
A Design Complexity Evaluation Framework for
Agent-Based System Engineering Methodologies

Anthony Karageorgos and Nikolay Mehandjiev

Department of Computation, UMIST, Manchester M60 1QD, UK
{karageorgos, mehandjiev}@acm.org

Abstract. Complexity in software design refers to the difficulty in understand-
ing and manipulating the set of concepts, models and techniques involved in the
design process. Agents are sophisticated software artefacts, associated with a
large number of features and therefore Agent-Based System (ABS) engineering
methodologies involve considerable design complexity. This paper proposes a
framework to evaluate ABS engineering methodologies against a number of
criteria related to design complexity. The framework is applied to a number of
representative ABS engineering methodologies. The strengths and weaknesses
of each methodology with respect to the framework aspects are discussed
within the context of a case study involving a virtual enterprise combining
manufacturing and logistics services. The evaluation results are used to moti-
vate and guide further work in the area.

1 Introduction

Agent-Based Systems (ABSs) can currently be designed based on ad-hoc methodolo-
gies, formal methodologies or informal but structured methodologies. In addition,
design can be done either statically, before the ABS is deployed, or dynamically on
run-time. All existing methodologies have certain weaknesses and involve consider-
able difficulty in understanding and manipulating the concepts and models needed for
the detailed ABS design. This is referred to as design complexity.

The term complexity has been given many definitions in the literature and the ma-
jority of them are based on the Oxford English dictionary definition, referring to
“difficulty in understanding”. Software engineering complexity relates to how diffi-
cult it is to implement a particular computer system [17]. It is considered that high
software complexity results in low software quality [10]. In this work, the focus is on
ABS engineering complexity and in particular on that related to ABS design.

The sophisticated structure and properties of software agents increase the complex-
ity inherent in ABS design. For example, designing agents to operate in dynamic and
open environments and carry out non-trivial tasks that require maximisation of some
utility payoff function involves high design complexity [33].

Decreasing software complexity results in reduced time and cost for development
and maintenance, fewer functional errors and increased reusability. Therefore, soft-
ware metrics researchers often try to predict software qualities based on complexity

metrics [17]. Furthermore, certain factors are associated with lower complexity. For
example, reusing design knowledge reduces design complexity allowing designers to
work with concepts of larger granularity at higher abstraction levels [1].

Traditional software engineering methodologies have proven unsuitable for engi-
neering ABSs, and this has spawned new methodologies specifically targeting ABSs.
These new methodologies involve different degrees of design complexity because of
differences in modelling concepts and techniques used.. For example, the technique
of semi-automating the design process results in lower design complexity [14]. Work
on reducing ABS design complexity would therefore benefit from a systematic as-
sessment of ABS engineering methodologies with respect to design complexity,
which can lead to identifying issues that would need further improvement. To this
end, a framework for evaluating design complexity ABS engineering methodologies
with respect to is proposed in this paper.

There are only a few attempts to systematically evaluate ABS engineering meth-
odologies. Evaluations are typically done in the context of a case study in order to
identify issues that would justify extending a particular methodology as is the case in
[13]. However, such evaluations concentrate only on a small number of issues of
interest. In other cases, a systematic framework is proposed, which typically focuses
on specific parts of the methodologies, for example the expressiveness [7], or trying
to provide a high-level overall evaluation of the methodologies as is the case in [8].
Furthermore, a detailed evaluation framework for comparing ABS engineering meth-
odologies, accompanied with references to existing relevant work, is proposed in
[26]. However, none of the existing works focuses on assessing the difficulty in-
volved in designing an agent-based system using a particular methodology, which is
the focus of this paper.

To demonstrate the evaluation framework proposed in this paper, six representa-
tive ABS engineering methodologies were evaluated: RAPPID [23], DESIRE [4],
Gaia [34], MESSAGE/UML [5], Tropos [6], the Zeus methodology [21] and
KARMA [27]. The evaluation results reveal that the majority of the methodologies
examined involve high design complexity as they do not consider organisational
settings and collective behaviour as first class design constructs, they do not provide
systematic support for design heuristics and non-functional aspects and they do not
allow work at a high abstraction level and part of the design process to be carried out
automatically. Therefore, further work is required in this direction.

The contents of the paper are as follows. The proposed framework is described in
Section 2. Section 3 discusses the results of applying the framework to evaluate a
number of representative ABS engineering methodologies. Some issues concerning
further research are highlighted in Section 4. Finally, Section 5 concludes the paper.

2 An Evaluation Framework for ABS Design Complexity

The proposed framework was inspired by attempts to discuss the issues involved in
ABS design in a systematic manner [11] and it is based on similar work concerning
evaluation of object-oriented software engineering methodologies [29], comparison
of ABS toolkits [24] and measurement of software complexity [10].

Fig. 1. A framework for assessing the design complexity of ABS engineering methodologies

The framework examines ABS engineering methodologies from four different
views, Concepts, Models, Process and Pragmatics, which are summarised in Fig. 1.
Each view represents a set of conceptually linked aspects and examines ABS engi-
neering methodologies from a different perspective. For example, the implementation
language and the use of standard notations are both related to implementation and
hence they should be associated with an implementation-related view.

When assessing an ABS engineering methodology using the proposed framework,
a ranking scheme for each aspect is applied. The ranking is based on subjective,
qualitative values, for example, low, medium, high. The possible ranking values are
discussed together with the different aspects of the framework below. Where appro-
priate, examples referring to relevant ABS engineering methodologies are provided.

Concepts

The concepts view concentrates on which modelling concepts are used in each
methodology to represent the ABS behaviour. It includes the following aspects:

1. Concept Definition: This aspect refers to restrictive premises concerning the
agent architecture and the type1 of agents that can be produced with the method-
ology. Based on this criterion, an ABS engineering methodology can be charac-
terised as open, bounded or limited (highly bounded). A methodology is open if it
does not consider a particular agent architecture and does not produce specific
agent types, such as Gaia [34]. An example of a methodology bounded to a par-
ticular agent architecture is Tropos [6], which assumes only BDI agents. Finally,
a methodology limited to specific agent types is RAPPID [23], which considers

1 An agent type is a class of agents with similar capabilities and purpose.

Process Models

Concepts

Pragmatics
- Organisational settings
- Collective behaviour
- Non-functional aspects

- Generality
- Abstractability
- Tool support

- Design perspective
- Support for reuse
- Design automation

- Concept definition
- Design in scope
- Heuristics support

Agent-Based
System Design

only Component Agents that represent humans and Characteristic Agents that
represent parts of a product design system. An open methodology is preferable as
it can directly produce different agent types which are most appropriate for dif-
ferent application domains and allows implementation using the programming
language or agent toolkit of choice. This results in lower design complexity.

2. Design in Scope: This aspect refers to whether a methodology includes specific
steps and guidelines for the design phase of the ABS engineering lifecycle and
can be true or false. For example, MESSAGE/UML [5] covers only the analysis
phase while Tropos [6] covers analysis, design and also part of the implementa-
tion. Explicitly supporting the design phase results to lower design complexity.

3. Heuristics support: This aspect refers to the explicit support for applying heuris-
tic guidelines and tips when designing the ABS and can be true or false. Explicit
heuristics support involves providing formal techniques that can be used to en-
sure application of the design heuristics. For example, in KARMA [27] heuristics
can be specified as constraints in the STEAM specification language. In contrast,
in RAPPID [23] there is no rigorous way for ensuring that design heuristics have
been applied. Formal heuristics support results in lower design complexity.

Models

The Models view refers to the models that are used to represent different parts of
the ABS or issues of particular interest and the techniques that are used to create and
manipulate those models. The Models view includes the following aspects of interest:

1. Organisational settings: This framework aspect concerns whether organisational
settings are considered as first-class design constructs and can be true or false.
For example, in the ABS engineering methodology associated with the Zeus
agent toolkit [21] organisational settings are represented by explicit role models
in contrast to DESIRE [4] where they are implied by the agent behaviour. Organ-
isational settings should be considered as first class design constructs [22], [35],
enabling work in higher abstraction levels and thus lowering the design complex-
ity.

2. Collective Behaviours: This aspect refers to whether an approach includes ap-
propriate first-class modelling constructs to represent collective agent behaviour
and it can be true or false. Representation of collective behaviour can be implicit
via the individual agent behaviour such as in RAPPID [23], or explicit; for ex-
ample, in the Zeus methodology it is represented by role models [21]. Collective
behaviours should be considered as first class design constructs enabling reason-
ing at a high abstraction level [15] and hence resulting to lower design complex-
ity. 3. Non-functional aspects: This aspect refers to whether non-functional aspects are
explicitly considered in the methodology and can be true or false. Non-functional
aspects can be explicitly represented by appropriate modelling constructs, such as
in Tropos [6], or they can be implicitly modelled within individual agent behav-
iour such as in Gaia [34]. Explicitly modelling non-functional aspects enables
work at a higher abstraction level and results in lower design complexity.

Process

The process view concentrates on the steps that are executed to construct the mod-
els discussed in the Models view and on techniques that support and assess those
steps. In particular, this view is concerned with the following aspects:

1. Design Perspective: This aspect refers to the perspective from which each meth-
odology views the ABS design. The perspective can be top-down or bottom- up
or both (top-down and bottom-up) depending on how the design of the ABS pro-
gresses. In the top-down perspective, the design models are constructed by refin-
ing high-level models of the agent organisation, such as in Gaia [34]. In the bot-
tom-up perspective, design models are progressively composed from existing
finer-grain models thus enabling reuse [15]. Supporting both perspectives, as in
MESSAGE/UML [5], can help to reduce design complexity.

2. Support for Reuse: This aspect refers to whether the methodology supports using
previous knowledge in designing an ABS and can be true or false. Support for
reuse involves modelling constructs, techniques and guidelines for the identifica-
tion, representation, testing and application of reusable knowledge. For example,
in the Zeus toolkit methodology [21] there are guidelines for creating, storing
and reusing negotiation strategies when specifying agent interactions, whilst in
RAPPID [23] there are not such facilities. Support for reuse is a fundamental step
towards achieving lower design complexity [1].

3. Design Automation: This aspect refers to whether there are formal underpinnings
in the specification models of the methodology enabling automation of the design
process to a certain extent. Some process steps should definitely be carried out
based on the judgement of the human designers, for example the selection of
roles in the analysis phase in Gaia [34]. However, other steps could be automated
and carried out by a software tool, for example based on formal model transfor-
mations [25]. The degree to which the process steps are automated can be charac-
terised as true or false. For example, the DESIRE [4] design process can be auto-
mated, as many steps are formally defined using mathematical techniques, in
contrast to RAPPID [23] where there are no formal underpinnings. Automating
the design process results in lower design complexity and reduces development
effort and errors [1].

Pragmatics

This view focuses on the pragmatics of each ABS engineering methodology. In
other words, this view refers to how practical the methodology is for the design of
real-world agent systems. It is concerned with the following aspects:

1. Generality: The generality of a methodology refers to the existence of restrictive
premises concerning the environment and the application domain that affect the
applicability of the methodology and can be characterised as high, medium or
low. High generality means that the methodology can be applied without any sig-
nificant restrictions, such as Tropos [6]. The generality is medium when there are
considerable restrictions but the applicability of the method is still wide. For ex-
ample, Gaia [34] assumes closed ABSs and small numbers of cooperating agents.

In contrast, RAPPID [23] is limited since it can only be applied to design ABSs
that will be used to support industrial product design and, therefore, its generality
is low. High generality results to lower design complexity since it is easier to ap-
ply the methodology in various application domains.

2. Abstractability: This aspect refers to whether there is support to enable work at
different levels of abstraction which is one of the main factors affecting design
complexity [1] and it can be true or false. For example, role-based methodolo-
gies, such as [15], support abstractability since agent behaviour can be specified
at both the level of roles and at the level of role characteristics. In contrast, in
Tropos [6] this is done only at the agent level and hence Tropos does not support
abstractability.

3. Tool support: This aspect is concerned with whether there are tools supporting
the realisation of the methodology. For example, the Zeus methodology [21] is
supported by the Zeus agent building toolkit, which assists the users in designing
ABSs. On the other hand, there is no tool support for the Gaia approach [34] and
the engineer is responsible for manually creating all the relevant models. The tool
support of an approach can be characterised as true or false. It is preferable for an
approach to be supported by CASE tools since this reduces development effort
and development errors [17] and automates repetitive tasks [20] increasing the
usability of the methodology and resulting to lower design complexity.

It must be noted that some aspects are interrelated. For example, low or limited
concept definition is likely to be combined with low or medium generality, as is the
case in RAPPID [23]. However, this is not always the case, For example, Tropos [6]
is bounded to only BDI agents and it is still applicable in many application domains.

3 A Motivating Case Study Example

To better illustrate the different aspects of the framework we consider a case study
involving providing support for cross-organisational business process management in
virtual enterprises using agent technology (Fig. 2). An example of such an effort is
the MABE research project [28]. The requirements imposed by this case study are
used to illustrate the strengths and weaknesses of the six ABS engineering method-
ologies evaluated in Section 4.

For the needs of this example we can assume a Virtual Enterprise (VE) consisting
of manufacturers, suppliers and logistic service providers spanning all over the world.
Each VE partner operates its business in different local economic, cultural and politi-
cal conditions, uses various types of legacy systems and software technologies and
has different business interests. However, after becoming members of the VE all
partners comply with the VE business rules and operational regulations.

The software enabling such interoperation is based on agent technology. All inter-
acting parties including the VE partners plus various VE establishment and admini-
stration bodies are associated with appropriate agent components capable of carrying
tasks in a distributed and autonomous manner. The agent components are backed by a
software infrastructure complementing the agent functionality, for example providing
user interfaces to agents, linking agents with external web-services and other infor-

mation sources and assisting agents in knowledge discovery by implementing data
mining and knowledge management algorithms. The only requirement for each VE
partner is to install agent software capable of interoperating with that of the existing
VE partners and the main VE administration body. Furthermore, the VE partner soft-
ware will have to comply with the functional specifications designated by the VE
establishment body and implement the minimum required functionality.

Fig. 2. Agent support for Manufacturing and Logistics Virtual Enterprises

It can be assumed that the agent software is built according to FIPA standards, for
example agents communicate using a FIPA compliant communication language.
Furthermore, discovery of agent services could be done using a central agent service
registry providing white and yellow page information to the eligible agents as is cur-
rently done in the Agentcities project [31]. The VE administration body exercises
control on the operation of the VE and interacts with all the agents in the VE.

The underlying philosophy in this case study is that the agent system design will
be done once by the VE establishment body and the relevant parts will become avail-
able to each new VE partner after it has been accepted to join the VE. The new VE
partner will have to either develop the necessary software according to the given
specifications or purchase it from other partners or software vendors.

In designing the agent-based system certain authority relationships need to be en-
sured between the main VE agents and the VE member agents. For example, main
VE agents should be able to exercise control on VE member agents with respect to
providing information about transactions, pricing quotes and service details. Further-
more, several widely used patterns of interacting agent behaviour such as the media-
tor pattern [18] need to be applied for security and privacy reasons. For similar rea-
sons, a number of heuristics have to be followed in the design, for example, all finan-
cial transactions for each VE member should be carried out by an authorised agent,
which is recognised by the main VE financial controller agent. Furthermore, since

Material

Customers :
Suppliers

VE
Administration

Warehouses
Retailers

Manufacturers Information
Agent

the resulting agent system is large and complicated, a design which allows black-box
re-use of different components is to be preferred. Finally, this complex agent system
design exercise would be significantly facilitated if a software tool could carry out
certain routine but tiresome and error-prone design steps, such as automatically com-
bining known design patterns and imposing constraints on the design product.

Fig. 3. Classification of Agent-Based System Engineering Methodologies

4 Comparative Evaluation of ABS Engineering Methodologies

ABS engineering methodologies can be classified as ad-hoc, formal, informal and
structured, and dynamic (see Fig. 3). Ad-hoc methodologies involve designing an
ABS in an application domain specific manner while formal approaches are based on
the use of formal methods. Informal and structured methodologies originate from
knowledge engineering and software engineering and are predominantly extensions
of object-oriented analysis and design methodologies. Finally, dynamic methodolo-
gies involve defining the structure of an ABS and the behaviour of the individual
agents dynamically on run-time. All classes have advantages and disadvantages with
informal and structured methodologies being regarded as more practical for numerous
real-world applications.

A representative methodology of each class (RAPPID [23], DESIRE [4], Gaia
[34], MESSAGE /UML [5], Tropos [6], Zeus methodology [21] and KARMA [27])
has been evaluated using the evaluation framework described in Section 2. A sum-
mary of the results is presented in Table 1. A more detailed discussion of this classifi-
cation scheme and a review of the above ABS engineering methodologies can be
found in [14].

Regarding the Concepts perspective, about half of the ABS engineering method-
ologies examined (DESIRE, Tropos and Zeus methodology) are bounded to specific
agent architecture. RAPPID is the only one limited to specific agent types as well.
However, based on the case study described in Section 3, it is clear that a methodol-
ogy not bounded to specific agent architecture is needed. For example, some VE
partners may prefer to develop the agent software using tools they are familiar with or
they may want to market their software to other potential VE members. In such a

Ad-hoc
e.g. RAPPID

Formal
e.g. DESIRE

Information Systems
e.g. Tropos

OOSE
e.g. GAIA

Knowledge Engineering
e.g. SODA

Tool Based
e.g. Zeus

Informal

Static Dynamic
e.g. KARMA/TEAMCORE

Agent-Based System Engineering
Approaches

case, proprietary development tools or publicly available tools which are released
under a suitable licence (such as JADE [30] that comes under LGPL2) will need to be
used.

The majority of the methodologies examined (DESIRE, Gaia, Tropos, Zeus meth-
odology and KARMA) consider design as an explicit step in the ABS engineering
lifecycle. This is an important requirement of the VE case study since otherwise it
would be difficult to design such a large business system without making errors.
However, only KARMA provides formal support for heuristics in the design of the
ABS and as mentioned in the case study scenario, being able to apply design heuris-
tics in a systematic manner is needed to facilitate such a complex design task. Clearly,
this is a general deficiency of current ABS engineering methodologies.

Table 1. Design complexity evaluation of ABS engineering methodologies

2 LGPL stands for Lesser General Public Licence and it allows extensions to the original soft-

ware to be released under any, even commercial, licence.

Concepts

R
A

PP
ID

D
E

SI
R

E

G
ai

a

M
E

SS
A

G
E

T
ro

po
s

Z
eu

s

K
A

R
M

A

Concept definition ≤≥ <> >< >< <> <> ><
Design in scope − √ √ − √ √ √

Heuristics support − − − − − − √
 Models

Organisational settings − − − − − √ √
Collective behaviour − − − − − √ √

Non-functional aspects − − − − √ − −
 Process

Design perspective ↓ ↓ ↓ ↕ ↓ ↑ ↓
Support for reuse − √ − − − √ −

Design automation − − − − − − √
 Pragmatics

Generality ○ ∅ ∅ ⊗ ⊗ ∅ ⊗
Abstractability − √ − − − − √
Tool support − √ − √ − √ √

Legend

 ○ - low
 ∅ - medium
 ⊗ - high

≤≥ - limited
 <> - bounded

 >< - open

 ↑ - bottom-up
↓ - top-down

 ↕ - both

√ - yes
− - no

As far as it concerns the Models perspective, only the Zeus methodology and
KARMA explicitly model organisational settings. Representing collective behaviours
as first class design constructs is also not supported in most of the examined method-
ologies. The only exceptions are Zeus where collective behaviours can be represented
by role models and KARMA where collective behaviours are modelled by appropri-
ate team plans. The lack of support for non-functional aspects is even more pro-
nounced. Indeed, only Tropos considers non-functional aspects in the design of
ABSs. As discussed in the previous section, all three aspects are needed to efficiently
design the ABS for the case study considered.

In the Process perspective, only MESSAGE/UML allows working in both top-
down and bottom-up fashion (but the current version of MESSAGE/UML supports
only the analysis phase of the ABS engineering lifecycle and hence it is not practi-
cally useful). The Zeus methodology supports bottom up design, the rest of the ap-
proaches are all supporting top-down design. In the case study considered, both top-
down and bottom-up design would be needed. The VE administrative structure would
be easier to be modelled in a top-down manner. On the other hand, agent behaviours
supporting VE partners would be more practical to be synthesised bottom-up to better
reflect the localised dependencies and requirements.

Furthermore, only two approaches explicitly provide support for reuse, DESIRE
and the Zeus methodology. DESIRE includes guidelines about how the agent system
designer can reuse generic task components in the design of the ABS and the Zeus
methodology includes guidelines about how to reuse generic behaviours represented
by role models and generic agent characteristics ⎯ for example negotiation strate-
gies. Support for reuse is mandatory in the case study considered, as large parts of the
required agent software functionality, such as contracting and negotiation mecha-
nisms, have already broadly implemented and tested.

There is also significant lack of support for automatic design of ABSs. Only
KARMA supports automatic selection of the agents that will participate in the agent
organisation based on team plans specified by the designer. This is also a mandatory
requirement in the case study scenario due to the size of the agent application that
needs to be designed.

Regarding the Pragmatics perspective, approximately half of the approaches
(MESSAGE, Tropos and KARMA) are general, targeting a broad range of applica-
tion domains. The rest are restricted as follows: Gaia assumes closed ABSs consisting
of small numbers of static, cooperating agents. The Zeus methodology has restrictions
regarding the environments where the agents produced can operate. For example,
Zeus agents cannot be mobile and they require a large amount of physical RAM
memory to execute. DESIRE is also specific to applications requiring static agents
whose behaviour can be described by a task-based hierarchy. RAPPID is the most
specific approach since it targets a specific application domain; that of supporting
industrial product design. The case study example considered clearly highlights the
need for a general methodology. The VE is an open system where partners can dy-
namically join and deregister and therefore it must be supported by an open agent
system. Mobility can also be useful, for example for realising ant-based coordination
algorithms. Finally, the case study considered concerns the domain of manufacturing

and logistics service provision and specific methodologies concerning other domains,
such as RAPPID, are not applicable.

DESIRE formally supports specifying interactions among task components at dif-
ferent levels of abstraction, which reduces design complexity. This is the case for
KARMA, which is based on the STEAM formal specification language. STEAM
makes possible for the designer to work at different levels of abstraction with appro-
priate rigour. The rest of the tools do not support abstractability and the designer has
to manually consider all the design details. This is something that would not suit the
case study considered. For example, common functionality such as interactions with
the VE administration and transaction handling and logging would need to be speci-
fied in detail for each agent type.

Finally, four of the methodologies examined (DESIRE, MESSAGE, Zeus and
KARMA) are associated with tools that assist the designers in applying them. The
assistance provided includes graphic user interfaces behaviour allocation mechanisms
as well as automatic design product construction, verification and generation of the
source code. Clearly, these are necessary features for the methodology selected to be
applied to the design of the required in the case study considered in this paper.

5 Implications for Further Research

The above analysis has demonstrated that none of the ABS engineering method-
ologies examined covers all aspects of design support included in the evaluation
framework introduced in Section 2. An effective approach to ABS design should
therefore cover a number of outstanding issues, which are described in more detail
below.

5.1 Support for Design Heuristics

Existing ABS engineering methodologies do not provide systematic and rigorous
models for considering heuristics in the design of the ABS. In methodologies having
formal underpinnings, such as DESIRE [4], design heuristics can be taken into ac-
count in a rigorous manner in the design but there are no guidelines and systematic
techniques assisting in this task. The designer needs to manually incorporate the heu-
ristic rules in the formal ABS specifications.

Some methodologies support informal ABS design heuristics. For example in the
Zeus methodology [21] the sphere of responsibility and point of interaction heuristics
are provided. The former requires the designer to partition the application resources
to areas of control and represent each area with a software agent. The latter refers to
representing each resource in the application domain with an agent. However, those
informal heuristics cannot be easily applied to the design of large ABSs. Furthermore,
it is difficult for the designer to predict the effect on design decisions when those
heuristics contradict with other requirements such as non-functional requirements.
Hence, new ways to support heuristics in ABS are required.

5.2 Organisational Settings

Some ABS engineering methodologies explicitly model organisational settings ⎯
for example, MAS-CommonKADS [12] and SODA [22] ⎯ and there are cases where

the agent organisation is designed during a distinct design step, before the agent be-
haviour is completely specified [3]. However, it has been argued that even when
organisational settings are explicitly modelled, the models only represent the organ-
isational relationships between agents without considering social tasks and social
laws [36]. Furthermore, organisational settings are not considered as first class design
constructs apart from a few exceptions of approaches that use roles [21], [22]. An-
other problem concerning organisational settings is that existing approaches do not
provide rigorous methodologies for combining organisational settings with applica-
tion functionality. This has to be done intuitively by the designer without any assis-
tance by a software tool.

5.3 Collective Behaviour

A similar problem exists regarding representing collective behaviour. Many au-
thors argue that collective behaviours should be treated as first-class design con-
structs, namely that they should be able to be instantiated and given identity [2], [15].
However, even where this is issue is addressed, such as in the Zeus methodology
[21], there is no rigorous way to reuse collective application functionality and com-
bine it with organisational settings.

5.4 Non-Functional Aspects

An issue of major concern in ABS design is the modelling and consideration of
non-functional aspects such as security and performance. To the best of author’s
knowledge, no ABS engineering approach explicitly considers non-functional aspects
in design apart from Tropos [6], In Tropos, the software system is represented as one
or more actors, which participate in a strategic dependency model, along with other
actors from the system’s operational environment. Actors can fulfill certain goals and
are progressively identified and inserted in the conceptual models by the agent system
engineers. In this way, non functional aspects can be considered if engineers insert
appropriate actors with goals that contribute positively to the satisfaction of non-
functional requirements in the Tropos conceptual models. However, the Tropos ap-
proach to modelling non-functional aspects suffers from two main weaknesses.
Firstly, it models non-functional aspects in a way that it cannot be directly reused in
other ABS designs. Secondly, quantitative characterisation of non-functional aspects
is not possible.

In some cases, non-functional aspects are the basis for criteria for reorganisation in
dynamic approaches, as is the case in KARMA [27]. In these instances non-
functional aspects are taken into account by adjusting the agent behaviour and the
organisation of the ABS at run-time. However, this treatment of non-functional as-
pects impedes the reuse of non-functional models. It also contributes to significant
consumption of resources and may cause system instability.

5.5 Automating the Design Process

In order to reduce development effort and software design errors the design proc-
ess should be partially automated [16]. This view is also adopted by some ABS engi-
neering methodologies [9], [25], [32] which are considered informal because their
analysis models use informal specifications of desired systems. They nevertheless try

to provide the formal underpinnings necessary for automatically designing ABSs. The
common way of doing that is by progressing from analysis to design by successive
formal transformations of the analysis models. The transformations used, however,
focus on ensuring that the designed agent components are correctly represented in
respect to the analysis models, using object-oriented software engineering concepts
and techniques. For example, in [25] formal transformations are used to decide on the
number of objects and concurrent threads that should be used to correctly realise the
behaviour of each agent component. To the best of author’s knowledge, current in-
formal ABS engineering approaches do not provide any automatic support for actu-
ally deciding on what behaviour each agent in the ABS should have. This is not the
case for dynamic approaches where the design of the agent system is done during
reorganisation steps. For example, in KARMA the agent components are automati-
cally selected based on specifications of the agent-based application requirements
described in the STEAM modelling framework [27]. However, KARMA assumes
that agents already exist in cyberspace, which is not generally the case.

5.6 Working at Different Abstraction Levels

There is a consensus that abstraction in software design reduces design complexity
[19]. Although it has the trade-off of reducing software efficiency and performance, it
may add to the reliability of the produced software as frequently used components are
thoroughly tested and the design process can be automated [1].

As abstraction is a common practice in software design, a number of ABS engi-
neering methodologies allow the designer to work at different levels of abstraction.
However, not all of them provide appropriate formal support. For example,
MESSAGE/UML allows modelling at levels 0 and level 1 but there is no formal
description of the relations between the models of the two levels. As a result, proper
use of MESSAGE/UML requires the designers to have a clear understanding and
explicitly consider the links between models at levels 0 and 1, which makes the ABS
design task more difficult,

The only approaches examined that provide formal support for working at differ-
ent levels of abstraction are DESIRE [4] and KARMA [27]. However, their support is
limited. DESIRE only supports interaction between tasks at different abstraction
levels and KARMA supports teamwork at different levels of abstraction in the form
of joint intentions. Agent behaviour, however, is characterised with other aspects as
well. For example, coordination protocols or negotiation strategies, which the de-
signer should specify at the lowest level of detail in those two approaches. This prob-
lem is addressed in the Zeus approach [21]. For example, in the Zeus methodology,
the agent system designer can either select a predefined negotiation strategy or spec-
ify all negotiation rules in detail. Zeus models agent behaviour at different levels of
abstraction based on role modelling. However, this support is informal since the rela-
tions among roles have not been given formal semantics.

6 Summary

This paper proposed a framework to assess ABS engineering methodologies with
respect to design complexity they involve. Using this framework, a set of representa-

tive methodologies has been examined revealing a number of issues that would re-
quire further research.

The proposed framework suggests looking into ABS engineering approaches from
four views: Concepts, Models, Process and Pragmatics. The Concepts view refers to
the modelling concepts used to model ABSs and it concerns the generality of the
concept definition, the existence of specific support for design in the ABS engineer-
ing process and the support for design heuristics. The Models view refers to model-
ling of organisational settings and collective behaviour to be used as first class design
constructs and to explicit modelling of non-functional aspects. The Process view
examines the perspective of the design process and whether it can be based on reuse
and if it can be automated. The Pragmatics view evaluates the applicability of the
approach to real-world applications by assessing the generality, the complexity han-
dling and the tool support of the approach.

None of the methodologies examined supports all aspects of the proposed frame-
work. Significant gaps have been uncovered to inform further work on ABS engi-
neering methodologies, where the aim would be to decrease design complexity by
providing more comprehensive support for all aspects of the framework. It is the
authors’ belief that using roles as behavioural modelling constructs and providing
appropriate semantics for role relations and role characteristics is the most appropri-
ate path to follow towards achieving this goal.

References

1. Alagar, V.S., Periyasamy, K.: Specification of Software Systems. New York: Springer-
Verlag, 1998.
2. Andersen, E.P. Conceptual Modelling of Objects: A Role Modelling Approach. PhD Thesis.
Oslo, Norway: University of Oslo, 1997.
3. Barber, K.S., Liu, T.H., Han, D.C. Agent-Oriented Design. Austin, TX, USA: University of
Texas at Austin, 1999, http://powerlips.ece.utexas.edu/pubs/techReports/1999/TR99-UT-LIPS-
AGENTS-01.pdf.
4. Brazier, F.M.T., Dunin-Keplicz, B., Jennings, N., Treur, J.: DESIRE: Modelling Multi-Agent
Systems in a Compositional Formal Framework. International Journal of Cooperative Informa-
tion Systems, Special Issue on Formal Methods in Cooperative Information Systems: Multi-
Agent Systems, 5, 1 (June 1997), 67-94.
5. Caire, G., Coulier, W., Garijo, F., Gomez, J., Pavon, J., Leal, F., Chainho, P., Kearney, P.,
Stark, J., Evans, R., Massonet, P. Agent Oriented Analysis Using Message/UML. In
Wooldridge, M.J., Weis, G., Ciancarini, P. (eds.), Agent-Oriented Software Engineering II,
Second International Workshop, (AOSE 2001), Montreal, Canada. Berlin: Springer Verlag,
2002, 151-168.
6. Castro, J., Kolp, M., Mylopoulos, J.: Towards requirements-driven information systems
engineering: the Tropos project. Information Systems, 27, 6 (September 2002), 365-389.
7. Cernuzzi, L., Rossi, G. On the Evaluation of Agent Oriented Methodologies. OOPSLA 2002
Workshop on Agent-Oriented Methodologies. 2002.
8. Dam, K.H., Winikoff, M. Comparing AgentOriented Methodologies. Fifth International Bi-
Conference Workshop on Agent-Oriented Information Systems (AOIS-2003). Malbourne, Aus-
tralia, 2003.

9. Depke, R., Heckel, R., Kuster, J.M. Agent-Oriented Modelling with Graph Transformation.
In Ciancarini, P., Wooldridge, M. (eds.), Agent-Oriented Software Engineering I, First Interna-
tional Workshop (AOSE 2000), Limerick, Ireland. Berlin: Springer-Verlag, 2001, 106-119.
10. Fenton, N., Pfleeger, S.L.: Software Metrics: A Rigorous and Practical Approach. Boston,
MA, USA: PWS Publishing Co., 1997.
11. Iglesias, C.A., Garrijo, M., Gonzalez, J.C. A Survey of Agent-Oriented Methodologies. In
Muller, J., Singh, M.P., Rao, A.S. (eds.), Proceedings of the 5th International Workshop on
Intelligent Agents {V}: Agent Theories, Architectures, and Languages (ATAL-98). Heidelberg,
Germany: Springer-Verlag, 1999, 317-330.
12. Iglesias, C.A., Garijo, M., Gonzalez, J.C., Velasco, J.R. Analysis and Design of Multiagent
Systems using MAS-CommonKADS. In Singh, M.P., Rao, A.S., Wooldridge, M.J. (eds.),
Intelligent Agents IV: Agent Theories, Architectures, and Languages (ATAL '97). Berlin, Ger-
many: Springer Verlag, 1998, 313-326.
13. Juan, T., Pearce, A., Sterling, L. ROADMAP: Extending the Gaia Methodology for Com-
plex Open Systems. Autonomous Agents and Multi-Agent Systems (AAMAS 2002). Bologna,
Italy: ACM Press, 2002.
14. Karageorgos, A. Using Role modelling and Synthesis to Reduce Complexity in Agent-Based
System Design. PhD Thesis. Manchester, UK: University of Manchester Institute of Science
and Technology, 2003.
15. Kendall, E.A.: Role models - patterns of agent system analysis and design. BT Technology
Journal, 17, 4 (October 1999), 46-57.
16. Lowry, M.R., McCartney, R.D. (eds.). Automating Software Design. Menlo Park, CA:
AAAI Press, 1991.
17. MacDonell, S.G.: Determining delivered functional error content based on the complexity
of CASE specifications. New Zealand Journal of Computing, 5, 1 (July 1994), 57-65.
18. Maturana, F., Norrie, D.H.: Multi-agent mediator architecture for distributed manufactur-
ing. Journal of Intelligent Manufacturing, 7, 257-270.
19. Metzger, A., Quelns, S. A Reuse- and Prototyping-based Approach for the Specification of
Building Automation Systems. In Schuerr, A. (ed.), OMER-2 Workshop Proceedings. Munich:
University of the Federal Armed Forces, Germany, 2001, 3-9.
20. Ng, K., Kramer, J., Magee, J.: A CASE Tool for Software Architecture Design. Automated
Software Engineering, 3, 3/4 (1996), 261-284.
21. Nwana, H.S., Ndumu, D.T., Lee, L.C., Collis, J.C.: Zeus: A Toolkit for Building Distrib-
uted Multi-Agent Systems. Applied Artificial Intelligence Journal, 13, 1 (January 1999), 129 -
185.
22. Omicini, A. SODA : Societies and Infrastructures in the Analysis and Design of Agent-
based Systems. In Ciancarini, P., Wooldridge, M.J. (eds.), Agent-Oriented Software Engineer-
ing I, First International Workshop (AOSE 2000), Limerick, Ireland. Berlin: Springer Verlag,
2001, 185-193.
23. Parunak, V.D., Sauter, J., Fleischer, M., Ward, A.: The RAPPID Project: Symbiosis be-
tween Industrial Requirements and MAS Research. Autonomous Agents and Multi-Agent Sys-
tems, 2, 2 (June 1999), 111-140.
24. Silva, A.R., Romao, A., Deugo, D., Silva, M.M.d.: Towards a Reference Model for Survey-
ing Mobile Agent Systems. Autonomous Agents and Multi-Agent Systems, 4, 3 (September
2001), 187-231.
25. Sparkman, C.H., DeLoach, S.A., Self, A.L. Automated Derivation of Complex Agent
Architectures from Analysis Specifications. In Wooldridge, M.J., Weis, G., Ciancarini, P.
(eds.), Agent-Oriented Software Engineering II, Second International Workshop (AOSE 2001),
Montreal, Canada. Berlin: Springer Verlag, 2002, 278-296.

26. Sturm, A., Shehory, O. A Framework for Evaluating Agent-Oriented Methodologies. Fifth
International Bi-Conference Workshop on Agent-Oriented Information Systems (AOIS-2003).
Malbourne, Australia, 2003.
27. Tambe, M., Pynadath, D.V., Chauvat, N.: Building Dynamic Agent Organisations in Cy-
berspace. IEEE Internet Computing, 4, 2 (March/April 2000), 65-73.
28. The MABE Consortium. The MaBE (Mulii-Agent Business Environement) Project. 2003,
http://www.mabe-project.com.
29. The Object Agency Inc. A Comparison of Object-Oriented Development Methodologies.
The Object Agency, Inc, (Autumn 1995), http://www.toa.com/pub/mcr.pdf.
30. TILAB - Motorola. The Jade Agent Building Toolkit. 2003,
http://sharon.cselt.it/projects/jade/.
31. Willmott, S.N., Dale, J., Burg, B., Charlton, C., O'brien, P.: Agentcities: A Worldwide
Open Agent Network. Agentlink News, 8, 13-15.
32. Wood, M., DeLoach, S.A. An Overview of the Multiagent Systems Engineering Methodol-
ogy. In Ciancarini, P., Wooldridge, M.J. (eds.), Agent-Oriented Software Engineering I, First
International Workshop (AOSE 2000), Limerick, Ireland. Berlin: Springer Verlag, 2001, 207-
221.
33. Wooldridge, M.: On the Sources of Complexity in Agent Design. Applied Artificial Intelli-
gence, 14, 7 (August 2000), 623-644.
34. Wooldridge, M., Jennings, N.R., Kinny, D.: The Gaia methodology for agent-oriented
analysis and design. International Journal of Autonomous Agents and Multi-Agent Systems, 3,
3 (September 2000), 285-312.
35. Zambonelli, F., Jennings, N.R., Wooldridge, M. Organisational Abstractions for the Analy-
sis and Design of Multi-Agent Systems. In Ciancarini, P., Wooldridge, M.J. (eds.), Agent-
Oriented Software Engineering I, First International Workshop (AOSE 2000), Limerick, Ire-
land. Berlin: Springer Verlag, 2001, 235-250.
36. Zambonelli, F., Jennings, N.R., Omicini, A., Wooldridge, M.J. Agent-Oriented Software
Engineering for Internet Applications. In Omicini, A., Zambonelli, F., Klusch, M., Tolksdorf,
R. (eds.), Coordination of Internet Agents: Models, Technologies and Applications. Berlin
Heidelberg: Springer-Verlag, 2001, 326-346.

