been driven to stable, valid
values and may be processed by the compiled device
(ND) or by the embedding design (Done). ND, Done, and
the data ports are all synchronous signals and as such are
only defined at the rising edge of clock. Once ND/Done
has been set high, it must be held high (and the data
signals stable) until acknowledged (via RFND/DA,
described later): ND/Done must/will be set low in the
clock cycle following acknowledgement unless the
design/device can support single-cycle I/O, that is, back-

to-back I/O cycles. All channel ports are synchronous and
are sampled on the rising edge of Clock. The Reset signal
is asynchronous. When used as a simple
acknowledgement, the device or design monitors the state
of ND/Done, processing the data and setting RFND/DA in
response: Figure 5(b) illustrates the timing diagram of the
interfaces with the definition of acknowledgement: the
coincidence of ND and RFND (or Done and DA) at a
rising edge of clock. Following coincidence, a new I/O
cycle begins.

Clock
Reset

b_ in

RF ND_b_in
ND_b_in

x_out

DA _x_out
Done_x_out

a_ in

RF ND_a_in
ND_a_in

y_out

DA _y_out
Done_y_out

(a) Interface signals

Clock

ND /D one

Coincidence/Acknowledgem ent

Data

R F ND /DA

(b) Timing diagram

Figure 5 Example interface of hardware blocks synthesized by compiler.

J. VHDL and Verilog Generation

The VHDL generation pass converts the LIR

representation into a synthesizable Register Transfer
Level VHDL which can be synthesized by back-end logic
synthesis tools. Similarly, the Verilog generation pass
converts the LIR representation into a synthesizable
Register Transfer Level Verilog.

K. Testbench Generation

The Testbench generation pass generates testbenches in

VHDL and Verilog corresponding to the corresponding
inputs and outputs at the MATLAB level. Given a

TVLSI-00069-2003.R1 BANERJEE ET AL “OVERVIEW OF COMPILER,” IEEE TRANS. VLSI SYSTEMS 11

floating point MATLAB simulation model, AccelFPGA
or the user creates a fixed point MATLAB model. This
fixed point MATLAB model is executed again in the
MATLAB environment, and two files are created: one file
for the input vectors in fixed point, and another file for
output vectors in fixed point. The same input vectors are
read subsequently by the automatically generated VHDL
or Verilog testbench and applied to the RTL simulator.

Figure 6. An overview of the automated testbench flow.

When the design under test (DUT) is compiled from

MATLAB code into an hardware description language
such as VHDL or Verilog, the testbench will be organized
as shown in Figure 6. The features of the testbench are:

Design Under Test (DUT): Create a design behavior at
the VHDL/Verilog level

MATLAB testbench: This comprises any required
computations of inputs and capture of outputs of the DUT.
Stimuli could come from any number of sources, most
commonly being generated within the assembly/binary
environment using functions/blocks and from files.
Similarly, outputs could be analyzed via MATLAB
functions or stored for later processing

VHDL/Verilog testbench: This procedure will
instantiate the DUT at the HDL level and provides the
environment needed for simulation by an HDL simulator.
Primary function is stimulus application and result
recording.

MATLAB to HDL converter: This procedure will
capture stimuli independent of how it is generated and
store it in a format that can be processed by the HDL
testbench. Similarly, it provides for the reading of result
vectors generated by MATLAB simulation and a
comparison analysis against the HDL simulation results.

VI. EXPERIMENTAL RESULTS ON BENCHMARKS

We now report some experimental results on various
benchmark MATLAB programs using the AccelFPGA
compiler.

• A 16 tap Finite Impulse Response Filter
• A 64 tap memory mapped tiled FIR filter
• A Decimation in Time FIR filter
• A 64 point Fast Fourier Transform
• An Infinite Impulse Response Filter of type DF1
• An Interpolation FIR filter
• A Block Matching Algorithm
• A Digital Subscriber Line (DSL) algorithm

Table 1 shows some benchmark characteristics of the
MATLAB programs. It can be seen that the MATLAB
programs vary in size from 20 lines to 175 lines. We also
show the number of directives used in the 9 benchmark
programs. The corresponding synthesizable RTL Verilog
versions of the designs are quite large, varying in size
from 883 lines to 4188 lines. We also include the compile
times of AccelFPGA version 1.5 for each of the
benchmarks. All execution times were measured on a
Dell Latitude Model C610 laptop with a 1.2GHz Pentium
III CPU, 512 MB RAM, and 80 GB hard drive running
Windows 2000. It can be seen that the execution times
vary from 2.5 seconds to 39 seconds. We also include the
compile times of the backend logic synthesis tool, namely,
Synplify Pro 7.1 from Synplicity where the times vary
from 2.1 seconds to 872.4 second.

 Table 2 shows the results of using the AccelFPGA
compiler to perform architectural tradeoffs for 8
benchmark examples for the Xilinx Virtex2 device.
Results are given in terms of resources used, and
performance obtained as estimated by the Synplify Pro 7.1
tool executed on the RTL Verilog that was output by
AccelFPGA. The resource results are reported in terms of
LUTS, Multiplexers, embedded multipliers, ROMS and
BlockRAMS used. The performance was measured in
terms clock frequency of the design as estimated by the
internal clock frequency inferred by the Synplify Pro 7.1
tool, and the latency and initiation rate of the design in
terms of clock cycles by using the ModelSim 5.5e RTL
simulator. We also show the throughput of the design in
Kilo-samples per second which is the frequency of the
design divided by the initiation rate. For each benchmark,
we show the base case on the first row (which is a design
with only the information directives like TARGET,
BEGIN_HARDWARE, END_HARDWARE, SHAPE
and STREAM) included. We next show other designs
using various performance directives such as UNROLL,
PIPELINE, MEM_MAP and TILE. It can be seen that it
is possible to obtain designs with widely varying resource
requirements, latencies and throughputs.

 Table 3 shows similar architectural tradeoffs for 8

TVLSI-00069-2003.R1 BANERJEE ET AL “OVERVIEW OF COMPILER,” IEEE TRANS. VLSI SYSTEMS 12

MATLAB benchmark examples on an Altera Stratix
EP1S10 device. Resources are measured in LUTS,
ATOMS, MACs, and DSP Blocks, and performance is
again measured in clock frequency, latency and
throughput. It is therefore possible to compare the
designs obtained on a Xilinx VirtexII device with an
Altera Stratix device for the same choice of other
performance directives such as UNROLL, PIPELINE,
MEM_MAP and TILE. This is the power of the
AccelFPGA tool.

 We finally show a comparison of the AccelFPGA
compiler with the Xilinx System Generator and the Altera
DSP Builder tools. Table 4 shows a design of a 16 tap
FIR filter designed using AccelFPGA and the Xilinx
System Generator on a Xilinx VirtexII XC2V500 device.
Table 5 shows the design of a 16 tap FIR filter using
AccelFPGA and the Altera DSP Builder on an APEX
EP20K device. It should be noted that this comparison is
not really fair since the designs in the System Generator
and DSP Builder are manually optimized libraries, while
the AccelFPGA results are the output of a behavioral
synthesis tool working on a MATLAB version of a filter.
We attribute the differences between the compiler
generated designs and the manual designs to some clever
forms of implementing multipliers using constant
coefficients based on efficient look-up table techniques.
However it is interesting to note that the results are
comparable.

VII. CONCLUSIONS

This paper described a behavioral synthesis tool called

AccelFPGA which reads in high-level descriptions of DSP
applications written in MATLAB, and automatically
generates synthesizable RTL models and simulation
testbenches in VHDL or Verilog. The RTL models can be
synthesized using commercial logic synthesis tools and
placement and routing tools onto FPGAs. By linking the
two design domains of DSP and FPGA hardware design,
AccelFPGA provides DSP design teams a significant
reduction in design labor and time, elimination of
misinterpretations and costly design rework, automatic
verification of the hardware implementation, and the
ability of systems engineers and algorithm developers to
perform architectural exploration in the early phases of
their development cycle. The paper described how
powerful directives are used to provide high-level
architectural tradeoffs for the DSP designer.
Experimental results were reported on a set of 8
MATLAB benchmarks that are mapped onto the Xilinx
Virtex II and Altera Stratix FPGAs.

> TVLSI-00069-2003.R1 BANERJEE ET AL, “OVERVIEW OF COMPILER,” IEEE TRANS. VLSI SYSTEMS <

13

Table 1. MATLAB Benchmark Characteristics.

Benchmark fir16tap fir64tap fft64 dec_fir lms iirdf1 int_fir bma dsl

MATLAB Lines 20 40 98 38 39 33 38 63 175

Directives Used 6 8 9 6 6 6 7 10 9

Verilog Lines 957 1312 4188 1333 2219 883 1084 2758 5654
AccelFPGA Time

(sec) 4.0 39.0 10.2 8.9 20.8 2.7 2.5 12.3 38.8

Synplify Time (sec) 3.6 248.7 698.8 32.6
872.

4 2.1 9.5 11.9 382.1

Table 2. Results of AccelFPGA on the Xilinx Virtex II XCV250 device.
 Freq Latency Initiation rate Throughput

fir16tap LUTS MUX Mult ROMS RAMS (MHz) (cycles) (cycles) (KSPS)

Base 143 75 1 8 0 82.9 23 19 4363.2
UNROLL 16 259 399 16 8 0 76.9 5 1 76900.0
PIPELINE 373 326 8 8 0 134 20 1 134200.0
MEMMAP 126 47 1 8 2 115 73 67 1717.9

PIPE+MEM 1256 565 0 0 1 131 94 54 2429.6
fir64tap

Base 894 490 1 8 0 50.1 104 100 501.0
UNROLL 16 3172 740 16 8 0 58.7 44 40 1467.5

TILE+MEM+PIPE 1654 330 16 8 16 79.7 59 55 1449.1
dec_fir

Base 516 197 1 6 0 66.6 74 71 938.0
UNROLL 64 1356 1209 0 0 0 61.2 8 5 12240.0

MEM+UNROLL64 3303 1963 0 0 1 96.9 207 193 502.1
iirdf1
Base 119 47 2 0 0 107 11 7 15300.0

UNROLL 2 41 21 0 0 0 134 5 1 134200.0
int_fir
Base 254 49 1 6 0 75.3 79 75 1004.0

UNROLL 16 446 231 16 12 0 56.8 11 7 8114.3
fft64
Base 9882 3393 4 16 0 30.2 340 64 471.9

MEMMAP 4212 1473 4 16 2 66.8 5722 4 16700.0
dsl

Base 7145 3055 5 16 0 38.8 3114 2883 13.5
UNROLL 16 19701 5953 20 24 0 29.4 394 227 129.5

bma
Base 9349 3735 0 0 0 40.8 42297 42285 1.0

MEMMAP 929 512 0 0 3 72.3 230072 228342 0.3

Table 3. Results of AccelFPGA on the Altera EP1S10 Stratix device.

 Freq Latency
Initiatio
n rate

System
Throughpu

t
fir16tap LUTS ATOMS MAC DSP ROMS RAMS (MHz) (cycles) (cycles) (KSPS)

Base 162 367 1 1 1 0 87.2 23 19 4589.5
UNROLL 16 302 475 8 1 1 0 82.9 5 1 82900.0
PIPELINE 287 547 4 1 1 0 129.8 20 1 129800.0
MEMMAP 169 225 1 1 1 1 95.4 73 67 1423.9

PIPE+MEM 1031 3583 8 1 1 1 123.4 94 54 2285.2

> TVLSI-00069-2003.R1 BANERJEE ET AL, “OVERVIEW OF COMPILER,” IEEE TRANS. VLSI SYSTEMS <

14

fir64tap
Base 1244 1816 1 1 0 0 60.3 104 100 603.0

UNROLL 16 2307 2878 16 2 0 0 78.1 44 40 1952.5
TILE+MEM+PIPE 2125 2702 16 2 0 16 78.1 59 55 1420.0

dec_fir
Base 570 1166 1 1 0 0 78.9 74 71 1111.3

UNROLL64 1090 1662 12 2 0 0 67.1 8 5 13420.0
MEM+UNROLL64 2536 2837 5 1 0 1 99.8 207 193 517.1

iirdf1
Base 103 170 3 1 0 0 103 11 7 14771.4

UNROLL 2 21 63 1 1 0 0 130 5 1 129800.0
int_fir
Base 311 578 1 1 0 0 67.6 79 75 901.3

UNROLL 16 840 1106 16 2 0 0 47.7 11 7 6814.3
fft64
Base 10704 16730 4 1 0 0 46.1 340 64 720.3

MEMMAP 4439 8361 4 1 0 2 84.3 5722 4 21075.0
dsl

Base 8514 19905 5 2 0 0 50.3 3114 2883 17.4
UNROLL 16 22487 33875 20 5 0 0 31.4 394 227 138.3

bma
Base 9015 26362 1 1 0 0 47.9 42297 42285 1.1

MEMMAP 905 1037 0 0 0 3 57.4 230072 228342 0.3

Table 4. Comparison of AccelFPGA with System Generator for 16 tap FIR filter (XC2V500)

 Area (slices) Frequency (MHz) Throughput (MSPS)
AccelFPGA 386 163 163

Xilinx System Generator 587 205 205

Table 5. Comparison of AccelFPGA with DSP Builder for 16 tap FIR filter (EP20K)

 Area (Logic Cells) Frequency (MHz) Throughput (MSPS)
AccelFPGA 436 118 118

Altera DSP Builder 870 123 123

> TVLSI-00069-2003.R1 BANERJEE ET AL, “OVERVIEW OF COMPILER,” IEEE TRANS. VLSI SYSTEMS <

15

REFERENCES

[1] Adelante Technologies, A|RT Builder,
www.adelantetechnologies.com
[2] Altera, Stratix Datasheet, www.altera.com
[3] Celoxica Corp, Handle C Design Language, www.celoxica.com
[4] System Compiler: Compiling ANSI C/C++ to Synthesis-ready
HDL. Whitepaper. C Level Design Incorporated.
www.cleveldesign.com
 [5] CynApps Suite. Cynthesis Applications for Higher Level
Design. www.cynapps.com
 [6] G. DeMicheli, Synthesis and Optimization of Digital Circuits,
McGraw Hill, 1994
[7] Esterel-C Language (ECL). Cadence website. www.cadence.com
 [8] M. Haldar, A. Nayak, A. Choudhary, and P. Banerjee, “A System
for Synthesizing Optimized FPGA Hardware from MATLAB,” Proc.
International Conference on Computer Aided Design, San Jose, CA,
November 2001, See also
www.ece.northwestern.edu/cpdc/Match/Match.html.
[9] Mathworks Corp, MATLAB Technical Computing Environment,
www.mathworks.com
[10] De Micheli, G. Ku D. Mailhot, F. Truong T. The Olympus
Synthesis System for Digital Design. IEEE Design & Test of
Computers 1990.
[11] Overview of the Open SystemC Initiative. SystemC website.
www.systemc.org
[12] Synopsys Corp, Behavioral Compiler Datasheet,
www.synopsys.com
[13] Signal Processing Workbench (SPW) Datasheet,
www.cadence.com.
[14] Xilinx, Virtex II Datasheet, www.xilinx.com
[15] A. Nayak, M. Haldar, A. Choudhary, P. Banerjee, "Precision
And Error Analysis Of MATLAB Applications During Automated
Hardware Synthesis for FPGAs," Proc. Design Automation and Test
in Europe (DATE 2001), Mar. 2001, Berlin, Germany.
[16] P. Banerjee, D. Bagchi, M. Haldar, A. Nayak, V. Kim, R. Uribe,
“Automatic Conversion of Floating Point MATLAB Programs into
Fixed Point FPGA Based Hardware Design,” Proc. FPGA based
Custom Computing Machines (FCCM) (poster paper) , Apr. 2003,
Monterey, CA.
[17] P. G. Joisha, and P. Banerjee, "The MAGICA Type Inference Engine for
MATLAB," Proc. International Conference on Compiler Construction (CC
03), Warsaw, Poland, Apr. 2003.

Prithviraj Banerjee (F’94) is currently the Walter P. Murphy Professor and
Chairman of the Department of Electrical and Computer Engineering at
Northwestern University in Evanston, Illinois. Prior to that, he was the
Director of the Computational Science and Engineering program, and
Professor of Electrical and Computer Engineering at the University of Illinois
at Urbana-Champaign. He is also the Founder and Chief Scientist of
AccelChip which is developing system level electronic design tools to
accelerate chip design. He founded the company in July 2000, and served as
its President and CEO until June 2002.
 Prith Banerjee’s research interests are in VLSI computer aided design, and
compilers, and is the author of about 300 research papers in these areas, and
is the author of a book entitled "Parallel Algorithms for VLSI CAD”. He has
supervised 30 Ph.D. and 36 M.S. student theses thus far. Dr. Banerjee has
served as the Program Chair, General Chair, and Program Committee of more
than 50 conferences in the past 15 years and has served as Associate Editor of
four journals.
 Dr. Banerjee has received numerous awards and honors during his career.
He received the IEEE Taylor L. Booth Education Award from the IEEE
Computer Society in 2001. He became a Fellow of the ACM in 2000. He was

the recipient of the 1996 Frederick Emmons Terman Award of ASEE's
Electrical Engineering Division. He was elected to the Fellow grade of IEEE
in 1995. He received the University Scholar award from the University of
Illinois for in 1993, the Senior Xerox Research Award in 1992, the National
Science Foundation's Presidential Young Investigators' Award in 1987, the
IBM Young Faculty Development Award in 1986, and the President of India
Gold Medal from the Indian Institute of Technology, Kharagpur, in 1981
 Dr. Banerjee has been on the Technical Advisory Boards of many
companies such as Atrenta, Calypto Design Systems, and Ambit Design
Systems, and has served as consultants to many more.
 Dr. Banerjee received his B.Tech. degree in Electronics and Electrical
Engineering from the Indian Institute of Technology, Kharagpur, India, in
August 1981, and the M.S. and Ph.D degrees in Electrical Engineering from
the University of Illinois at Urbana-Champaign in December 1982 and
December 1984
Malay Haldar was Co-Founder and Principal Software Engineer of
AccelChip, Inc. He is currently a Senior Software Engineer at Calypto
Design Systems. He received his B. Tech degree from the Indian Institute of
Technology, Kharagpur, in 1998, his M.S. degree in Electrical and Computer
Engineering from Northwestern University in 1999, and his Ph.D. in
Electrical and Computer Engineering from Northwestern University in 2001.

Anshuman Nayak was Co-Founder and Principal Software Engineer of
AccelChip, Inc. He is currently a Senior Software Engineer at Atrenta, India.
He received his B. Tech degree from the Indian Institute of Technology,
Kharagpur, in 1998, his M.S. degree in Electrical and Computer Engineering
from Northwestern University in 1999, and his Ph.D. in Electrical and
Computer Engineering from Northwestern University in 2001.

Victor Kim was Principal Software Engineer of AccelChip, Inc. He is
currently a Software Engineer at Calypto Design Systems. He received his B.
S. degree in Computer Engineering from Northwestern in 1997, and his M.S.
degree in Electrical and Computer Engineering from Northwestern University
in 1999. He is currently also working for his Ph.D. in Electrical and
Computer Engineering at Northwestern University.

Vikram Saxena was Vice President of Engineering of AccelChip, Inc. He is
currently a Senior Software Engineer at Synopsys, Inc.. He also worked for
Synopsys during 1996 to 2000. He received his B. Tech degree from the
Indian Institute of Technology, New Delhi in 1994, his M.S. degree in
Electrical and Computer Engineering from University of Illinois at Urbana
Champaign in 1996.

Steven Parkes was Principal Software Engineer of AccelChip, Inc. He is
currently a Research Staff Member at IBM Almaden Research Center in San
Jose, CA. He was the Founder, President and CEO of Sierra Vista Research
during 1994 to 2001. He received his B. S. degree from the University of
California, Davis in 1992, his M.S. degree in Electrical and Computer
Engineering from the University of Illinois at Urbana Champaign in 1992,
and his Ph.D. in Electrical and Computer Engineering from the University of
Illinois at Urbana Champaign in 1994.

Debabrata Bagchi was Corporate Software Engineer of AccelChip, Inc. He
is currently a Software Engineer at Atrenta, India. He received his B. Tech
degree from the Indian Institute of Technology, Kharagpur, in 2000, and his
M.S. degree in Electrical and Computer Engineering from Northwestern
University in 2001.

Satrajit Pal was Corporate Software Engineer of AccelChip, Inc. He is
currently a Software Engineer at Atrenta, India. He received his B. Tech
degree from the Indian Institute of Technology, Kharagpur, in 2000, and his
M.S. degree in Electrical and Computer Engineering from Northwestern
University in 2001.

Nikhil Tripathi was Corporate Applications Engineer of AccelChip, Inc. He
is currently a Software Engineer at Atrenta, India. He received his B. Tech
degree from the Indian Institute of Technology, Kharagpur, in 2000, and his
M.S. degree in Electrical and Computer Engineering from Northwestern
University in 2001.

> TVLSI-00069-2003.R1 BANERJEE ET AL, “OVERVIEW OF COMPILER,” IEEE TRANS. VLSI SYSTEMS <

16

David Zaretsky was Principal Software Engineer of AccelChip, Inc. He
received his B. S. degree in Computer Engineering from Northwestern in
2000, and his M.S. degree in Electrical and Computer Engineering from
Northwestern University in 2001. He is currently also working for his Ph.D.
in Electrical and Computer Engineering at Northwestern University.

Robert Anderson is a Senior Corporate Applications Engineer at AccelChip,
Inc. He worked at Tellabs from 1997 to 2001, and at Lucent Technologies
from 1986 to 1997. He received his B. S. degree in Computer Engineering
from Devry Institute of Technology in 1986, and his M.S. degree in
Electrical and Computer Engineering from Northwestern University in 2001.

Juan Ramon Uribe is a Senior Corporate Applications Engineer at
AccelChip, Inc. He worked for Tellabs from 2000 to 2001, and Charles
Industries from 1995 to 2000. He received his B. S. degree in Electrical
Engineering from the University of Illinois at Chicago in 1986, and his M.S.
degree in Electrical Engineering from Stanford University in 1988.

