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Abstract— This paper describes a behavioral synthesis tool 
called AccelFPGA which reads in high-level descriptions of 
DSP applications written in MATLAB, and automatically 
generates synthesizable RTL models and simulation 
testbenches in VHDL or Verilog. The RTL models can be 
synthesized using commercial logic synthesis tools and place 
and route tools onto FPGAs.  The paper describes how 
powerful directives are used to provide high-level 
architectural tradeoffs for the DSP designer.  Experimental 
results are reported on a set of eight MATLAB benchmarks 
that are mapped onto the Xilinx Virtex II and Alter a Stratix 
FPGAs. 

 
Index Terms— High level synthesis, MATLAB, RTL, 
VHDL, Verilog, FPGAs. 
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I. INTRODUCTION 

HE performance requirements of today’s 
communication systems, such as 3G and 4G wireless 

communication systems, MPEG4 video and Video over 
IP, now exceed the capabilities of general-purpose 
processors. With the introduction of advanced Field-
Programmable Gate Array (FPGA) architectures such as 
the Xilinx Virtex-II [14], and the Altera Stratix [2], a new 
hardware alternative is available for DSP designers that 
combines all the benefits of general-purpose processors 
with the performance advantage of ASICs.  

   DSP design has traditionally been divided into two 
types of activities – systems/algorithm development and 
hardware/software implementation. The majority of DSP 
system designers and algorithm developers use the 
MATLAB language [9].  The first step in this flow is the 
conversion of the floating point MATLAB algorithm into 
a fixed point version using quantizers from the Filter 
Design and Analysis (FDA) Toolbox for MATLAB.  
Algorithmic tradeoffs such as the precision of filter 
coefficients, rounding modes, and the number of taps used 
in a filter are performed at the MATLAB level.  Hardware 
design teams take the specifications created by the 
systems engineers and algorithm developers (in the form 
of a fixed point MATLAB code) and create a physical 
implementation of the DSP design. If the target is an 
FPGA, or PLD, the first task is to create a register transfer 
level (RTL) model in a hardware description language 
(HDL) such as VHDL and Verilog.  The RTL HDL is 
synthesized by a logic synthesis tool, and placed and 
routed onto an FPGA using backend tools. The process of 
creating an RTL model and a simulation testbench takes 
about one to two months with the tools currently used 
today.   

   This paper described the AccelFPGA compiler which 
directly reads in fixed point MATLAB behavioral models 
and automatically outputs synthesizable RTL models and 
simulation testbenches in VHDL or Verilog.  The 
resultant RTL is bit-true with the original fixed point 
MATLAB specification. The current manual and new 
automated flow is shown in Figure 1.  AccelFPGA also 
allows users to perform quick iterations of hardware 
designs, allowing area and speed trade offs and 
architecture exploration.   

 
Figure 1. Automated design using AccelFPGA. 

II. RELATED WORK 

 
The problem of translating a high-level or behavioral 

language description into a register transfer level 
representation is called high-level synthesis [6].  Synopsys 
developed one of the first successful commercial 
behavioral synthesis tools in the industry, the Behavioral 
Compiler [12], which took behavioral VHDL or Verilog 
and generated RTL VHDL or Verilog.  Recently, there 
have been several efforts to develop compilers that 
compile high-level languages such as C into VHDL or 
Verilog [7,10].  Commercial products are offered by 
companies such as Adelante [1], Celoxica [3], C Level 
Design [4] and Cynapps [5].  SystemC is a new language 
developed by the SystemC consortium which allows users 
to write hardware system descriptions using a C++ class 
library [11].  Synopsys has a tool called Cocentric which 
takes SystemC and generates RTL VHDL/Verilog. There 
have been some system level tools that take graphical 
descriptions of systems and generate HDL code. 
Examples include SPW from Cadence [13], System 
Generator from Xilinx [14], and DSP Builder from Altera 
[2].  

   While there are some related tools that convert C or 
C++ into VHDL and Verilog, this paper describes a 
compiler that takes behavioral MATLAB descriptions (the 
default language of DSP design) and generates RTL 
VHDL and Verilog for FPGA design.    Some of the 
unique and challenging features of the MATLAB 
language are the support for array operations (operating 
on matrices instead of scalars), an interpretive 
environment where the types and shapes of variables are 
not declared at compile time but inferred at runtime, and a 
very powerful set of built in library functions.  Examples 
of such functions are “”filter” and “fft”.  AccelFPGA 
supports a subset of the fixed point built-in functions of 
MATLAB in hardware in the form of AccelWare 
functions.  The MATCH compiler project  [8] at 

T
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Northwestern University has built a compiler that took the 
MATLAB applications and produced synthesizable RTL 
VHDL.   The technology for the AccelFPGA compiler  
described in this paper is an outgrowth of the MATCH 
Compiler project. 

 

III. AN EXAMPLE DESIGN IN MATLAB 

 
We will illustrate the use of the AccelFPGA compiler 

using a 16 tap finite impulse response (FIR) filter 
example.  Let us first look at how such a  filter can be 
represented in MATLAB using a floating point 
representation. 

 
%   16-tap FIR filter demonstration - Floating point 
version. 
% read input from file 
x = load('sines.txt'); % input data 
indata = x; 
NUMTAPS = 16;  % number of taps 
NUMSAMPS = length(x); % number of samples 
% define filter coefficients 
% 16-tap low-pass filter; sampling rate 8000 Hz, bandpass 
cutoff 2000 Hz; bandstop start 3000 Hz 
coeff = 100 * [-0.024750172265052, -
0.030362659582556, 0.037764386593039, 
0.048119075484636, ... 

              -0.063925788455935, -0.091690255759161, 
0.155281320470888, 0.469564093514142, ... 

               0.469564093514142, 0.155281320470888, -
0.091690255759161, -0.063925788455935, ... 

               0.048119075484636, 0.037764386593039, -
0.030362659582556, -0.024750172265052]; 
% apply filter to each input sample 
for n = NUMTAPS:NUMSAMPS 
   % initialize sum of products 

 sum = 0; 
 % perform sum of products 
 for k = 1:16, 
    mult = indata(n-k+1) * coeff(k); 
    sum  = sum + mult; 
 end 
 % store output 
 outdata(n) = sum; 

end 

 
The first step in this flow is the conversion of the 

floating point MATLAB algorithm into a fixed point 
version using “quantizers” from the Filter Design and 
Analysis (FDA) Toolbox for MATLAB [9].  One 
specifies a quantizer as  

qresults = quantizer('fixed','floor','wrap',[16,0]) ; 
The quantizer is actually used in a subsequent 

multiplication computation as 
mult = quantize(qresults , (indata(n-k+1) * 

coeff(k))); 
which means that the multiplication operation is 

performed, and the output is stored in 16 bit precision, 
with 0 bits after the decimal point, and uses the “floor” 
mode for rounding, and “wrap” mode for overflow 
computations. 

   Algorithmic tradeoffs such as the precision of filter 
coefficients and the number of taps used in a filter are 
performed at the MATLAB level.  We now show the fixed 
point version of the MATLAB algorithm for a FIR filter 
below. 

 
% Example MATLAB code for 16 tap FIR filter with 
fixed point quantization 
% read input from file 
x = load('sines.txt'); % input data 
NUMTAPS = 16;  % number of taps 
NUMSAMPS = length(x); % number of samples 
% define fixed-point parameters 
qpath = quantizer('fixed','floor','wrap',[8,0]); % 
quantization of inputs in data path 
qresults = quantizer('fixed','floor','wrap',[16,0]) ; % 
quantization of operation results 
indata = quantize(qpath,x); 
% define filter coeffients 
% 16-tap low-pass filter; sampling rate 8000 Hz, bandpass 
cutoff 2000 Hz; bandstop start 3000 Hz 
coeff = quantize(qpath, [-2.4750172265052; -
3.0362659582556; 3.7764386593039; 4.8119075484636; 
... 

              -6.3925788455935; -9.1690255759161; 
15.5281320470888; 46.9564093514142; ... 

               46.9564093514142; 15.5281320470888; -
9.1690255759161; -6.3925788455935; ... 

               4.8119075484636; 3.7764386593039; -
3.0362659582556; -2.4750172265052]);   
for n = NUMTAPS:NUMSAMPS       

 sum = 0; 
 % perform sum of products 
 for k = 1:16 
   mult = quantize(qresults , (indata(n-k+1) * 

coeff(k))); 
   sum  = quantize(qresults , (sum + mult)); 
 end 
 outdata(n) = quantize(qresults,sum); 

end 
   We now apply various AccelFPGA directives to the 

fixed point MATLAB.  AccelFPGA compiler directives 
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are used to bridge the gap between the MATLAB source 
and the synthesis of the computational structures created 
by AccelFPGA. Every compiler directive is prefixed by 
“%!ACCEL”. This makes the directives appear as 
comments to other environments dealing with MATLAB 
since all comments in MATLAB start with %.   

   The first step in the process of hardware design is to 
add a TARGET directive which tells the compiler that it 
needs to generate HDL code for specific FPGA device. 
AccelFPGA uses a Resource Description Language that 
describes the architecture, routing and internal execution 
resources of FPGAs from all the major FPGA vendors. 
AccelFPGA uses the RDL to create synthesizable RTL 
code that is uniquely optimized for each device.  
AccelFPGA supports various FPGA devices using the 
TARGET directive. By specifying the %!ACCEL 
TARGET XC2V250 directive, the compiler becomes 
aware of the characteristics of that target Virtex II 
architecture, namely that it can support 1536 
Combinational Logic Blocks, 48 Kbits of distributed 
RAM, 24 embedded multipliers, 24 embedded RAM 
blocks.  

   The next step is to use hardware partitioning 
directives. AccelFPGA allows the user to use hardware 
partitioning directive to demarcate parts of the input 
source that are targeted for hardware synthesis and parts 
that are not. The BEGIN_HARDWARE and 
END_HARDWARE directives indicate a section of 
MATLAB code that is intended for hardware synthesis.   
The BEGIN-HARDWARE directive takes as a parameter 
the input data port for the hardware part.  The END-
HARDWARE directive takes as a parameter the output 
data port for the hardware part.   

   The next step is to use a STREAM directive.   The 
purpose of the STREAM directive is the specification of 
the type of data flow that inputs and outputs of the 
synthesized hardware will handle. Streaming data is 
defined as data with a regular rate of flow through the 
hardware. For systems that will handle streaming data, 
AccelFPGA supports the automatic creation of ports with 
the required buffering mechanisms to sustain the regular 
flow of data with the use of the STREAM directive. These 
mechanisms include ‘double-buffering’ to allow 
concurrent processing of data and buffering of new data 
samples. It should also be noted that the fixed point code 
got modified to add some explicit buffering of input and 
output data for the parts of the code in the hardware 
component.  For example the input data “indata” gets 
copied to “indatabuf” before the actual computation of the 
FIR computation.  

   The resultant FIR filter code with AccelFPGA 
directives is shown below. 

 
% Example MATLAB code for 16 tap FIR filter with 
basic AccelFPGA directives 
%  Specif\y hardware target Xilinx Virtex2 FPGA 
%!ACCEL TARGET XC2V250 
% read input from file 
x = load('sines.txt'); % input data 
NUMTAPS = 16;  % number of taps 
NUMSAMPS = length(x); % number of samples 
% define fixed-point parameters 
qpath = quantizer('fixed','floor','wrap',[8,0]); % 
quantization of inputs in data path 
qresults = quantizer('fixed','floor','wrap',[16,0]); % 
quantization of operation results 
indata = quantize(qpath,x); 
% define filter coeffients 
% 16-tap low-pass filter; sampling rate 8000 Hz, bandpass 
cutoff 2000 Hz; bandstop start 3000 Hz 
coeff = quantize(qpath, [-2.4750172265052; -
3.0362659582556; 3.7764386593039; 4.8119075484636; 
... 

              -6.3925788455935; -9.1690255759161; 
15.5281320470888; 46.9564093514142; ... 

               46.9564093514142; 15.5281320470888; -
9.1690255759161; -6.3925788455935; ... 

               4.8119075484636; 3.7764386593039; -
3.0362659582556; -2.4750172265052]);   
% apply filter to each input sample 
%!ACCEL STREAM n 
for n = NUMTAPS:NUMSAMPS       

 %!ACCEL BEGIN_HARDWARE indata 
 indatabuf = quantize(qpath, indata(n-15:n));  
 % initialize sum of products 
 sum = quantize(qresults,0); 
 % perform sum of products 
 for k = quantize(qpath,1:16), 
    mult = quantize(qresults , (indatabuf(k) * coeff(k))); 
    sum  = quantize(qresults , (sum + mult)); 
 end 
 outdatabuf = quantize( qresults, sum );   
 % store output 
 outdata(n) = quantize(qresults,outdatabuf); 
 %!ACCEL END_HARDWARE outdata 

end 

 
   The basic MATLAB FIR filter algorithm performs 

the 16 tap FIR filter operation using 16 iterations using 
one adder and one multiplier per iteration.   This 
particular design with these AccelFPGA directives when 
compiled by the AccelFPGA compiler requires 143  
LUTs, 75 multiplexers, 1 multiplier, 8 ROMs, runs at 82.9 
MHz, and has a latency of 23 cycles, and an initiation rate 
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of 19 cycles (one new data sample every 19 cycles).  In 
terms of DSP filter performance, this design performs FIR 
filtering at a rate of 82.9/19*1000 = 4363 Kilo-samples 
per second (KSPS) as shown in Table 2.  We will show in 
the next section how the performance of this filter can be 
improved. 

IV. DESIGN SPACE EXPLORATION USING THE 
ACCELFPGA COMPILER 

 
AccelFPGA allows the user to use compiler directives 

to perform design space exploration of various area-
performance tradeoffs.  AccelFPGA performs high-level 
estimates of area by counting the number of functional 
unites such as adders, multipliers, multiplexers and 
registers and reporting that to the user during synthesis.  
We combine this unit count with area models for 
functional units that are parameterized with respect to the 
bit widths of the devices [15].   AccelFPGA estimates 
performance (latency, throughput) in terms of clock cycles 
used in the scheduling.  The latency is measured by the 
number of clock cycles needed to generate an output in 
response to an input.  The initiation rate is the number of 
clock cycles between successive inputs.  Throughput is 
defined as the worst-case clock frequency of the design 
divided by the initiation rate.  The latency, initiation rate 
and throughput numbers are reported to the user as part of 
the high-level synthesis.  We will now describe the 
various directives available for the user to perform these 
tradeoffs. 

A. UNROLL Directive 

 
The UNROLL directive is a mechanism to expand the 

source MATLAB to create more copies of loop  bodies, 
thereby increasing performance optimizations as 
illustrated below.   

   Let us consider the for loop in the example MATLAB 
code for the FIR filter. 

 
sum = 0; 
  for k = 1:16 
    mult = quantize(qresults , (indatabuf(k) * coeff(k))); 
    sum  = quantize(qresults , (sum + mult)); 
  end 
 
   The MATLAB code has one addition and one 

multiplication operation in the data flow graph of its basic 
block hence the AccelFPGA compiler will generate an 
RTL VHDL or Verilog which will use one adder and one 
multiplier to schedule this computation which will take 16 
cycles.  

   If the code were to be unrolled as shown below 
 
sum = 0; 
  %!ACCEL UNROLL 4 
  for k = 1:16 
    mult = quantize(qresults , (indatabuf(k) * coeff(k))); 
    sum  = quantize(qresults , (sum + mult)); 
  end 
 
   The loop body will be replicated 4 times and the loop 

indices in successive iterations are incremented. In 
addition, scalars that carry values from one iteration to 
another iteration are renamed. For example, the scalar 
“sum” and “mult” would be renamed in successive copies. 
This exposes opportunities to chain operations to the 
compiler. 

 
sum=0; 
for i = 1:4:16 
    mult1 = quantize(qresults , (indatabuf(k) * 

coeff(k))); 
    sum1  = quantize(qresults , (sum + mult1)); 
    mult2 = quantize(qresults , (indatabuf(k+1) * 

coeff(k+1))); 
    sum2  = quantize(qresults , (sum1 + mult2)); 
    mult3 = quantize(qresults , (indatabuf(k+2) * 

coeff(k+2))); 
    sum3  = quantize(qresults , (sum2 + mult3)); 
    mult4 = quantize(qresults , (indatabuf(k+3) * 

coeff(k+3))); 
    sum4  = quantize(qresults , (sum3 + mult4)); 

end; 
 
AccelFPGA now recognizes four addition and four 

multiplication operations in each basic block hence it will 
schedule it across four cycles using four adders and four 
multipliers in parallel.   

 
If the code were to be unrolled fully as shown below 
 
sum = 0; 
  %!ACCEL UNROLL 16 
  for k = 1:16 
    mult = quantize(qresults , (indatabuf(k) * coeff(k))); 
    sum  = quantize(qresults , (sum + mult)); 
  end 
 
The loop body will be replicated completely 16 times 

and the for loop will be eliminated. 
 
sum=0; 



TVLSI-00069-2003.R1 BANERJEE ET AL “OVERVIEW OF COMPILER,” IEEE TRANS. VLSI SYSTEMS            6 

    mult1 = quantize(qresults , (indatabuf(k) * 
coeff(k))); 

    sum1  = quantize(qresults , (sum + mult1)); 
    mult2 = quantize(qresults , (indatabuf(k+1) * 

coeff(k+1))); 
    sum2  = quantize(qresults , (sum1 + mult2)); 
… 
… 
    mult15 = quantize(qresults , (indatabuf(k+14) * 

coeff(k+14))); 
    sum15  = quantize(qresults , (sum14 + mult15)); 
    mult16 = quantize(qresults , (indatabuf(k+15) * 

coeff(k+15))); 
    sum16  = quantize(qresults , (sum15 + mult16)); 

end; 
 
For this particular choice of UNROLL 16, AccelFPGA 

produces a design that requires 259 LUTs, 399 
multiplexers, 16 multipliers, 8 ROMs.  This design has a 
reduced latency of 5 cycles, and initiation rate of 1 cycle, 
however, it operates at a frequency of 76.9 MHz owing to 
a large critical path involving 16 adders and 1 multiplier 
in one cycle.  In terms of FIR filter performance, even 
though the clock frequency has gone down, the throughput 
has gone up to 76,900 Kilo-samples per second as shown 
in Table 2. 

 
The UNROLL directive is therefore used by the user to 

generate different area-delay hardware alternatives. 

B. PIPELINE Directive 

 
Pipelining increases the throughput of a datapath by 

introducing registers in the datapath. This increase in 
throughput is particularly important when the datapath is 
iterated in the overall design.  The PIPELINE directive is 
placed just before the loop, whose body is to be pipelined. 
For pipelining function bodies the directive is placed just 
above the function definition.  Let us consider the for loop 
in the example MATLAB for the FIR filter. 

 
sum = 0; 
  for k = 1:16 
    mult = quantize(qresults , (indatabuf(k) * coeff(k))); 
    sum  = quantize(qresults , (sum + mult)); 
  end 
 
   If the code were to be pipelined as shown below 
 
sum = 0; 
  %!ACCEL PIPELINE 
  for k = 1:16 

    mult = quantize(qresults , (indatabuf(k) * coeff(k))); 
    sum  = quantize(qresults , (sum + mult)); 
  end 
 
   AccelFPGA will now unroll the 16 tap for loop into a 

data flow graph consisting of 16 multipliers and 16 
adders, and breaks off the data flow graph into 16 stages 
of a pipeline, with each stage having one multiplier and 
one adder, amnd insert registers between each stage   

   For our FIR filter example, AccelFPGA now 
produces a design which improves the frequency of 
operation of the design to 134.2 MHz, but suffers a large 
latency of 20 cycles, however, the initiation rate is now at 
1 cycle per operation.  This design therefore works at 
134,200 Kilo-samples per second as shown in Table 2. 

 

C. MEM_MAP Directive 

 
The AccelFPGA compiler by default maps all variables 

to registers in the hardware implementation.  In many 
cases if the variables are arrays of large size, this may 
results in large hardware resources in the forms of large 
multiplexers.  The memory map directive indicates that 
the given array variable should be mapped to a specific 
memory resource in the target architecture. The 
MEM_MAP directive can be used to map array variables 
to embedded RAMs on a Xilinx Virtex II or Virtex-E 
device or Altera APEX or Stratix device.   

    Let us consider the MATLAB code for the FIR filter 
which illustrates the MEM_MAP directive. 

 
for n = NUMTAPS:NUMSAMPS       
%!ACCEL MEM_MAP indatabuf TO ram_s9_s9(0) 

AT 0 
%!ACCEL BEGIN_HARDWARE indata 
  indatabuf = quantize(qpath, indata(n-15:n));  
  sum = 0; 
  for k = 1,16 
    mult = quantize(qresults , (indatabuf(k) * coeff(k))); 
    sum  = quantize(qresults , (sum + mult)); 
  end 
  outdatabuf = quantize( qresults, sum );   
  outdata(n) = quantize(qresults,outdatabuf); 
  %!ACCEL END_HARDWARE outdata 
end 
 
   In this example, the user wants to map the array 

indatabuf to the embedded memory on an Xilinx VirtexII 
device named “ram_s9_s9” with  instance “0” starting at 
memory location “0” using the following directive: 
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%!ACCEL MEM_MAP indatabuf TO 
ram_s9_s9(0) AT 0 

 
For our running design of the 16 tap FIR filter, 

AccelFPGA produces a design that requires only 126 
LUTs, 47 multiplexers, 1 multiplier, 8 ROMs and 1 
BlockRAM.  However, the latency goes up to 73 cycles, 
and the throughput goes to 67 cycles between consecutive 
data streams.    Hence even though the number of 
multiplexers has gone down from 75 to 47, and the 
number of LUTS has gone down from 143 to 126, the FIR 
filter throughput is 115.1/67 = 1717 Kilosamples per 
second.  This is clearly not a good choice of the directive.  
However, as we will show later on, this will be a good 
choice if the FIR were a 64 tap filter. 

 

D. TILE Directive 

 
Tiling enables the user to specify an array of 

computation that happens concurrently on data that is 
stored in a distributed manner across multiple memories to 
provide higher memory bandwidth.  Independent memory 
and resources can be specified for each tile concisely. The 
compiler generates hardware where each of the “tile” is 
scheduled concurrently. This allows the user to exploit 
large amount of data parallelism typically present in DSP 
applications.  Let us consider the case of a 64 Tap FIR, as 
shown below. 

 
sum = 0; 
for k = 1:64 
    mult = quantize(qresults , (indatabuf(k) * coeff(k)));      
    sum  = quantize(qresults , (sum + mult )); 
end 
 
   No memory maps are provided for the indatabuf() and 

coeff()  arrays, implying they are mapped to registers. 
However, to access a register array of 64 elements, one 
needs a multiplexer (mux) with 64 inputs. Each input to 
the mux corresponds to a register of the array, and the 
mux is controlled by the array index.  Hence, for 
generating this hardware, the arrays in the above example 
need to be mapped to memories.  For the sake of 
illustration, let us assume that there is a RAM of  64 
entries with a single read port, called ram_s9_s9 , on the 
architecture  on which we want to map the 64 Tap FIR. 
The modified code is shown below which maps the 
indatabuf to the RAM instance called ram_s9_s9(0) on 
the Xilinx Virtex II device. 

 
sum = 0 

%!ACCEL MEM_MAP indatabuf() TO ram_s9_s9(0) 
AT 0 

for k = 1:64 
    mult = quantize(qresults , (indatabuf(k) * coeff(k)));      
    sum  = quantize(qresults , (sum + mult )); 
end 
 
However, this now restricts the inner loop to only one 

read access for indatabuf per cycle assuming that the 
RAM allows a single read operation per port per cycle.  In 
order to get more reads accomplished per cycle, one needs 
to use multiple memory banks. 

 
One can rewrite the above loop as follows.  
 
for t = 1:16 
  sum(t) = 0; 
end; 
 
for k = 1:4 
  for t1 = 1:16 
       mult = quantize(qresults , (indatabuf(k,t1) * 

coeff(k,t1)));      
       sum(t1)  = quantize(qresults , (sum(t1) + mult )); 
   end 
end; 
final_sum = 0; 
for t2 = 1:16 
    final_sum = quantize(qresults, final_sum + sum(t2)); 
end;   
 
The loop running over the number of tiles t1 is referred 

to as the Tiling Loop and is indicated by the TILE 
directive.  Combining this with the memory maps split 
over 16 RAMS, we get a tiled version of the 64 tap FIR 
filter shown below. 

 
%!ACCEL STREAM n 
for n = 64:1024 
    %!ACCEL BEGIN_HARDWARE indata 
    indatabuf = quantize(qpath, reshape(indata(n-

63:n),4,16));      
    %!ACCEL TILE t 
    % initialize sum of products 
    for t = 1:16 
        sum(t) = 0; 
    end; 
    %!ACCEL PIPELINE 
    for k = 1:4 
        %!ACCEL TILE t1 
        %!ACCEL MEM_MAP indatabuf(:,t1) TO 

ram_s9_s9(t1) AT 0 
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        for t1 = 1:16 
            mult = quantize(qresults , (indatabuf(k,t1) * 

coeff(k,t1)));      
            sum(t1)  = quantize(qresults , (sum(t1) + mult 

)); 
        end 
    end;    
    final_sum = 0; 
    for t2 = 1:16 
        final_sum = quantize(qresults, final_sum + 

sum(t2)); 
    end;   
    outdatabuf = quantize( qresults, final_sum ); 
    % store output 
    outdata(n) = quantize(qresults,outdatabuf); 
    %!ACCEL END_HARDWARE outdata 
end 
 
The impact of tiling can be shown as follows.  The 64 

tap FIR filter with pipelining and no memory mapping 
would require 2066 LUTs and 971 multiplexers, and 
operate at a frequency of 83.7 with a throughput of 2041.5 
KSPS.  However, if one were to tile the 64 tap filter and 
memory map the indatabuf buffer across 16 memories, the 
design requires 1654 LUTS, 330 muxes, operates at 79.7 
MHz, and has a throughput of 1449 KSPS as shown in 
Table 2. 

 

V. COMPILER OVERVIEW 

 
AccelFPGA is built as a set of compiler passes 

operating on different intermediate representations as 
shown in Figure 2. The front-end of AccelFPGA reads in 
MATLAB m-files including various directives, performs 
various syntax analysis and error reporting, and translates 
the MATLAB program into a high level intermediate 
representation (HIR).  The HIR representation is similar 
to Abstract Syntax Tree (AST) representation of a 
traditional compiler.  It stores the information regarding a 
given source MATLAB program in a tree form with 
information about expressions, assignment statements, 
conditional statements, loop statements, functions and 
procedures.  A set of compiler passes perform various 
transformations on the HIR representation.  These passes 
are described briefly.  

 

A.        Shape Inferencing 

 
The shape inferencing pass infers the shapes of most of 

the scalar and array variables in the program for parts of 

the MATLAB models that will be mapped to hardware 
(separated by BEGIN-HARDWARE and END-
HARDWARE directives).   The algorithm is based on a 
lattice theoretic shape algebra. Details of our automatic 
type/shape inferencing algorithm are outside the scope of 
this paper, and the readers are referred to [17]. 

 

B. Scalarization and Levelization  

 
The scalarization pass takes a vectorized MATLAB 

statement and converts it into scalar form using enclosing 
FOR loops. The levelization pass takes a MATLAB 
assignment statement consisting of complex expressions 
on the right hand side and converts it into a set of 
statements each of which is in a single operator form. This 
pass operates on both scalar and array operations.  

 

C. Auto-quantization 

 
The auto-quantization phase takes in floating-point 

MATLAB computations for parts of the MATLAB 
models that will be mapped into hardware and translates 
them to fixed-point MATLAB design.  The algorithms for 
auto-quantization are described in [16].  This algorithm 
takes in a scalarized and levelized MATLAB program 
with some of the quantizations of input variables 
specified, and computes the initial value ranges for each 
variable in the program.   The next step takes the partial 
value ranges of the variables obtained at the previous step 
and propagates the value ranges in the forward direction 
using use-def analysis. The algorithm handles simple 
blocks of assignment statements, conditionals such as IF-
THEN-ELSE, and FOR loops.  The next step propagates 
the value ranges of variables in the backward direction.  If 
the user has only specified the quantizers of the output 
variables, the back propagation pass will propagate the 
results to the right-hand side of an assignment statement. 
The algorithm is similar to Forward propagation. The final 
step assigns values of quantizers based on the value 
ranges of various variables. 

D. Unrolling 

The Unrolling pass interprets the UNROLL directives 
and generates an unrolled form of the HIR representation 
of a FOR loop or a vector statement of an original 
MATLAB program based on the UNROLL directive. It 
takes the data flow graph representation of the statement 
in a loop body and replicates it by an amount equal to the 
UNROLL factor as described in Section 4.1. 
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E. Streaming 

The Stream Compiler pass handles the STREAM 
directive which is used by the user to represent streaming 
data as described in Section 3.  The stream compiler takes 
care of creating corresponding input and output ports, 
creating buffers between functional blocks and manages 
the streaming of sample-based and frame-based data.   

 
 

Figure 2. Overview of various compiler passes. 

 
All these passes perform operation on the High-level 

intermediate representation.   
 

F. Scheduling and Binding 

 
The Scheduling and Binding pass performs behavioral 

synthesis on the HIR representation and generates a Low-
level Intermediate Representation (LIR).  The LIR 
representation has the notion of concurrency of processes, 
variables and signals, states and state transitions, similar 
to constructs in VHDL and Verilog.  From the data flow 
graph of each basic block in the program, it schedules the 
computations onto various resources (adders, multipliers, 
etc).  The type and quantity of each of these architectural 
resources are described using the Resource Description 
Language (RDL).  Several well-known scheduling 
algorithms [6] such as As Soon As Possible (ASAP) and 
As Late As Possible (ALAP), Resource Constrained 
ASAP, and Resource Constrained ALAP scheduling 
based on List Scheduling, have been developed as part of 
this framework.   Our high-level synthesis algorithms 
handle multi-cycle operators during scheduling, as well as 
multi-cycle memory read and write accesses.  An example 
of a Resource Constrained ALAP scheduling on a CDFG 
is shown in Figure 3. In the figure, the CDFG graph 
shown on the left has 10 operation nodes.  Using the 
RCALAP algorithm, these operations are scheduled onto 
limited resources of one adder and one multiplier using  6 

scheduling steps as shown on the right.  Once this 
scheduling is performed, RTL VHDL or Verilog can be 
generated using 6 RTL states in a state machine, and the 
corresponding RTL operations per state.   

 

G. Memory Mapping and Tiling  

 
The Memory Mapping pass interprets the MEM_MAP 

directive described earlier and maps data into memory 
structures on the target FPGA such as the BlockRAMs on 

 
Figure 3.  Example of Resource Constrained ALAP Scheduling on 

CDFG framework with constraints of one adder and one multiplier.   

 
a Xilinx Virtex II FPGA as described in Section 4.3. An 

example of memory mapping is shown in Figure 4 for a 
system being synthesized for two IP blocks on a streaming 
data system.  Two functions compute1() and compute2() 
are synthesized by the compiler into datapaths.  The 
buffers from which the functions perform omputations are 
mapped onto the embedded RAMs with two ports (one for 
reading, one for writing) in order to allow parallel 
operations of the two IP blocks.   

 
The tiling pass interprets the TILE directive and tiles an 

unrolled computation among multiple memories 
instantiated by the Memory Mapping pass and thereby 
exploits parallel memory accesses across multiple 
memories as described in Section 4.4. 
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Figure 4. Example of memory mapping. 

 

H. Pipelining 

 
The Pipelining pass interprets the PIPELINE directive 

as described in Section 4.2 and performs block level 
pipelining of any computation block (for loops and 
functions) that is associated with the PIPELINE directive. 

 

I. System Interfacing 

 
The System Interfacing pass generates a unified way to 

interconnect function blocks together using an 
asynchronous protocol which uses handshaking between 
consecutive blocks.  It also generates the controller state 
machines to coordinate these asynchronous data transfers. 

   Figure 5(a) shows the interface for a hypothetical 
compiled device with two inputs, a and b, and two 
outputs, x and y.  This device would be one of the IP 
blocks shown in Figure 4. The signals on the device fall 
into two groups, global device signals (Clock and Reset), 
and I/O specific signals.  Each signal shown as a pin in the 
figure is represented by a port in the HDL.  All the signals 
related to a MATLAB variable are termed a channel.   
The example has four channels, a, b, x, and y.  The ports 
related to channel a are a_in, ND_a_in, and RFND_a_in. 

   The ND and Done signals indicate that the signals 
attached to the data port have been driven to stable, valid 
values and may be processed by the compiled device 
(ND) or by the embedding design (Done).  ND, Done, and 
the data ports are all synchronous signals and as such are 
only defined at the rising edge of clock. Once ND/Done 
has been set high, it must be held high (and the data 
signals stable) until acknowledged (via RFND/DA, 
described later):  ND/Done must/will be set low in the 
clock cycle following acknowledgement unless the 
design/device can support single-cycle I/O, that is, back-

to-back I/O cycles. All channel ports are synchronous and 
are sampled on the rising edge of Clock.  The Reset signal 
is asynchronous. When used as a simple 
acknowledgement, the device or design monitors the state 
of ND/Done, processing the data and setting RFND/DA in 
response: Figure 5(b) illustrates the timing diagram of the 
interfaces with the definition of acknowledgement: the 
coincidence of ND and RFND (or Done and DA) at a 
rising edge of clock.  Following coincidence, a new I/O 
cycle begins. 

 

Clock
Reset

b_ in

RF ND_b_in
ND_b_in

x_out

DA _x_out
Done_x_out

a_ in

RF ND_a_in
ND_a_in

y_out

DA _y_out
Done_y_out

 
  

(a) Interface signals 

 
 

Clock

ND /D one

Coincidence/Acknowledgem ent

Data

R F ND /DA
 

 
(b) Timing diagram 

 
Figure 5 Example interface of hardware blocks synthesized by compiler. 

 

J. VHDL and Verilog Generation 

 
The VHDL generation pass converts the LIR 

representation into a synthesizable Register Transfer 
Level VHDL which can be synthesized by back-end logic 
synthesis tools.  Similarly, the Verilog generation pass 
converts the LIR representation into a synthesizable 
Register Transfer Level Verilog. 

 

K. Testbench Generation 

 
The Testbench generation pass generates testbenches in 

VHDL and Verilog corresponding to the corresponding 
inputs and outputs at the MATLAB level.  Given a 
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floating point MATLAB simulation model, AccelFPGA 
or the user creates a fixed point MATLAB model.  This 
fixed point MATLAB model is executed again in the 
MATLAB environment, and two files are created: one file 
for the input vectors in fixed point, and another file for 
output vectors in fixed point.  The same input vectors are 
read subsequently by the automatically generated VHDL 
or Verilog testbench and applied to the RTL simulator.  

 
 

Figure 6.  An overview of the automated testbench flow. 

 
When the design under test (DUT) is compiled from 

MATLAB code into an hardware description language 
such as VHDL or Verilog, the testbench will be organized 
as  shown in Figure 6.  The features of the testbench are: 

Design Under Test (DUT): Create a design behavior at 
the VHDL/Verilog level 

MATLAB testbench: This comprises any required 
computations of inputs and capture of outputs of the DUT. 
Stimuli could come from any number of sources, most 
commonly being generated within the assembly/binary 
environment using functions/blocks and from files.  
Similarly, outputs could be analyzed via MATLAB 
functions or stored for later processing 

VHDL/Verilog testbench: This procedure will 
instantiate the DUT at the HDL level and provides the 
environment needed for simulation by an HDL simulator.  
Primary function is stimulus application and result 
recording. 

MATLAB to HDL converter: This procedure will 
capture stimuli independent of how it is generated and 
store it in a format that can be processed by the HDL 
testbench.  Similarly, it provides for the reading of result 
vectors generated by MATLAB simulation and a 
comparison analysis against the HDL simulation results. 

VI. EXPERIMENTAL RESULTS ON BENCHMARKS 

 

We now report some experimental results on various 
benchmark MATLAB programs using the AccelFPGA 
compiler. 

• A 16 tap Finite Impulse Response Filter 
• A 64 tap memory mapped tiled FIR filter 
• A Decimation in Time FIR filter 
• A 64 point Fast Fourier Transform 
• An Infinite Impulse Response Filter of type DF1 
• An Interpolation FIR filter 
• A Block Matching Algorithm  
• A Digital Subscriber Line (DSL) algorithm 

Table 1 shows some benchmark characteristics of the 
MATLAB programs.  It can be seen that the MATLAB 
programs vary in size from 20 lines to 175 lines. We also 
show the number  of directives used in the 9 benchmark 
programs.  The corresponding synthesizable RTL Verilog 
versions of the designs are quite large, varying in size 
from 883 lines to 4188 lines.  We also include the compile 
times of AccelFPGA version 1.5 for each of the 
benchmarks.  All execution times were measured on a 
Dell Latitude Model C610 laptop with a 1.2GHz Pentium 
III CPU, 512 MB RAM, and 80 GB hard drive running 
Windows 2000.   It can be seen that the execution times 
vary from 2.5 seconds to 39 seconds.  We also include the 
compile times of the backend logic synthesis tool, namely, 
Synplify Pro 7.1 from Synplicity where the times vary 
from 2.1 seconds to 872.4 second.   

    Table 2 shows the results of using the AccelFPGA 
compiler to perform architectural tradeoffs for 8 
benchmark examples for the Xilinx Virtex2 device. 
Results are given in terms of resources used, and 
performance obtained as estimated by the Synplify Pro 7.1 
tool executed on the RTL Verilog that was output by 
AccelFPGA.  The resource results are reported in terms of  
LUTS, Multiplexers, embedded multipliers, ROMS and 
BlockRAMS used.  The performance was measured in 
terms clock frequency of the design as estimated by the 
internal clock frequency inferred by the Synplify Pro 7.1 
tool, and the latency and initiation rate of the design in 
terms of clock cycles by using the ModelSim 5.5e RTL 
simulator.   We also show the throughput of the design in 
Kilo-samples per second which is the frequency of the 
design divided by the initiation rate.  For each benchmark, 
we show the base case on the first row (which is a design 
with only the information directives like TARGET, 
BEGIN_HARDWARE, END_HARDWARE,  SHAPE 
and STREAM) included.  We next show other designs 
using various performance directives such as UNROLL, 
PIPELINE, MEM_MAP and TILE.  It can be seen that it 
is possible to obtain designs with widely varying resource 
requirements, latencies and throughputs. 

   Table 3 shows similar architectural tradeoffs for 8 
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MATLAB benchmark examples on an Altera Stratix 
EP1S10 device.  Resources are measured in LUTS, 
ATOMS, MACs, and DSP Blocks, and performance is 
again measured in clock frequency, latency and 
throughput.  It is therefore possible to compare the 
designs obtained on a Xilinx VirtexII device with an 
Altera Stratix device for the same choice of other 
performance directives such as UNROLL, PIPELINE, 
MEM_MAP and TILE.  This is the power of the 
AccelFPGA tool. 

   We finally show a comparison of the AccelFPGA 
compiler with the Xilinx System Generator and the Altera 
DSP Builder tools.  Table 4 shows a design of a 16 tap 
FIR filter designed using AccelFPGA and the Xilinx 
System Generator on a Xilinx VirtexII XC2V500 device.  
Table 5 shows the design of a 16 tap FIR filter using 
AccelFPGA and the Altera DSP Builder on an APEX 
EP20K device.  It should be noted that this comparison is 
not really fair since the designs in the System Generator 
and DSP Builder are manually optimized libraries, while 
the AccelFPGA results are the output of a behavioral 
synthesis tool working on a MATLAB version of a filter.  
We attribute the differences between the compiler 
generated designs and the manual designs to some clever 
forms of implementing multipliers using constant 
coefficients based on efficient look-up table techniques. 
However it is interesting to note that the results are 
comparable. 

VII. CONCLUSIONS 

 
This paper described a behavioral synthesis tool called 

AccelFPGA which reads in high-level descriptions of DSP 
applications written in MATLAB, and automatically 
generates synthesizable RTL models and simulation 
testbenches in VHDL or Verilog. The RTL models can be 
synthesized using commercial logic synthesis tools and 
placement and routing tools onto FPGAs.  By linking the 
two design domains of DSP and FPGA hardware design, 
AccelFPGA provides DSP design teams a significant 
reduction in design labor and time, elimination of 
misinterpretations and costly design rework, automatic 
verification of the hardware implementation, and the 
ability of systems engineers and algorithm developers to 
perform architectural exploration in the early phases of 
their development cycle.   The paper described how 
powerful directives are used to provide high-level 
architectural tradeoffs for the DSP designer.  
Experimental results were reported on a set of 8 
MATLAB benchmarks that are mapped onto the Xilinx 
Virtex II and Altera Stratix FPGAs. 
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Table 1. MATLAB Benchmark Characteristics. 

Benchmark fir16tap fir64tap fft64 dec_fir lms iirdf1 int_fir bma dsl 

MATLAB Lines 20 40 98 38 39 33 38 63 175 

Directives Used 6 8 9 6 6 6 7 10 9 

Verilog Lines 957 1312 4188 1333 2219 883 1084 2758 5654 
AccelFPGA Time 

(sec) 4.0 39.0 10.2 8.9 20.8 2.7 2.5 12.3 38.8 

Synplify Time (sec) 3.6 248.7 698.8 32.6 
872.

4 2.1 9.5 11.9 382.1 
 

Table 2. Results of AccelFPGA on the Xilinx Virtex II XCV250 device. 
  Freq Latency Initiation rate Throughput 

fir16tap LUTS MUX Mult ROMS RAMS (MHz) (cycles) (cycles) (KSPS) 

Base 143 75 1 8 0 82.9 23 19 4363.2 
UNROLL 16 259 399 16 8 0 76.9 5 1 76900.0 
PIPELINE 373 326 8 8 0 134 20 1 134200.0 
MEMMAP 126 47 1 8 2 115 73 67 1717.9 

PIPE+MEM 1256 565 0 0 1 131 94 54 2429.6 
fir64tap          

Base 894 490 1 8 0 50.1 104 100 501.0 
UNROLL 16 3172 740 16 8 0 58.7 44 40 1467.5 

TILE+MEM+PIPE 1654 330 16 8 16 79.7 59 55 1449.1 
dec_fir          

Base 516 197 1 6 0 66.6 74 71 938.0 
UNROLL 64 1356 1209 0 0 0 61.2 8 5 12240.0 

MEM+UNROLL64 3303 1963 0 0 1 96.9 207 193 502.1 
iirdf1          
Base 119 47 2 0 0 107 11 7 15300.0 

UNROLL 2 41 21 0 0 0 134 5 1 134200.0 
int_fir          
Base 254 49 1 6 0 75.3 79 75 1004.0 

UNROLL 16 446 231 16 12 0 56.8 11 7 8114.3 
fft64          
Base 9882 3393 4 16 0 30.2 340 64 471.9 

MEMMAP 4212 1473 4 16 2 66.8 5722 4 16700.0 
dsl          

Base 7145 3055 5 16 0 38.8 3114 2883 13.5 
UNROLL 16 19701 5953 20 24 0 29.4 394 227 129.5 

bma          
Base 9349 3735 0 0 0 40.8 42297 42285 1.0 

MEMMAP 929 512 0 0 3 72.3 230072 228342 0.3 
 

Table 3. Results of AccelFPGA on the Altera EP1S10 Stratix device. 

  Freq Latency 
Initiatio
n rate 

System 
Throughpu

t 
fir16tap LUTS ATOMS MAC DSP ROMS RAMS (MHz) (cycles) (cycles) (KSPS) 

Base 162 367 1 1 1 0 87.2 23 19 4589.5 
UNROLL 16 302 475 8 1 1 0 82.9 5 1 82900.0 
PIPELINE 287 547 4 1 1 0 129.8 20 1 129800.0 
MEMMAP 169 225 1 1 1 1 95.4 73 67 1423.9 

PIPE+MEM 1031 3583 8 1 1 1 123.4 94 54 2285.2 
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fir64tap           
Base 1244 1816 1 1 0 0 60.3 104 100 603.0 

UNROLL 16 2307 2878 16 2 0 0 78.1 44 40 1952.5 
TILE+MEM+PIPE 2125 2702 16 2 0 16 78.1 59 55 1420.0 

dec_fir           
Base 570 1166 1 1 0 0 78.9 74 71 1111.3 

UNROLL64 1090 1662 12 2 0 0 67.1 8 5 13420.0 
MEM+UNROLL64 2536 2837 5 1 0 1 99.8 207 193 517.1 

iirdf1           
Base 103 170 3 1 0 0 103 11 7 14771.4 

UNROLL 2 21 63 1 1 0 0 130 5 1 129800.0 
int_fir           
Base 311 578 1 1 0 0 67.6 79 75 901.3 

UNROLL 16 840 1106 16 2 0 0 47.7 11 7 6814.3 
fft64           
Base 10704 16730 4 1 0 0 46.1 340 64 720.3 

MEMMAP 4439 8361 4 1 0 2 84.3 5722 4 21075.0 
dsl           

Base 8514 19905 5 2 0 0 50.3 3114 2883 17.4 
UNROLL 16 22487 33875 20 5 0 0 31.4 394 227 138.3 

bma           
Base 9015 26362 1 1 0 0 47.9 42297 42285 1.1 

MEMMAP 905 1037 0 0 0 3 57.4 230072 228342 0.3 
 

Table 4. Comparison of AccelFPGA with System Generator for 16 tap FIR filter (XC2V500) 
 

 Area (slices) Frequency (MHz) Throughput (MSPS) 
AccelFPGA 386 163 163 

Xilinx System Generator 587 205 205 
 

Table 5. Comparison of AccelFPGA with DSP Builder for 16 tap FIR filter (EP20K) 
 

 Area (Logic Cells) Frequency (MHz) Throughput (MSPS) 
AccelFPGA 436 118 118 

Altera DSP Builder 870 123 123 
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