TVLSI-00069-2003.R1 BANERJEE ET AL “OVERVIEW OF COMILER,” IEEE TRANS. VLSI SYSTEMS 1

Overview of a Compiler for Synthesizing
MATLAB Programs onto FPGAs

P. Banerjeel-ellow, IEEE, M. Haldar, A. Nayak, V. Kim, V. Saxena, S. Parkes, D. Bagchi, S. Pal, N.
Tripathi, D. Zaretsky, R. Anderson, J. R. Uribe

Abstract— This paper describes a behavioral synthesitool
called AccelFPGA which reads in high-level descrifons of
DSP applications written in MATLAB, and automatically
generates synthesizable RTL models and simulation
testbenches in VHDL or Verilog. The RTL models canbe
synthesized using commercial logic synthesis toddsid place
and route tools onto FPGAs. The paper describes o
powerful directives are used to provide high-level
architectural tradeoffs for the DSP designer. Expemental
results are reported on a set of eight MATLAB bencharks
that are mapped onto the Xilinx Virtex Il and Alter a Stratix
FPGAs.

Index Terms— High level synthesis, MATLAB, RTL,
VHDL, Verilog, FPGAs.

Manuscript received March 5, 2003; revised August2003 and
September 15, 2003.

Prith Banerjee is the Founder of AccelChip, Ince id currently with
the Electrical and Computer Engineering Departmédrthwestern
University, Evanston, IL-60208, USA (email:
banerjee@ece.northwestern.pdu

Malay Haldar was with AccelChip, Inc. He iswnavorking for
Calypto Design Systems, 2903 Bunker Hill Lane, &W#08, Santa
Clara, CA 95054 (email: malay@calypto.com

Anshuman Nayak was with AccelChip, Inc. Hen@wv working for
Atrenta (I) Pvt. Ltd., A 10 Ground Floor, SectorNpida, 201 301, UP,
India (email:_nayak@atrenta.cpm

Victor Kim was with AccelChip, Inc. He is nomorking for Calypto
Design Systems, 2903 Bunker Hill Lane, Suite 2087t& Clara, CA
95054 (email:_vkim@calypto.com

Vikram Saxena was with AccelChip, Inc. He manworking for
Synopsys, Inc., 700 East Middlefield Road, Mountdiew, CA 94043,
USA (email:_vikram@synopsys.com

Steven Parkes was with AccelChip, Inc. Heaw mvorking for IBM
Almaden Research Center, 650 Harry Road, San @és85120, USA.
(email: steven@almaden.ibm.chm

Debabrata Bagchi was with AccelChip, Inc. Henow working for
Atrenta (I) Pvt. Ltd., A 10 Ground Floor, SectorNpida, 201 301, UP,
India (email: bagchi@atrenta.com)

Satrajit Pal was with AccelChip, Inc. He isanworking for Atrenta
() Pvt. Ltd., A 10 Ground Floor, Sector 9, Noid2Q1 301, UP, India
(email:_satrajit@atrenta.com

Nikhil Tripathi was with AccelChip, Inc. He isow working for
Atrenta (I) Pvt. Ltd., A 10 Ground Floor, SectorNpida, 201 301, UP,
India (email:_nikhil@atrenta.com

David Zaretsky was with AccelChip. He is cuttgnwith the
Electrical and Computer Engineering Department, tiNeestern
University, Evanston, IL-60208, USA (email: dcz@thavestern.edu

Robert Anderson is with AccelChip, Inc., 1900cGArthy Blvd.,
Suite 204 , Milpitas, CA 95035 USA (email: robert@elchip.com

Juan Ramon Uribe is with AccelChip, Inc., 19@@Carthy Blvd.,
Suite 204 , Milpitas, CA 95035 USA (email: uribe@elchip.con).

TVLSI-00069-2003.R1 BANERJEE ET AL “OVERVIEW OF COMILER,” IEEE TRANS. VLSI SYSTEMS

I. INTRODUCTION

THE performance requirements of today’'s
communication systems, such as 3G and 4G wireless
communication systems, MPEG4 video and Video over
IP, now exceed the capabilities of general-purpose
processors. With the introduction of advanced Field
Programmable Gate Array (FPGA) architectures sich a
the Xilinx Virtex-1l [14], and the Altera StratixX2], a new
hardware alternative is available for DSP desigrkeeas
combines all the benefits of general-purpose psmres
with the performance advantage of ASICs.

DSP design has traditionally been divided into t
types of activities — systems/algorithm developmeamd
hardware/software implementation. The majority GHD

CURRENT FLOW

Floating point MATLAB .m

DsP

Designer

(manual)
Fixed point MATLAB .m

Manual Hardware
designer

Bit frue VHDL/Verilog .vhd/.v

RTL Simulation
Automated Logic Synthesis

Netlist of gates, .edf

Quantization

Place and
oute

Automated

I

FPGA bit stream, _bit

PROPOSED NEW FLOW
Floating point MATLAB .m
DSP

Quantization &
Designer Directives

(manual) gieeq point MATLAB .m
With directives

Automated | AccelFPGA

Bit-true VHDL/Verilog .vhd/.v
RTL Simulation
Automated Logic Synthesis
Netlist of gates, .edf

Place and
Route

Automated

FPGA bit stream, .bit

Figure 1. Automated design using AccelFPGA.

Il. RELATED WORK

system designers and algorithm developers use the The problem of translating a high-level or behaaior

MATLAB language [9]. The first step in this flow the
conversion of the floating point MATLAB algorithmtio

a fixed point version using quantizers from thetefil
Design and Analysis (FDA) Toolbox for MATLAB.
Algorithmic tradeoffs such as the precision of eifilt
coefficients, rounding modes, and the number of taged

in a filter are performed at the MATLAB level. Hivare
design teams take the specifications created by the
systems engineers and algorithm developers (irfdime

of a fixed point MATLAB code) and create a physical
implementation of the DSP design. If the targetais
FPGA, or PLD, the first task is to create a registensfer
level (RTL) model in a hardware description langeiag
(HDL) such as VHDL and Verilog. The RTL HDL is
synthesized by a logic synthesis tool, and placaed a
routed onto an FPGA using backend tools. The psoogs
creating an RTL model and a simulation testbenkksa
about one to two months with the tools currenthedis
today.

This paper described the AccelFPGA compiler whic
directly reads in fixed point MATLAB behavioral meld
and automatically outputs synthesizable RTL modeid
simulation testbenches in VHDL or Verilog. The
resultant RTL is bit-true with the original fixedoint
MATLAB specification. The current manual and new
automated flow is shown in Figure 1. AccelFPGAoals
allows users to perform quick iterations of hardsvar
designs, allowing area and speed trade offs and
architecture exploration.

language description into a register transfer level
representation is called high-level synthesis [6ynopsys
developed one of the first successful commercial
behavioral synthesis tools in the industry, the &&dral
Compiler [12], which took behavioral VHDL or Verio
and generated RTL VHDL or Verilog. Recently, there
have been several efforts to develop compilers that
compile high-level languages such as C into VHDL or
Verilog [7,10]. Commercial products are offered by
companies such as Adelante [1], Celoxica [3], Cdlev
Design [4] and Cynapps [5]. SystemC is a new laggu
developed by the SystemC consortium which allovessus
to write hardware system descriptions using a Ctassc
library [11]. Synopsys has a tool called Cocentvlich
takes SystemC and generates RTL VHDL/Verilog. There
have been some system level tools that take gralphic
descriptions of systems and generate HDL code.
Examples include SPW from Cadence [13], System
Generator from Xilinx [14], and DSP Builder fromtéta

[2].

While there are some related tools that con@ear
C++ into VHDL and Verilog, this paper describes a
compiler that takes behavioral MATLAB descriptidiise
default language of DSP design) and generates RTL
VHDL and Verilog for FPGA design. Some of the
unique and challenging features of the MATLAB
language are the support for array operations é&biper
on matrices instead of scalars), an interpretive
environment where the types and shapes of variabkes
not declared at compile time but inferred at ruetimnd a
very powerful set of built in library functions. x&mples
of such functions are “filter” and “fft”. AccelFBA
supports a subset of the fixed point built-in fioies of
MATLAB in hardware in the form of AccelWare
functions. The MATCH compiler project [8] at

TVLSI-00069-2003.R1 BANERJEE ET AL “OVERVIEW OF COMILER,” IEEE TRANS. VLSI SYSTEMS 3

Northwestern University has built a compiler thatk the

MATLAB applications and produced synthesizable RTL
VHDL. The technology for the AccelFPGA compiler

described in this paper is an outgrowth of the MATTC
Compiler project.

Ill. AN EXAMPLE DESIGN IN MATLAB

We will illustrate the use of the AccelFPGA compile
using a 16 tap finite impulse response (FIR) filter

example. Let us first look at how such a filtemcbe

represented in MATLAB wusing a floating point

representation.

% 16-tap FIR filter demonstration - Floating foin
version.
% read input from file
X = load('sines.txt"); % input data
indata = x;
NUMTAPS = 16; % number of taps
NUMSAMPS = length(x); % number of samples
% define filter coefficients
% 16-tap low-pass filter; sampling rate 8000 Hndyzass
cutoff 2000 Hz; bandstop start 3000 Hz
coeff = 100 * [-0.024750172265052, -
0.030362659582556, 0.037764386593039,
0.048119075484636, ...
-0.063925788455935, -0.09169025575916
0.155281320470888, 0.469564093514142, ...
0.469564093514142, 0.155281320470888
0.091690255759161, -0.063925788455935, ...
0.048119075484636, 0.037764386593039
0.030362659582556, -0.024750172265052];
% apply filter to each input sample
for n = NUMTAPS:NUMSAMPS
% initialize sum of products
sum = 0;
% perform sum of products
for k = 1:16,
mult = indata(n-k+1) * coeff(k);
sum = sum + mult;
end
% store output
outdata(n) = sum;
end

The first step in this flow is the conversion ofeth
floating point MATLAB algorithm into a fixed point
version using “quantizers” from the Filter Designda
Analysis (FDA) Toolbox for MATLAB [9]. One
specifies a quantizer as

gresults = quantizer(‘fixed','floor','wrap’,[16,0]) ;

The quantizer is actually used in a subsequent
multiplication computation as

mult = quantize(gresults , (indata(n-k+1) *
coeff(k)));

which means that the multiplication operation is
performed, and the output is stored in 16 bit mieai
with O bits after the decimal point, and uses tfieot”
mode for rounding, and “wrap” mode for overflow
computations.

Algorithmic tradeoffs such as the precision ittef
coefficients and the number of taps used in arfittee
performed at the MATLAB level. We now show thefik
point version of the MATLAB algorithm for a FIR fér
below.

% Example MATLAB code for 16 tap FIR filter with
fixed point quantization

% read input from file

x = load('sines.txt"); % input data

NUMTAPS = 16; % number of taps

NUMSAMPS = length(x); % number of samples

% define fixed-point parameters

gpath = quantizer(‘fixed','floor','wrap',[8,0]); %
quantization of inputs in data path

gresults = quantizer(‘fixed','floor','wrap’,[16,0]) ; %
quantization of operation results

indata = quantize(gpath,x);

% define filter coeffients

% 16-tap low-pass filter; sampling rate 8000 Hzydzass
cutoff 2000 Hz; bandstop start 3000 Hz

coeff =quantize(gpath, [-2.4750172265052; -
3.0362659582556; 3.7764386593039; 4.8119075484636;

-6.3925788455935; -9.1690255759161;
15.5281320470888; 46.9564093514142; ...
46.9564093514142; 15.5281320470888;
9.1690255759161; -6.3925788455935; ...
4.8119075484636; 3.7764386593039; -
3.0362659582556; -2.4750172265052]);
for n = NUMTAPS:NUMSAMPS
sum = 0;
% perform sum of products
fork=1:16
mult = quantize(gresults , (indata(n-k+1) *
coeff(k)));
sum = quantize(gresults , (sum + mult));
end
outdata(n) guantize(gresultssum);
end

We now apply various AccelFPGA directives to the
fixed point MATLAB. AccelFPGA compiler directives

TVLSI-00069-2003.R1 BANERJEE ET AL “OVERVIEW OF COMILER,” IEEE TRANS. VLSI SYSTEMS

are used to bridge the gap between the MATLAB sourc

4

and the synthesis of the computational structureated
by AccelFPGA. Every compiler directive is prefixég
“0B!ACCEL”. This makes the directives appear as
comments to other environments dealing with MATLAB
since all comments in MATLAB start with %.

The first step in the process of hardware desgo
add a TARGET directive which tells the compilerttita
needs to generate HDL code for specific FPGA device
AccelFPGA uses a Resource Description Language thg
describes the architecture, routing and internalcetion
resources of FPGAs from all the major FPGA vendors.
AccelFPGA uses the RDL to create synthesizable RTL
code that is wuniquely optimized for each device.
AccelFPGA supports various FPGA devices using the
TARGET directive. By specifying the %!ACCEL
TARGET XC2V250 directive, the compiler becomes
aware of the characteristics of that target Virtéx
architecture, namely that it can support 1536
Combinational Logic Blocks, 48 Kbits of distributed
RAM, 24 embedded multipliers, 24 embedded RAM
blocks.

The next step is to use hardware partitioning
directives. AccelFPGA allows the user to use hardwa
partitioning directive to demarcate parts of theun
source that are targeted for hardware synthesispard
that are not. The BEGIN_HARDWARE and
END_HARDWARE directives indicate a section of
MATLAB code that is intended for hardware synthesis
The BEGIN-HARDWARE directive takes as a parameter
the input data port for the hardware part. The END
HARDWARE directive takes as a parameter the output
data port for the hardware part.

The next step is to use a STREAM directive. e Th
purpose of the STREAM directive is the specificatiof
the type of data flow that inputs and outputs oé th
synthesized hardware will handle. Streaming data is
defined as data with a regular rate of flow throubh
hardware. For systems that will handle streaminta,da
AccelFPGA supports the automatic creation of paith
the required buffering mechanisms to sustain tlyelee
flow of data with the use of the STREAM directiiéhese
mechanisms include ‘double-buffering’ to allow

concurrent processing of data and buffering of niesa

% Example MATLAB code for 16 tap FIR filter with
basic AccelFPGA directives
% Specifly hardware target Xilinx Virtex2 FPGA
%!ACCEL TARGET XC2Vv250
% read input from file
x = load('sines.txt"); % input data
NUMTAPS = 16; % number of taps
NUMSAMPS = length(x); % number of samples
t 9% define fixed-point parameters
gpath = quantizer(‘fixed', floor','wrap’',[8,0]); %
gquantization of inputs in data path
gresults = quantizer(‘fixed', floor','wrap',[16 0%
gquantization of operation results
indata = quantize(gpath,x);
% define filter coeffients
% 16-tap low-pass filter; sampling rate 8000 Hzydyeass
cutoff 2000 Hz; bandstop start 3000 Hz
coeff = quantize(gpath, [-2.4750172265052; -
3.0362659582556; 3.7764386593039; 4.8119075484636;
-6.3925788455935; -9.1690255759161;
15.5281320470888; 46.9564093514142; ...
46.9564093514142; 15.5281320470888;
9.1690255759161; -6.3925788455935; ...
4.8119075484636; 3.7764386593039; -
3.0362659582556; -2.4750172265052]);
% apply filter to each input sample
%!ACCEL STREAM n
for n = NUMTAPS:NUMSAMPS
%!ACCEL BEGIN_HARDWARE indata
indatabuf = quantize(gpath, indata(n-15:n));
% initialize sum of products
sum = quantize(gresults,0);
% perform sum of products
for k = quantize(gpath,1:16),
mult = quantize(gresults , (indatabuf(k) * dgie));
sum = quantize(gresults , (sum + mult));
end
outdatabuf = quantize(gresults, sum);
% store output
outdata(n) = quantize(gresults,outdatabuf);
%!ACCEL END_HARDWARE outdata
end

samples. It should also be noted that the fixedtpmide
got modified to add some explicit buffering of inpgand
output data for the parts of the code in the hardwa
component. For example the input data “indata’s get
copied to “indatabuf” before the actual computatidrthe
FIR computation.

The resultant FIR filter code with AccelFPGA
directives is shown below.

The basic MATLAB FIR filter algorithm performs
the 16 tap FIR filter operation using 16 iteratiarsng
one adder and one multiplier per iteration. This
particular design with these AccelFPGA directivesew
compiled by the AccelFPGA compiler requires 143
LUTs, 75 multiplexers, 1 multiplier, 8 ROMs, runs&2.9
MHz, and has a latency of 23 cycles, and an iftiatate

TVLSI-00069-2003.R1 BANERJEE ET AL “OVERVIEW OF COMILER,” IEEE TRANS. VLSI SYSTEMS 5

of 19 cycles (one new data sample every 19 cyclés).
terms of DSP filter performance, this design pen®FIR

filtering at a rate of 82.9/19*1000 = 4363 Kilo-gales

per second (KSPS) as shown in Table 2. We willvsimo
the next section how the performance of this fitan be
improved.

IV. DESIGN SPACE EXPLORATION USING THE
ACCELFPGA COMPILER

AccelFPGA allows the user to use compiler direcive
to perform design space exploration of various -area
performance tradeoffs. AccelFPGA performs higtelev
estimates of area by counting the number of funetio
unites such as adders, multipliers, multiplexerd an
registers and reporting that to the user duringrssis.
We combine this unit count with area models for
functional units that are parameterized with resped¢he
bit widths of the devices [15]. AccelFPGA estigmt
performance (latency, throughput) in terms of clog&les
used in the scheduling. The latency is measurethéy
number of clock cycles needed to generate an oumput
response to an input. The initiation rate is tbeber of
clock cycles between successive inputs. Througlgut
defined as the worst-case clock frequency of theigde
divided by the initiation rate. The latency, iation rate
and throughput numbers are reported to the usparaof
the high-level synthesis. We will now describe the
various directives available for the user to perfdhese
tradeoffs.

A. UNROLL Directive

The UNROLL directive is a mechanism to expand the
source MATLAB to create more copies of loop bodies
thereby increasing performance optimizations as
illustrated below.

Let us consider the for loop in the example MAB.
code for the FIR filter.

sum = 0;
fork=1:16
mult = quantize(gresults , (indatabuf(k) * dgle)));
sum = quantize(gresults , (sum + mult));
end

The MATLAB code has one addition and one
multiplication operation in the data flow graphitsf basic
block hence the AccelFPGA compiler will generate an
RTL VHDL or Verilog which will use one adder andeon
multiplier to schedule this computation which wike 16
cycles.

If the code were to be unrolled as shown below

sum = 0;
%!ACCEL UNROLL 4
fork=1:16
mult = quantize(gresults , (indatabuf(k) * dgie));
sum = quantize(qgresults , (sum + mult));
end

The loop body will be replicated 4 times and lthap
indices in successive iterations are incremented. |
addition, scalars that carry values from one iterato
another iteration are renamed. For example, théarsca
“sum” and “mult” would be renamed in successiveiesp
This exposes opportunities to chain operations h® t
compiler.

sum=0;
fori=1:4:16
multl =
coeff(k)));
suml = quantize(gresults , (sum + multl));
mult2 = quantize(gresults , (indatabuf(k+1)| *
coeff(k+1)));
sum2 = quantize(gresults , (suml + mult2));
mult3 = quantize(gresults , (indatabuf(k+2) | *
coeff(k+2)));
sum3 = quantize(gresults , (sum2 + mult3));
mult4 = quantize(gresults , (indatabuf(k+3) | *
coeff(k+3)));
sum4 = quantize(qgresults , (sum3 + mult4));
end;

quantize(gresults , (indatabuf(k) | *

AccelFPGA now recognizes four addition and four
multiplication operations in each basic block hertceill
schedule it across four cycles using four addedsfaor
multipliers in parallel.

If the code were to be unrolled fully as shown belo

sum = 0;
%!ACCEL UNROLL 16
fork =1:16
mult = quantize(gresults , (indatabuf(k) * dgie)));
sum = quantize(gresults , (sum + mult));
end

The loop body will be replicated completely 16 téne
and the for loop will be eliminated.

sum=0; |

TVLSI-00069-2003.R1 BANERJEE ET AL “OVERVIEW OF COMILER,” IEEE TRANS. VLSI SYSTEMS 6

multl =
coeff(k)));
suml = quantize(gresults , (sum + multl));
mult2 = quantize(gresults , (indatabuf(k+1) | *
coeff(k+1)));
sum2 = quantize(gresults , (suml + mult2));

quantize(gresults , (indatabuf(k) |*

multl5 =
coeff(k+14)));
suml5 = quantize(gresults , (sum14 + multl5));
multlé = quantize(gresults , (indatabuf(k+15)| *
coeff(k+15)));
suml6 = quantize(gresults , (sum15 + multl6));
end;

quantize(gresults , (indatabuf(k+14) *

For this particular choice of UNROLL 16, AccelFPGA
produces a design that requires 259 LUTs, 399
multiplexers, 16 multipliers, 8 ROMs. This desigas a
reduced latency of 5 cycles, and initiation ratel afycle,
however, it operates at a frequency of 76.9 MHzgwo
a large critical path involving 16 adders and 1 tipliér
in one cycle. In terms of FIR filter performanaa/en
though the clock frequency has gone down, the tiirput
has gone up to 76,900 Kilo-samples per second @srsh
in Table 2.

The UNROLL directive is therefore used by the user
generate different area-delay hardware alternatives

B. PIPELINE Directive

mult = quantize(gresults , (indatabuf(k) * dgie)));
sum = quantize(gresults , (sum + mult));
end

AccelFPGA will now unroll the 16 tap for looptina
data flow graph consisting of 16 multipliers and 16
adders, and breaks off the data flow graph intstages
of a pipeline, with each stage having one multiphed
one adder, amnd insert registers between each stage

For our FIR filter example, AccelFPGA now
produces a design which improves the frequency of
operation of the design to 134.2 MHz, but suffetarge
latency of 20 cycles, however, the initiation rist@ow at
1 cycle per operation. This design therefore waaks
134,200 Kilo-samples per second as shown in Table 2

C. MEM_MAP Directive

The AccelFPGA compiler by default maps all variable
to registers in the hardware implementation. Imyna
cases if the variables are arrays of large sizs, rttay
results in large hardware resources in the formkuafe
multiplexers. The memory map directive indicatkatt
the given array variable should be mapped to aifspec
memory resource in the target architecture. The
MEM_MAP directive can be used to map array varigble
to embedded RAMs on a Xilinx Virtex Il or Virtex-E
device or Altera APEX or Stratix device.

Let us consider the MATLAB code for the FIRil
which illustrates the MEM_MAP directive.

Pipelining increases the throughput of a datapath b
introducing registers in the datapath. This inceeas
throughput is particularly important when the datépis
iterated in the overall design. The PIPELINE dinexis
placed just before the loop, whose body is to lpelpied.
For pipelining function bodies the directive is qdd just
above the function definition. Let us consider fiieloop
in the example MATLAB for the FIR filter.

sum = 0;
fork =1:16
mult = quantize(gresults , (indatabuf(k) * ddie)));
sum = quantize(gresults , (sum + mult));

end

for n = NUMTAPS:NUMSAMPS
%!ACCEL MEM_MAP indatabuf TO ram_s9 s9(0)
ATO
%!ACCEL BEGIN_HARDWARE indata
indatabuf = quantize(gpath, indata(n-15:n));
sum = 0;
fork=1,16
mult = quantize(gresults , (indatabuf(k) * dgie));
sum = quantize(gresults , (sum + mult));
end
outdatabuf = quantize(gresults, sum);
outdata(n) = quantize(gresults,outdatabuf);
%!ACCEL END_HARDWARE outdata
end

If the code were to be pipelined as shown below

sum = 0;
%!ACCEL PIPELINE
fork =1:16

In this example, the user wants to map the array
indatabuf to the embedded memory on an Xilinx Virtexll
device named “ram_s9_s9” with instance “0” staytat
memory location “0” using the following directive:

TVLSI-00069-2003.R1 BANERJEE ET AL “OVERVIEW OF COMILER,” IEEE TRANS. VLSI SYSTEMS 7

%!ACCEL MEM_MAP indatabuf TO %!ACCEL MEM_MAP indatabuf() TO ram_s9_s9(0)
ram_s9 s9(0) ATO ATO
fork =1:64
For our running design of the 16 tap FIR filter, mult = quantize(gresults , (indatabuf(k) * dgie));
AccelFPGA produces a design that requires only 12§ sum = quantize(gresults , (sum + mult));
LUTs, 47 multiplexers, 1 multiplier, 8 ROMs and 1 end

BlockRAM. However, the latency goes up to 73 cgcle

and the throughput goes to 67 cycles between cotigec However, this now restricts the inner loop to oahe
data streams. Hence even though the number ofread access for indatabuf per cycle assuming that t
multiplexers has gone down from 75 to 47, and the RAM allows a single read operation per port peleydn

number of LUTS has gone down from 143 to 126, R F order to get more reads accomplished per cycleneeds
filter throughput is 115.1/67 = 1717 Kilosamplesr pe to use multiple memory banks.

second. This is clearly not a good choice of tinective.

However, as we will show later on, this will be aog One can rewrite the above loop as follows.
choice if the FIR were a 64 tap filter.

fort=1:16
D. TILE Directive sum(t) = 0;
end;
Tiling enables the user to specify an array of A
. . fork=1:4
computation that happens concurrently on data ihat for tl = 1:16
stored in a distributed manner across multiple nre@ado ” . .
. . . mult = quantize(gresults , (indatabuf(k,t¥)
provide higher memory bandwidth. Independent mgmor coeff(k.t1)):
and resources can be specified for each tile celyci¥he ,sum(,tl) - quantize(gresults , (sum(t1) 4t
compiler generates hardware where each of the’ ‘i§le end q q '
scheduled concurrently. This allows the user tolaxp end:
large amount of data parallelism typically presenDSP) .
. . final_sum = 0;
applications. Let us consider the case of a 64HIRp as .
shown below for 12 =1:16
' final_sum = quantize(gresults, final_sum + s2m(
end;
sum = 0;
for k = 1:64

The loop running over the number of tiles t1 isereéd
to as the Tiling Loop and is indicated by the TILE
directive. Combining this with the memory mapsitspl

mult = quantize(gresults , (indatabuf(k) * ddie)));
sum = quantize(gresults , (sum + mult));
end

over 16 RAMS, we get a tiled version of the 64 PR

. . filter shown below.
No memory maps are provided for the indatabari()

coeff() arrays, implying they are mapped to regist
However, to access a register array of 64 elememnis,
needs a multiplexer (mux) with 64 inputs. Each infou
the mux corresponds to a register of the array, thed
mux is controlled by the array index. Hence, for
generating this hardware, the arrays in the abzaenple
need to be mapped to memories. For the sake of
illustration, let us assume that there is a RAM 6#

%!ACCEL STREAM n
for n = 64:1024
%!ACCEL BEGIN_HARDWARE indata
indatabuf = quantize(gpath, reshape(indata(n-
63:n),4,16));
%!'ACCEL TILE t
% initialize sum of products

entries with a single read port, called ram_s9_gf the forstu;%t:)lg 0
architecture on which we want to map the 64 TdR.Fl . '
The modified code is shown below which maps the end;
0p!
indatabuf to the RAM instance called ram_s9 s9(0) on f{;)ﬁC:ClE. IA: PIPELINE

the Xilinx Virtex Il device. %IACCEL TILE t1

| %IACCEL MEM_MAP indatabuf(:,t1) TG

sum =0 ram_s9_s9(t1) AT 0

TVLSI-00069-2003.R1 BANERJEE ET AL “OVERVIEW OF COMILER,” IEEE TRANS. VLSI SYSTEMS

fortl =1:16

mult qguantize(gresults , (indatabyfik *
coeff(k,t1)));

sum(tl)

guantize(gresults , (sumLlinult
)
end
end;
final_sum = 0;
fort2 =1:16
final_sum
sum(t2));
end;
outdatabuf = quantize(gresults, final_sum);
% store output
outdata(n) = quantize(gresults,outdatabuf);
%!ACCEL END_HARDWARE outdata
end

quantize(gresults, final_sum

The impact of tiling can be shown as follows. T
tap FIR filter with pipelining and no memory mapgin
would require 2066 LUTs and 971 multiplexers, and
operate at a frequency of 83.7 with a throughp@Qzf1.5
KSPS. However, if one were to tile the 64 tapefiland
memory map the indatabuf buffer across 16 memadties,
design requires 1654 LUTS, 330 muxes, operate®.dt 7
MHz, and has a throughput of 1449 KSPS as shown in
Table 2.

V. COMPILER OVERVIEW

AccelFPGA is built as a set of compiler passes
operating on different intermediate representatiass
shown in Figure 2. The front-end of AccelFPGA reatds
MATLAB m-files including various directives, perfos
various syntax analysis and error reporting, anddlates
the MATLAB program into a high level intermediate
representation (HIR). The HIR representation msilar
to Abstract Syntax Tree (AST) representation of a
traditional compiler. It stores the informatiorgaeding a
given source MATLAB program in a tree form with
information about expressions, assignment statepent
conditional statements, loop statements, functians
procedures. A set of compiler passes perform wmario
transformations on the HIR representation. Thessgs
are described briefly.

A. Shape Inferencing

The shape inferencing pass infers the shapes dfahos
the scalar and array variables in the program &stspof

the MATLAB models that will be mapped to hardware
(separated by BEGIN-HARDWARE and END-
HARDWARE directives). The algorithm is based on a
lattice theoretic shape algebra. Details of oumoimattic
type/shape inferencing algorithm are outside tlepeaf
this paper, and the readers are referred to [17].

B. Scalarization and Levelization

The scalarization pass takes a vectorized MATLAB
statement and converts it into scalar form usingasing
FOR loops. The levelization pass takes a MATLAB
assignment statement consisting of complex exmessi
on the right hand side and converts it into a set o
statements each of which is in a single operaton fd his
pass operates on both scalar and array operations.

C. Auto-quantization

The auto-quantization phase takes in floating-point
MATLAB computations for parts of the MATLAB
models that will be mapped into hardware and tedasl
them to fixed-point MATLAB design. The algorithrfar
auto-quantization are described in [16]. This dthm
takes in a scalarized and levelized MATLAB program
with some of the quantizations of input variables
specified, and computes the initial value rangesefich
variable in the program. The next step takespttial
value ranges of the variables obtained at the pusvstep
and propagates the value ranges in the forwardtaire
using use-def analysis. The algorithm handles smpl
blocks of assignment statements, conditionals sisch--
THEN-ELSE, and FOR loops. The next step propagates
the value ranges of variables in the backward tioec If
the user has only specified the quantizers of tiput
variables, the back propagation pass will propagiate
results to the right-hand side of an assignmertérsiant.
The algorithm is similar to Forward propagationeTimal
step assigns values of quantizers based on thee valu
ranges of various variables.

D. Unrolling

The Unrolling pass interprets the UNROLL directives
and generates an unrolled form of the HIR represient
of a FOR loop or a vector statement of an original
MATLAB program based on the UNROLL directive. It
takes the data flow graph representation of thiersiznt
in a loop body and replicates it by an amount etpuahe
UNROLL factor as described in Section 4.1.

TVLSI-00069-2003.R1 BANERJEE ET AL “OVERVIEW OF COMILER,” IEEE TRANS. VLSI SYSTEMS 9

E. Streaming

The Stream Compiler pass handles the STREAM
directive which is used by the user to represesfsting
data as described in Section 3. The stream conipkes
care of creating corresponding input and outputtspor
creating buffers between functional blocks and rgasa
the streaming of sample-based and frame-based data.

MATLAB &
Directive parser

GUI Interface

High IR to Low IR
conversion

Ty
S

High-level
Intermediate

Low-level
Representation

Levelization
Scalarization

Shape
Inferencing

Auto-quantizer

Intermediate
Representation

Unrolling
Architecture
Representation
(RDL)

—_

Verilog
generation

VHDL
generation

Stream Compilet]

Management

Figure 2. Overview of various compiler passes.

All these passes perform operation on the Hightleve
intermediate representation.

F. Scheduling and Binding

The Scheduling and Binding pass performs behavioral
synthesis on the HIR representation and generdtesva
level Intermediate Representation (LIR). The LIR
representation has the notion of concurrency ofgsses,
variables and signals, states and state transitgmslar
to constructs in VHDL and Verilog. From the daliawf
graph of each basic block in the program, it schesdthe
computations onto various resources (adders, rhiahsp
etc). The type and quantity of each of these tchiral
resources are described using the Resource Désoript
Language (RDL). Several well-known scheduling
algorithms [6] such as As Soon As Possible (ASAR) a
As Late As Possible (ALAP), Resource Constrained
ASAP, and Resource Constrained ALAP scheduling
based on List Scheduling, have been developedrasfpa
this framework. Our high-level synthesis algamth
handle multi-cycle operators during schedulingwe$ as
multi-cycle memory read and write accesses. Amgia
of a Resource Constrained ALAP scheduling on a CDFG
is shown in Figure 3. In the figure, the CDFG graph
shown on the left has 10 operation nodes. Usimg th
RCALAP algorithm, these operations are scheduled on
limited resources of one adder and one multipl@ng 6

scheduling steps as shown on the right. Once this
scheduling is performed, RTL VHDL or Verilog can be
generated using 6 RTL states in a state machirtkethan
corresponding RTL operations per state.

G. Memory Mapping and Tiling

The Memory Mapping pass interprets the MEM_MAP
directive described earlier and maps data into nmgmo
structures on the target FPGA such as the BlockRAMs

Resource Constrained ALAP

Scheduling
3 XI .Z @ XI
866 0§
) 86 q 6
L @ ®
e, ® &
] o,

Figure 3. Example of Resource Constrained ALAPe8aling on
CDFG framework with constraints of one adder anel iwltiplier.

a Xilinx Virtex Il FPGA as described in Section 44h
example of memory mapping is shown in Figure 4dor
system being synthesized for two IP blocks oneasting
data system. Two functiormputel() and compute?()
are synthesized by the compiler into datapaths.e Th
buffers from which the functions perform omputatiare
mapped onto the embedded RAMs with two ports (one f
reading, one for writing) in order to allow pardlle
operations of the two IP blocks.

The tiling pass interprets the TILE directive aitelstan
unrolled computation among multiple memories
instantiated by the Memory Mapping pass and thereby
exploits parallel memory accesses across multiple
memories as described in Section 4.4.

TVLSI-00069-2003.R1 BANERJEE ET AL “OVERVIEW OF COMILER,” IEEE TRANS. VLSI SYSTEMS

MATLAR
function

MATLABR
array

MATLABR
array

MATLAB
array

MATLABR
function

Streaming
S:S?m‘“g . z o] 2| Data Out
o & Computel() £ Comnpute2() £
a a a
Erdbedded Datagalh Erdbedded Datapath e
Block RAM For Block RAM For
computel() compute()
Figure 4. Example of memory mapping.
H. Pipelining

The Pipelining pass interprets the PIPELINE dinexti
as described in Section 4.2 and performs blocklleve
pipelining of any computation block (for loops and
functions) that is associated with the PIPELINEediive.

I. SystemInterfacing

The System Interfacing pass generates a unifiedtavay
interconnect function blocks together using an
asynchronous protocol which uses handshaking betwee
consecutive blocks. It also generates the coetraliate
machines to coordinate these asynchronous datsféran

Figure 5(a) shows the interface for a hypotlatic
compiled device with two inputs, a and b, and two
outputs, x and y. This device would be one of ifhe
blocks shown in Figure 4. The signals on the defatle
into two groups, global device signals (Clock ares&),
and I/O specific signals. Each signal shown ais anpthe
figure is represented by a port in the HDL. AR tsignals
related to a MATLAB variable are termeal channel.
The example has four channels, a, b, x, and y. pbnes
related to channel a are a_in, ND_a_in, and RFND. a

The ND and Done signals indicate that the signal
attached to the data port have been driven toestablid

values and may be processed by the compiled device

(ND) or by the embedding design (Done). ND, Dare]
the data ports are all synchronous signals andics are
only defined at the rising edge of clock. Once NoviB
has been set high, it must be held high (and tha da
signals stable) until acknowledged (via RFND/DA,
described later): ND/Done must/will be set lowthe
clock cycle following acknowledgement unless the
design/device can support single-cycle /O, thaback-

10

to-back 1/O cycles. All channel ports are synchigsand
are sampled on the rising edge of Clock. The Regatl

is asynchronous. When used as a simple
acknowledgement, the device or design monitorsthte

of ND/Done, processing the data and setting RFNDIfDA
response: Figure 5(b) illustrates the timing diagwa the
interfaces with the definition of acknowledgemetite
coincidence of ND and RFND (or Done and DA) at a
rising edge of clock. Following coincidence, a ngé@
cycle begins.

—~a_in X_outp=
-~ ND_a_in Done_x_out}»
-{RFND _a_in DA _Xx_outfe
—-~b_in y_outp~
-~ ND_b_in Done_y out>
-{RFND _b_in DA_y outp~
—~Reset

—~Clock

(a) Interface signals

|
Clock |
|
ND/Done __ /T __

Data —<______ T >——

RFND/DA / 1\

Coincidence/Acknowledgement

(b) Timing diagram

Figure 5 Example interface of hardware blocks sgsitted by compiler.

J. VHDL and Verilog Generation

The VHDL generation pass converts the LIR
representation into a synthesizable Register Teansf
Level VHDL which can be synthesized by back-enddog
synthesis tools. Similarly, the Verilog generatipass
converts the LIR representation into a syntheseabl
Register Transfer Level Verilog.

K. Testbench Generation

The Testbench generation pass generates testbenches
VHDL and Verilog corresponding to the corresponding
inputs and outputs at the MATLAB level. Given a

TVLSI-00069-2003.R1 BANERJEE ET AL “OVERVIEW OF COMILER,” IEEE TRANS. VLSI SYSTEMS

floating point MATLAB simulation model, AccelFPGA
or the user creates a fixed point MATLAB model. isTh
fixed point MATLAB model is executed again in the
MATLAB environment, and two files are created: dite
for the input vectors in fixed point, and anothie for
output vectors in fixed point. The same input gextare
read subsequently by the automatically generate®lVH
or Verilog testbench and applied to the RTL simadat

HDL Testbench

MATLAB to HDL Converter

MATLAB Testbench

[I

Externally Provided
Stimulus Vectors

Externally Provided
Result Reference Vectors

Figure 6. An overview of the automated testbetmiv.f

When the design under test (DUT) is compiled from
MATLAB code into an hardware description language
such as VHDL or Verilog, the testbench will be argad
as shown in Figure 6. The features of the testhane:

Design Under Test (DUT): Create a design behawior a
the VHDL/Verilog level

MATLAB testbench: This comprises any required
computations of inputs and capture of outputs efUT.
Stimuli could come from any number of sources, most
commonly being generated within the assembly/binary
environment using functions/blocks and from files.
Similarly, outputs could be analyzed via MATLAB
functions or stored for later processing

VHDL/Verilog testbench: This procedure will
instantiate the DUT at the HDL level and provides t
environment needed for simulation by an HDL sinmadat
Primary function is stimulus application and result
recording.

MATLAB to HDL converter: This procedure will
capture stimuli independent of how it is generaded
store it in a format that can be processed by tbd H
testbench. Similarly, it provides for the readofgresult
vectors generated by MATLAB simulation and a
comparison analysis against the HDL simulation ltesu

VI. EXPERIMENTAL RESULTS ON BENCHMARKS

11

We now report some experimental results on various
benchmark MATLAB programs using the AccelFPGA
compiler.

¢ A 16 tap Finite Impulse Response Filter

e A 64 tap memory mapped tiled FIR filter

¢ A Decimation in Time FIR filter

e A 64 point Fast Fourier Transform

¢ An Infinite Impulse Response Filter of type DF1

¢ An Interpolation FIR filter

e A Block Matching Algorithm

¢ A Digital Subscriber Line (DSL) algorithm

Table 1 shows some benchmark characteristics of the
MATLAB programs. It can be seen that the MATLAB
programs vary in size from 20 lines to 175 lines Wso
show the number of directives used in the 9 belackm
programs. The corresponding synthesizable RTLId&gri
versions of the designs are quite large, varyingiie
from 883 lines to 4188 lines. We also includedbepile
times of AccelFPGA version 1.5 for each of the
benchmarks. All execution times were measured on a
Dell Latitude Model C610 laptop with a 1.2GHz Parmti
Il CPU, 512 MB RAM, and 80 GB hard drive running
Windows 2000. It can be seen that the executinast
vary from 2.5 seconds to 39 seconds. We alsodeclhe
compile times of the backend logic synthesis toaely,
Synplify Pro 7.1 from Synplicity where the timesrya
from 2.1 seconds to 872.4 second.

Table 2 shows the results of using the AccelkPG
compiler to perform architectural tradeoffs for 8
benchmark examples for the Xilinx Virtex2 device.
Results are given in terms of resources used, and
performance obtained as estimated by the Synpiiy/PL
tool executed on the RTL Verilog that was output by
AccelFPGA. The resource results are reportedrindef
LUTS, Multiplexers, embedded multipliers, ROMS and
BlockRAMS used. The performance was measured in
terms clock frequency of the design as estimatedhby
internal clock frequency inferred by the SynplifyoF7.1
tool, and the latency and initiation rate of theside in
terms of clock cycles by using the ModelSim 5.5eLRT
simulator. We also show the throughput of thegiem
Kilo-samples per second which is the frequencyhef t
design divided by the initiation rate. For eachdiemark,
we show the base case on the first row (whichdssign
with only the information directives like TARGET,
BEGIN_HARDWARE, END_HARDWARE, SHAPE
and STREAM) included. We next show other designs
using various performance directives such as UNROLL
PIPELINE, MEM_MAP and TILE. It can be seen that it
is possible to obtain designs with widely varyiegaurce
requirements, latencies and throughputs.

Table 3 shows similar architectural tradeoffs &

TVLSI-00069-2003.R1 BANERJEE ET AL “OVERVIEW OF COMILER,” IEEE TRANS. VLSI SYSTEMS

MATLAB benchmark examples on an Altera Stratix
EP1S10 device. Resources are measured in LUTS,
ATOMS, MACs, and DSP Blocks, and performance is
again measured in clock frequency, latency and
throughput. It is therefore possible to compare th
designs obtained on a Xilinx Virtexll device witm a
Altera Stratix device for the same choice of other
performance directives such as UNROLL, PIPELINE,
MEM_MAP and TILE. This is the power of the
AccelFPGA tool.

We finally show a comparison of the AccelFPGA
compiler with the Xilinx System Generator and thieera
DSP Builder tools. Table 4 shows a design of aal6
FIR filter designed using AccelFPGA and the Xilinx
System Generator on a Xilinx Virtexll XC2V500 dewic
Table 5 shows the design of a 16 tap FIR filtemgsi
AccelFPGA and the Altera DSP Builder on an APEX
EP20K device. It should be noted that this congueriis
not really fair since the designs in the System ebator
and DSP Builder are manually optimized librariesjlev
the AccelFPGA results are the output of a behakiora
synthesis tool working on a MATLAB version of atdit.

We attribute the differences between the compiler
generated designs and the manual designs to sewer cl
forms of implementing multipliers using constant
coefficients based on efficient look-up table teghes.
However it is interesting to note that the resudre
comparable.

VIl. CONCLUSIONS

This paper described a behavioral synthesis tdtgda
AccelFPGA which reads in high-level descriptiond&P
applications written in MATLAB, and automatically
generates synthesizable RTL models and simulation
testbenches in VHDL or Verilog. The RTL models ¢en
synthesized using commercial logic synthesis teoid
placement and routing tools onto FPGAs. By linkihg
two design domains of DSP and FPGA hardware design,
AccelFPGA provides DSP design teams a significant
reduction in design labor and time, elimination of
misinterpretations and costly design rework, aut@mma
verification of the hardware implementation, ance th
ability of systems engineers and algorithm devaispe
perform architectural exploration in the early pFa®f
their development cycle. The paper described how
powerful directives are used to provide high-level
architectural tradeoffs for the DSP designer.
Experimental results were reported on a set of 8
MATLAB benchmarks that are mapped onto the Xilinx
Virtex Il and Altera Stratix FPGAs.

12

> TVLSI-00069-2003.R1 BANERJEE ET AL, “OVERVIEW OGFOMPILER,” IEEE TRANS. VLSI SYSTEMS <

Table 1. MATLAB Benchmark Characteristics

dec _fir

Benchmark firlétap fir64tap
MATLAB Lines 20 40
Directives Used 6 8

Verilog Lines 957 1312
AccelFPGA Time

(sec) 4.0 39.0

Synplify Time (sec) 3.6 248.7

fftoe4
98
9
4188

10.2

698.8

38
6
1333

8.9

32.6

| ms

39
6

2219

20.8
872.

4

iirdf1

33
6
883

2.7

2.1

int_fir bma
38 63
7 10
1084 2758
25 12.3
9.5 11.9

Table 2. Results of AccelFPGA on the Xilinx Virtex Il XCV250 device

Freq Latency Initiation rate Throughput

firl6tap
Base
UNROLL 16
PIPELINE
MEMMAP
PIPE+MEM
firé4tap
Base
UNROLL 16
TILE+MEM+PIPE
dec_fir
Base
UNROLL 64
MEM+UNROLL64
iirdfl
Base
UNROLL 2
int_fir
Base
UNROLL 16
fft64
Base
MEMMAP
dsl
Base
UNROLL 16
bma
Base
MEMMAP

LUTS MUX Mult ROMS RAMS (MHz) (cycles)

143 75
259 399
373 326
126 47
1256 565

894 490
3172 740
1654 330

516 197
1356 1209
3303 1963

119
41

47
21

254 49
446 231

9882 3393
4212 1473

7145 3055
19701 5953

9349 3735
929 512

1

16

16

N

20

0
0

O 00 00 O 00

0

12

16
16

16
24

0
0

R N OOO

o O

16

o

82.9 23
76.9 5
134 20
115 73
131 94
50.1 104
58.7 44
79.7 59
66.6 74
61.2 8
96.9 207
107 11
134 5
75.3 79
56.8 11
30.2 340
66.8 5722
38.8 3114
294 394
40.8 42297
72.3 230072

(cycles)
19
1
1
67
54

100
40
55
71

193

75

64

4

2883
227

42285
228342

(KSPS)
4363.2
76900.0
134200.0
1717.9
2429.6

501.0
1467.5
1449.1

938.0
12240.0
502.1

15300.0
134200.0

1004.0
8114.3

471.9
16700.0

135
129.5

1.0
0.3

Table 3. Results of AccelFPGA on the Altera EP1S10 Stratix device.

firl6tap
Base
UNROLL 16
PIPELINE
MEMMAP
PIPE+MEM

Freq
LUTS ATOMS MAC DSP ROMS RAMS (MHz)
162 367 1 1 1 0 87.2
302 475 8 1 1 0 82.9
287 547 4 1 1 0 129.8
169 225 1 1 1 1 95.4
1031 3583 8 1 1 1 123.4

System
Initiatio Throughpu
Latency nrate t
(cycles) (cycles) (KSPS)
23 19 4589.5
5 1 82900.0
20 1 129800.0
73 67 1423.9
94 54 2285.2

dsl
175
9
5654

38.8

382.1

fir64tap
Base 1244
UNROLL 16 2307
TILE+MEM+PIPE 2125
dec_fir
Base 570
UNROLL64 1090
MEM+UNROLL64 2536
iirdfl
Base 103
UNROLL 2 21
int_fir
Base 311
UNROLL 16 840
fft64
Base 10704
MEMMAP 4439
dsl
Base 8514
UNROLL 16 22487
bma
Base 9015
MEMMAP 905

1816 1 1
2878 16 2
2702 16 2
1166 1 1
1662 12 2
2837 5 1
170 3 1
63 1 1
578 1 1
1106 16 2
16730 4 1
8361 4 1
19905 5 2

33875 20 5

26362 1
1037 0

o

0 60.3
0 78.1
16 78.1
0 78.9
0 67.1
1 99.8
0 103
0 130
0 67.6
0 47.7
0 46.1
2 84.3
0 50.3
0 314
0 47.9
3 57.4

> TVLSI-00069-2003.R1 BANERJEE ET AL, “OVERVIEW OGFOMPILER,” IEEE TRANS. VLSI SYSTEMS <

104 100 603.0
44 40 1952.5
59 55 1420.0
74 71 1111.3
8 5 13420.0
207 193 517.1
11 7 14771.4
5 1 129800.0
79 75 901.3
11 7 6814.3
340 64 720.3
5722 4 21075.0
3114 2883 17.4
394 227 138.3

42297 42285 11

230072 228342 0.3

Table 4. Comparison of AccelFPGA with System Getoerar 16 tap FIR filter (XC2V500)

Area (slices) Frequency (MHz) Throughput (MSPS)
AccelFPGA 386 163 163
Xilinx System Generator 587 205 205

Table 5. Comparison of AccelFPGA with DSP Builder 16 tap FIR filter (EP20K)

Area (Logic Cells) Frequency (MHz) Throughput (MSPS)
AccelFPGA 436 118 118
Altera DSP Builder 870 123 123

14

> TVLSI-00069-2003.R1 BANERJEE ET AL, “OVERVIEW OGFOMPILER,” IEEE TRANS. VLSI SYSTEMS <

REFERENCES

[1] Adelante Technologies, Builder,
www.adelantetechnologies.com

[2] Altera, Stratix Datasheet, www.altera.com

[3] Celoxica Corp, Handle C Design Language, wwexiea.com

[4] System Compiler: Compiling ANSI C/C++ to Synsiieready
HDL. Whitepaper. C Level Design Incorporated.
www.cleveldesign.com

[5] CynApps Suite. Cynthesis Applications for Héy Level
Design. _www.cynapps.com

[6] G. DeMicheli, Synthesis and Optimization ofgdal Circuits,
McGraw Hill, 1994

[7] Esterel-C Language (ECL). Cadence website. veadence.com
[8] M. Haldar, A. Nayak, A. Choudhary, and P. Baee, “A System
for Synthesizing Optimized FPGA Hardware from MATBA Proc.
International Conference on Computer Aided Desi#ggm Jose, CA,
November 2001, See also
www.ece.northwestern.edu/cpdc/Match/Match.html.

[9] Mathworks Corp, MATLAB Technical Computing Emghment,
www.mathworks.com

[10] De Micheli, G. Ku D. Mailhot, F. Truong T. €hOlympus
Synthesis System for Digital Design. |IEEE Design T&st of
Computers 1990.

[11] Overview of the Open SystemC Initiative. ®ysC website.

Www.systemc.org

ART

[12] Synopsys Corp, Behavioral = Compiler
WWW.Synopsys.com
[13] Signal Processing Workbench (SPW)

www.cadence.com.

[14] Xilinx, Virtex || Datasheet, www.xilinx.com

[15] A. Nayak, M. Haldar, A. Choudhary, P. Banerj#&gecision
And Error Analysis Of MATLAB Applications During Aemated
Hardware Synthesis for FPGAs," Proc. Design Autdonaand Test
in Europe (DATE 2001), Mar. 2001, Berlin, Germany.

[16] P. Banerjee, D. Bagchi, M. Haldar, A. Nayak,Kim, R. Uribe,
“Automatic Conversion of Floating Point MATLAB Progms into
Fixed Point FPGA Based Hardware Design,” Proc. FP@ged
Custom Computing Machines (FCCM) (poster papepr, 2003,
Monterey, CA.

[17] P. G. Joisha, and P. Banerjee, "The MAGICA &ypference Engine for
MATLAB," Proc. International Conference on Compil€onstruction (CC
03), Warsaw, Poland, Apr. 2003.

Prithviraj Banerjee (F'94) is currently the Walter P. Murphy Professord
Chairman of the Department of Electrical and CorapuEngineering at
Northwestern University in Evanston, lllinois. idrto that, he was the
Director of the Computational Science and Engimgerprogram, and
Professor of Electrical and Computer EngineerinthatUniversity of lllinois
at Urbana-Champaign. He is also the Founder anigfC3cientist of
AccelChip which is developing system level elecitomlesign tools to
accelerate chip design. He founded the compadulyn2000, and served as
its President and CEO until June 2002.

Prith Banerjee’s research interests are in \dddhputer aided design, and
compilers, and is the author of about 300 resepagfers in these areas, and
is the author of a book entitled "Parallel Algonith for VLSI CAD”. He has
supervised 30 Ph.D. and 36 M.S. student thesesfd#nu®r. Banerjee has
served as the Program Chair, General Chair, angtdroCommittee of more
than 50 conferences in the past 15 years and hasdsas Associate Editor of
four journals.

Dr. Banerjee has received numerous awards andr& during his career.
He received the IEEE Taylor L. Booth Education Advdrom the IEEE
Computer Society in 2001. He became a Fellow®#&M in 2000. He was

15

the recipient of the 1996 Frederick Emmons Termamaw of ASEE's
Electrical Engineering Division. He was electedte Fellow grade of IEEE
in 1995. He received the University Scholar awioin the University of
lllinois for in 1993, the Senior Xerox Research Adén 1992, the National
Science Foundation's Presidential Young Investigatdward in 1987, the
IBM Young Faculty Development Award in 1986, ane fresident of India
Gold Medal from the Indian Institute of Technologgharagpur, in 1981

Dr. Banerjee has been on the Technical AdvisBoards of many
companies such as Atrenta, Calypto Design Systemd, Ambit Design
Systems, and has served as consultants to many more

Dr. Banerjee received his B.Tech. degree irctEdaics and Electrical
Engineering from the Indian Institute of Technolpdgharagpur, India, in
August 1981, and the M.S. and Ph.D degrees in fidatEngineering from
the University of lllinois at Urbana-Champaign ineé@mber 1982 and
December 1984
Malay Haldar was Co-Founder and Principal Software Engineer
AccelChip, Inc. He is currently a Senior Softwdtegineer at Calypto
Design Systems. He received his B. Tech degree the Indian Institute of
Technology, Kharagpur, in 1998, his M.S. degreElettrical and Computer
Engineering from Northwestern University in 1999%dahis Ph.D. in
Electrical and Computer Engineering from Northwesténiversity in 2001.

Anshuman Nayak was Co-Founder and Principal Software Engineer
AccelChip, Inc. He is currently a Senior Softwéigineer at Atrenta, India.
He received his B. Tech degree from the Indianitiist of Technology,
Kharagpur, in 1998, his M.S. degree in Electriaad £&omputer Engineering
from Northwestern University in 1999, and his Phib. Electrical and
Computer Engineering from Northwestern Universit2D01.

Victor Kim was Principal Software Engineer of AccelChip, Indie is

Datasheet,rently a Software Engineer at Calypto Desigrt@ys. He received his B.

S. degree in Computer Engineering from Northwestert®97, and his M.S.

Datasheetdiegree in Electrical and Computer Engineering fidonthwestern University

in 1999. He is currently also working for his Ph.D Electrical and
Computer Engineering at Northwestern University.

Vikram Saxenawas Vice President of Engineering of AccelChig,. IHe is

currently a Senior Software Engineer at Synopsys., | He also worked for
Synopsys during 1996 to 2000. He received his &hTdegree from the
Indian Institute of Technology, New Delhi in 1994is M.S. degree in
Electrical and Computer Engineering from Universifylllinois at Urbana

Champaign in 1996.

Steven Parkeswas Principal Software Engineer of AccelChip, Inkle is
currently a Research Staff Member at IBM Almadersdech Center in San
Jose, CA. He was the Founder, President and CESdeafa Vista Research
during 1994 to 2001. He received his B. S. degrem fthe University of
California, Davis in 1992, his M.S. degree in Himeatl and Computer
Engineering from the University of lllinois at Unbk@ Champaign in 1992,
and his Ph.D. in Electrical and Computer Enginegfiom the University of
lllinois at Urbana Champaign in 1994.

Debabrata Bagchiwas Corporate Software Engineer of AccelChip, Ike
is currently a Software Engineer at Atrenta, Indlde received his B. Tech
degree from the Indian Institute of Technology, Kiggpour, in 2000, and his
M.S. degree in Electrical and Computer Engineeriram Northwestern
University in 2001.

Satrajit Pal was Corporate Software Engineer of AccelChip, Inlde is

currently a Software Engineer at Atrenta, Indiae keceived his B. Tech
degree from the Indian Institute of Technology, Kgpur, in 2000, and his
M.S. degree in Electrical and Computer Engineerirgn Northwestern
University in 2001.

Nikhil Tripathi was Corporate Applications Engineer of AccelChiye, He
is currently a Software Engineer at Atrenta, Indlde received his B. Tech
degree from the Indian Institute of Technology, Kiggpour, in 2000, and his
M.S. degree in Electrical and Computer Engineeriraqn Northwestern
University in 2001.

> TVLSI-00069-2003.R1 BANERJEE ET AL, “OVERVIEW OGFOMPILER,” IEEE TRANS. VLSI SYSTEMS < 16

David Zaretsky was Principal Software Engineer of AccelChip, Intle
received his B. S. degree in Computer Engineeriogn fNorthwestern in
2000, and his M.S. degree in Electrical and Comp#ingineering from
Northwestern University in 2001. He is currentlycaworking for his Ph.D.
in Electrical and Computer Engineering at NortheastUniversity.

Robert Andersonis a Senior Corporate Applications Engineer atedchip,
Inc. He worked at Tellabs from 1997 to 2001, ahdiucent Technologies
from 1986 to 1997. He received his B. S. degreEamputer Engineering
from Devry Institute of Technology in 1986, and sh\.S. degree in
Electrical and Computer Engineering from Northwestgniversity in 2001.

Juan Ramon Uribe is a Senior Corporate Applications Engineer at
AccelChip, Inc. He worked for Tellabs from 2000 2001, and Charles
Industries from 1995 to 2000. He received his Bd&gree in Electrical
Engineering from the University of lllinois at Claigo in 1986, and his M.S.
degree in Electrical Engineering from Stanford Wdmsity in 1988.

