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Abstract— This paper presents a modular localization and
mapping system for intervention autonomous underwater
vehicles working in semi-structured environments with known
landmarks. The system is divided in several modules to make it
as generic as possible. Two visual detection algorithms can be
used to compute the position of known landmarks by comparing
the images taken by the vehicle against an a priori known
template. Navigation data, provided by standard navigation
sensors, is adapted and merged together with landmark po-
sitions by means of an extended Kalman filter. This filter
is capable of estimating vehicle position and linear velocity
as well as the position of detected landmarks in real-time.
Experiments performed with the Girona 500 AUV in a water
tank demonstrate the proposed method.

I. INTRODUCTION

This paper presents a real-time simultaneous localization
and mapping (SLAM) system for an autonomous underwater
vehicle (AUV). The system is split into several modules and
can be used for any AUV equipped with a basic sensor suite.
This work is being developed in the context of the PAN-
DORA FP7 project [1]. The main goal of this project is to
improve persistent autonomy in semi-structured underwater
environments like deep-sea long term observatories or oil
and gas industry facilities. Thus, AUVs have to be able to
navigate in these facilities, localize key elements like panels,
docks and canisters, and perform intervention operations like
turn a valve in a panel, communicate/charge through a dock
or put objects in a canister. The cost of inspecting and
operating offshore structures with AUVs is much smaller
than using remotely operated vehicles (ROVs) [2]. However,
if instead of deploying these vehicles for each mission they
are left in situ, this cost can be further reduced.

A critical issue for this purpose is to create a compu-
tational mechanism that enables an AUV to maintain a
geometric description of its world and its place in it. This
geometric description has to be the base for the semantic
description used to plan and execute autonomous actions
for the AUV in real-time. A robust approach could be map-
based localization. However, it can only be used if a precise
map is available and all their elements are static. Another
alternative is to navigate relative to a particular object, like
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a panel or a dock, instead of keeping a global map of the
site. Then, prior knowledge of the structure where the vehicle
has to operate allows the use of model based pose estimation
techniques that rely on a list of detected features [3]. Despite
the simplicity and robustness of this approach, it does not
provide a geometric map of the environment that may be
useful for an on-board planner. A more complete mechanism
to complete the task at hand is SLAM. Multiple alternatives
have been proposed to simultaneously localize a vehicle with
respect to a map while refining this map in the underwater
domain [4]-[6]. However, most of these solutions are difficult
to implement in real-time.

The purpose of this paper is to present a generic 6 degrees
of freedom (DoF) SLAM algorithm based on an extended
Kalman filter (EKF). The filter uses a constant velocity
model and information about orientation and angular velocity
for the predictions. Three different updates are possible:
position updates, velocity updates, and landmark updates.
Position updates provide information about vehicle position
with respect to the world frame. In the experiments presented
here, this information is supplied by a depth sensor, and
a global positioning system (GPS), when the vehicle is at
the surface. Velocity updates are velocities measured with
respect to the vehicle’s frame by a doppler velocity log
(DVL), a visual odometer or any other velocity sensor. Land-
mark updates contain the pose of an identifiable mark with
respect to the vehicle’s frame. Two vision-based algorithms
are implemented for this purpose. One method uses special
markers that can be easily identified and positioned with
respect to the vehicle. The other method is based on a
template-matching algorithm. It uses images of objects in
the environment avoiding the addition of extra markers. The
whole system is separated in blocks and programmed using
the popular middleware Robot Operating System (ROS) [7].
All the code is open-source and can be download from
https://bitbucket.org/udg cirs/cola2.

The paper is organized as follows. After some preliminar-
ies, Section II describes the transformations to be applied to
each sensor measurement as well as the EKF-SLAM algo-
rithm. It also presents two vision-based landmark detector
algorithms. Section III provides details of the experiments
performed in a water tank with Girona 500 AUV to test the
whole system. Finally, Section IV concludes the paper and
presents the future work.
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Fig. 1. System’s schema for Girona 500 AUV. Ellipse-shaped nodes are
processes while rectangular-shaped nodes are messages.

II. METHODOLOGY

Fig. 1 shows all the elements involved when the
vision-based localization and mapping system runs in the
Girona 500 AUV [8]. Depth sensor, GPS, internal motion
reference unit (IMU) and DVL are sensor drivers gathering
navigation data (i.e. pose, orientation and velocity with its
covariance). The navigation_adapter node takes these custom
sensor messages and transforms them into ROS standard
navigation messages (pose_update and velocity_update). The
template_matching and the AR_toolkit nodes take the images
generated by the camera driver and compute the position
of an a priori known landmark with respect to the vehicle
(landmark_update) when the landmark is in the vehicle’s
field of view. Pose, velocity and landmark updates are then
merged using an EKF in pose_ekf_slam node. Outputs for this
node are vehicle position and velocity with its covariance
(odometry) as well as position and covariance for each land-
mark (map). Drivers for each sensor and navigator_adapter
node are robot dependent but the rest of blocks can be
directly used by a vehicle running ROS. Therefore, if new
drivers are provided (e.g. a visual odometers) only the
navigator_adapter has to be modified. Moreover, to add a
new landmark detector compatible with pose_ekf_slam node,
it is only required to publish the landmark position and
covariance using a landmark_update message.

A. Preliminaries

Let {I} be an inertial coordinate frame and {B} a body-
fixed coordinate frame, whose origin Op is located at the
center of mass of the vehicle (see Fig. 2). Furthermore,
let (z,y,z) be the position of Op in {I} and (¢, 0, )
the orientation of Op in {I}. Let v = (u,v,w) be the
longitudinal (surge), transverse (sway) and vertical (heave)
velocities of Op with respect to {I} expressed in {B} and
w = (r, p, q) be the vehicle’s angular speed around each axis.
Any sensor attached to {B} has its own coordinate frame.
For the sake of simplicity, all sensor coordinate frames are
identified as {S} and their origin Og with respect to {B}
is indicated by the translation vector tg and rotation matrix
rotg.

Fig. 2. Girona 500 AUV with its coordinate frame { B} and an example
of a sensor frame {S}.

B. Transformations

The navigation_adapter node is in charge of transforming
all custom messages coming from sensor drivers to ROS
standard geometry messages of type PoseWithCovarianceS-
tamped (i.e. pose_update) and TwistWithCovarianceStamped
(i.e. velocity_update). Main functions of this node are:
transform units to metric system, make data dextrorotatory,
and transform sensor measurements from {S} to {B}. To
transform a pose measurement pg obtained by a sensor fixed
at coordinate frame {S} to the coordinate frame {B}, we
apply the transformation given by

p = ps — Rot - tg, (D

where Rot is a rotation matrix measuring the orientation
of Op with respect to {I} and tg is the translation vector
from Op to Og. The transformed covariance matrix Py
corresponding to the measurement pg is given by

PPB = PPS + JPB : PROt : ‘]537 (2

where J,, is the Jacobian of partial derivatives of (1)
with respect to vehicle orientation, and P . is the vehicle
orientation covariance matrix. To transform a linear velocity
measurement vg obtained by a sensor fixed at coordinate
frame {S}, the following equation is used:

vp =rots - vs — (Wp ® tg), 3)

where rotg is the rotation matrix of Og measured from Op
and (wp ® tg) is the cross product of the angular velocity
of Op measured at {1} by the translation vector from Op to
Ogs. The transformed covariance matrix P, of measurement
vg is

Py, =rots - Pyg -tot§ + Jwyat)  Pwy Ilypen, @

where J(w @t is the Jacobian matrix of partial derivatives
of (wp ® t) with respect to wp and Py, is the vehicle
angular velocity covariance matrix.



Since all these non-linear transformations are performed
(if necessary) before the EKF, the updates in the EKF-SLAM
algorithm are all linear.

C. EKF SLAM Algorithm

The pose_ekf-slam node estimates the vehicle position
([z y z]) and linear velocity ([u v w]) and maps the position
of several landmarks ([lx; ly; [z;]) identified by a vision
algorithm. The fusion algorithm in charge of this SLAM
is an EKF [9]. Vehicle orientation ([¢p 6 1]) and angular
velocity ([p ¢ r]) are not estimated but directly measured
by an IMU. Details of the EKF-SLAM implementation are
presented next.

1) State vector: The information to be estimated by the
EKF-SLAM algorithm is stored in the following state vector:

Xp=[ryzuvwle ly lz1 ... Lz, Wy, 12,)7 (5)

where ([r y z uw v w]) are defined in Section II-A and
(Uzy lyr 1z1] ... Uzn ly, lz,]) is the position of each
landmark (I;) with respect to {I}.

2) System model: A constant velocity kinematics model
is used to determine how the vehicle state will evolve from
time k — 1 to k. Landmarks are expected to be static. The
predicted state at time k, x, follows the equations:

X, = f(Xgp—1,0%_1, Ug, t). (6)
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where t is the time period, u = [¢ 6 1] is the control
input determining the current vehicle orientation and n =
[ny My My 1S a vector of zero-mean white Gaussian accel-

eration noise whose covariance, represented by the system
noise matrix Q, has been set empirically:

U?M 0 0
Q=| 0 o5 0 ®)
0 0 0'72%

Associated with the state vector x;, there is the covariance
matrix Pj. Next equation is applied to predict the evolution
of this matrix:

P; = AkPk_lA{ + Wka—1Wg7 (9)

where A is the Jacobian matrix of partial derivatives of f
with respect to the state (5) and Wy is is the Jacobian matrix
of partial derivatives of f with respect to the process noise
n.

3) Measurements: Three linear measurement updates are
applied in the filter: pose, velocity and landmark updates. A
sensors measurement can be modeled as:

z, = Hxy + sg, (10)

where zj; is the measurement itself, H is the observation
matrix that relates the state vector with the sensor measure-
ment, and sy, is the sensor noise. Updates can be applied by
means of the equations:

K, =P H'(HP,H" + R), (11)
xr =x;, + Ki(zp — Hx,), (12)
P, = (I1-KH)P_, (13)

where K, is the Kalman gain, R the measurement noise
covariance matrix and I an identity matrix. Below, it is shown
how to define z; and H to perform each update applying
equations (11)-(13).

Several sensors can provide pose information. For instance
a GPS receiver measures vehicle position in the plane
(z, y) while the vehicle is at the surface, a pressure sensor
transforms pressure values into depth (z), or an ultra short
base line (USBL) device measures vehicle position (x, y, 2)
while submerged. Thus, to integrate a pose sensor is applied:

(14)
5)

zp = [z y 2]
H=|Isxs Osx3 O3x3n |

where I3y3 denotes the 3 x 3 identity matrix and Osxs,
denotes the 3 x 3n zero matrix with n being the number of
landmarks. If only (z, y) or the (z) is available, z;, and H
have to be properly arranged.

Velocity updates are provided by sensors like a DVL or
a visual odometer. These sensors are able to measure linear
velocities with respect to the sea bottom or the water around
the vehicle.
(16)

a7)

Zr = [u v W)
H=1] 0355 Isxs O3x3, |

If only velocity updates are available, the navigation module
behaves as a dead reckoning algorithm that drifts over time.
However, if pose updates are present or sufficient landmarks
are detected in the environment, the navigation module is
able to keep its position error bounded.

The visual detection algorithms, detailed in section II-D,
give information about the relative position of a landmark
with respect to {B}. This information not only updates the
detected landmark position in the map but also the vehicle
pose. Both detection algorithms described later, use an a
priori known template to identify and compute the relative
position of these landmarks.

zy = (L. L, L.]
H= -Rot" 0343 Rot” ... ]

(18)
19)

where [L, L, L.] is the relative position of the landmark
with respect to the vehicle and Rot is the vehicle orientation
rotation matrix.
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Fig. 3. Diagram to decide if a new landmark has to be introduced in the
map or not.

During the initialization phase, the state vector contains
only the vehicle position and linear velocity. There are no
landmarks in the state vector. The first time a detection
algorithm observes a landmark that it is able to identify,
the landmark is introduced in the state vector by composing
its position with respect to the vehicle (measured by the
visual detector) using the vehicle position with respect to
{I} (contained in the state vector). To avoid introducing
erroneous landmarks in the map, the diagram shown in Fig. 3
is used. To introduce a new landmark in the map, it has to
be seen at least five times and the variance of the last five
measures has to be lower than a manually defined threshold.
A first in first out (FIFO) queue is used for this procedure.

D. Vision-Based landmark detectors

Two algorithms are proposed in this paper to compute the
position of a known landmark using vision, by comparing the
images from the camera against an a priori known template
of the landmark itself.

The first one detects and matches features between the
camera image and a template. It is possible to detect the
presence of the landmark, as well as accurately estimate
the pose when a sufficient number of features are matched.
In this algorithm, the oriented FAST and rotated BRIEF
(ORB) [10] feature extractor has been chosen for its suit-
ability to real-time applications. The ORB feature extractor
relies on features from accelerated segment test (FAST)
corner detection [11] to detect keypoints in the image. These
are obvious features to detect on man-made structures and
can be detected very quickly. Moreover, there is a (binary)
descriptor vector of the keypoint based on binary robust
independent elementary features (BRIEF) [12]. Differences

Fig. 4. Detection of the landmark consists of 3 steps: 1) Match keypoints
between the template and camera image. 2) Estimate corners of the panel in
the camera image. 3) Estimate the translation and rotation of the template
in the image by using the known geometry of the landmark.

between descriptors can be calculated rapidly, allowing real-
time matching of keypoints at higher image frame-rates when
compared to other commonly used feature extractors such as
scale invariant feature transform (SIFT) [13] and speeded-up
robust features (SURF) [14].

Fig. 4 illustrates the matching between a template and an
image received from the camera. A minimum number of key-
points must be matched between the template and the camera
image to satisfy the landmark detection requirement. A low
number of matched keypoints indicates that the landmark is
not in the camera field of view. The correspondences between
the template and camera image can be used to compute the
transformation (or homography) of the template image to
the detected landmark in the camera image. This allows to
compute the image-coordinates of the corners of the template
in the camera image. Then, using the known geometry of the
landmark and the camera matrix, the pose of the landmark
in the camera coordinate system and consequently in the
vehicle coordinate system can be determined.

The second algorithm used to compute the position of a
landmark relies on the ARToolkit software library [15] to
identify, detect and track marks using a monocular camera
(see Fig. 5). To avoid the data association problem in the
EKF-SLAM algorithm, each mark is different. The algorithm
is robust and works in real-time, however, artificial marks
like Fig. 5(a) have to be placed on the environment. To
compute the measurement noise covariance the following
estimation is used:

R = (Isxs-d*) -, (20)

where d is the estimated distance between the camera and
the landmark and c a vector of fixed coefficients found
empirically.
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Fig. 5. (a) ARToolkit landmark and (b) ARToolkit algorithm detecting
landmark on the bottom of the water tank.

Fig. 6. Girona 500 AUV at the water tank with the poster deployed for
ground-truth computation.

III. EXPERIMENTS

To test the proposed vision-based navigation system, sev-
eral experiments have been performed with Girona500 AUV
[8] in a water tank of 16 x 8 X 5 meters.

A. Setup

The vehicle has been equipped with an IMU that measures
orientation and orientation rate at 20Hz. GPS and depth
sensors provide pose updates in (z, y, z) at the surface
and (z) when the vehicle is submerged at 2Hz. Velocity
updates (u, v, w) are given by a low cost DVL at 2.7Hz and,
finally, a monocular down-looking camera has been used to
gather images at 1.875Hz. All the computations have been
performed in real-time with the on-board computer, an ultra
low voltage dual core processor running at 1.2GHz with 2GB
of RAM.

In order to compare the proposed EKF-SLAM with a
ground-truth, a 7.1 x 3.5 meters poster has been placed
at the bottom of the water tank (see Fig. 6). It is possible
to obtain estimates of absolute camera poses, together with
their uncertainty, by registering camera images to the original
image of the poster. These estimates then be used as ground-
truth. The estimation method uses a parameterization for the
pose comprising the 6 DoF in the form

T
o=[a B v % b, Jh. ], (21)

where the 3 first elements encode roll, pitch and heading,

Fig. 7. Representation of the ground-truth trajectory and associated
uncertainty. The ellipsoids contain 50% uncertainty and have been enlarged
5x for visibility reasons. The poses with large uncertainties correspond to
locations where the camera was only imaging part of the poster and were
not used as ground-truth.

and the last are translations with respect to a local reference
frame.

The method relies on the identification of point corre-
spondences using feature-based robust matching [16]. The
outcome of the matching are two lists of correspondences
x’ and x™ of points in the camera image and the poster
image respectively. These lists are related by an observation
equation in the form

x'=Q(x™,0)+¢.

where Q is a projection function that takes into account the
pose, the camera calibration and the scale of the mosaic
poster, and ¢ is assumed to be Gaussian random noise.

The maximum likelihood estimate of © is

Our :argngon’—Q(xm,@)HQ . 22)
This minimization is carried out using a non-linear least
squares algorithm [17]. The initial value for © is provided
by an algebraic solution from the elements of the camera
to poster homography [18]. The uncertainty in the pose
is computed following the approach described in [19]. A
representation of the ground-truth trajectory is given in
Fig. 7.

B. Results

Girona 500 AUV has been tele-operated at a constant
depth of 2.25 meters for about 10 minutes. The continuous
line shown in Fig. 8(a) shows the trajectory estimated by the
vehicle according the EKF-SLAM algorithm and the two
stars point where landmarks have been detected. Only 10%
of gathered images contain one of the two landmarks. The
ground-truth trajectory computed off-line comparing camera
images with the known poster is also plotted in Fig. 8(a) as
a dotted line.

Using the logs gathered in this experiment, the EKF-
SLAM algorithm has been executed again removing all
landmark_update messages, thus it has behaved like a dead
reckoning algorithm. Fig. 8(b) shows the trajectory estimated
in this second execution without landmark updates against
the same ground-truth. It is easy to see that, despite there
are only two landmarks in the setup and most of the time
these landmarks are not present in the imagery, trajectory



7F
&l
5l
at

E
3t
2t
1t
0 0
0 1 2 3 -1 0 1 2 3
(m) (m)
(a) (b)
Fig. 8. (a) EKF-SLAM trajectory (continuous line) against ground-truth

(dotted line) and (b) dead reckoning trajectory (continuous line) against
ground-truth (dotted line). Yellow stars point the position of landmarks.

shown in Fig. 8(b) drifts more than the one presented in
Fig. 8(a).

Rather than the Euclidean distance between the estimated
trajectories and ground-truth, the Hellinger distance has been
used to quantify the error [20]. The Hellinger distance is
a general distance on probability distributions. Here, the
ground-truth estimated from the poster takes the form of a
multivariate Gaussian distribution computed using a maxi-
mum likelihood estimator by matching features between the
mosaic and camera images.

By computing the distance between the ground-truth dis-
tribution and the estimated vehicle pose distribution, we
account for the uncertainty inherent in the estimate as well
as the ground-truth. The Hellinger distance between two
distributions f(-) and g(-) is given by

dr(f,9) /(\ﬁ \/7) dx €[0,1]. (23)

Here, the distributions from the ground-truth, dead reck-
oning and EKF-SLAM are all multivariate Gaussian. Then,
for f = N(x,%,;) and g = N (y, X,), the Hellinger distance
is given by the closed form expression

Vdet(Z,%,)
u(f,9) = \/det (2, +2y)] xp(e), 24)
£= 4X— Y (S +5) (x—y) (25)

Fig. 9 illustrates the error in the estimated trajectories from
the dead reckoning and EKF-SLAM. Since the uncertainty
of the dead reckoning constantly increases, the distance
decreases only slightly if the estimated position is close to
the ground-truth. On the other hand, the uncertainty in the
estimate from the EKF-SLAM reduces when landmarks are
detected leading to reduction in the error at these points in
time (see Fig. 10).
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Fig. 9. Error in the estimated trajectories from the dead reckoning and
EKF-SLAM.
35
== Ground truth -
3" | — EKF-sLAM PP la
~~"Dead reckoning Pt
E
c
8
ki
=S
(]
T
T
[+
o
c
£
"

o . o - e . |_ L L L !

0 50 100 150 200 250 300 350 400 450 500 550

Time (s)

Fig. 10. Comparison of standard deviation for axis X over time between:
dead reckoning that always increases, EKF-SLAM that increases at the same
rate but decreases when a landmark is detected and the ground-truth that is
close to zero.

IV. CONCLUSIONS AND FUTURE WORKS

The aim of this paper is to present a modular localization
and mapping system for intervention AUVs working in semi-
structured environments with known landmarks.

The system has been divided in several modules to make
it as generic as possible and to simplify its reutilization
for different vehicles and sensor suites. Main modules are:
navigation_adapter, visual detectors, and the pose_ekf_slam.
The navigaton_adapter transforms navigation sensors custom
messages to generic ROS messages. It makes all navigation
sensors data be dextrorotatory and follow the metric unit
system and, moreover, it transforms these measurements
and its covariance from sensor’s frame to vehicle’s frame.
Two visual detectors have been presented to compute the
position of a known marks by comparing the images from
the camera against an a priori known template of the mark
itself. Both systems are suitable for real-time applications.
Finally, an EKF-SLAM algorithm has been detailed. The
algorithm estimates the vehicle position and linear velocity
and maps the position of several landmarks identified by the
visual detectors.



To test the whole system, real-time experiments have been  [19] R. Haralick, “Propagating covariance in computer vision,” in Proc. of

performed with Girona 500 AUV in a water tank with a the Workshop on Performance Characteristics of Vision Algorithms,
. Cambridge, UK, April 1996.
known 7.1 X 3.5 meters poster placed. on.1ts bottom. Results [20] S. Nagappa, D. Clark, and R. Mahler, “Incorporating track uncertainty
prove the improvement on the navigation quality of the into the ospa metric,” in Information Fusion (FUSION), 2011 Proceed-
EKF-SLAM with respect to a dead reckoning algorithm by ings of the 14th International Conference on, 2011, pp. 1-8.
. h ith d h obtained off-li b [21] N. Hurtos, N. Palomeras, and J. Salvi, “Automatic detection of
comparing them with a ground-truth obtained off-line by underwater chain links using a forward-looking sonar,” in OCEANS’13

matching the gathered images with the known poster. MTS/IEEE, 2013.
As a future work, a new landmark detector based on

acoustic imagery could be easily adapted to the current setup.

A preliminary work has been done identifying the links of

an underwater chain using a forward looking sonar [21].

Moreover, the introduction of each landmark orientation in

the state vector instead of only its position should be studied.
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