
High Performance FFT Based Poisson Solver on a CPU-GPU Heterogeneous
Platform

Jing Wu
Department of Electrical and Computer Engineering

and Institute for Advanced Computer Studies
University of Maryland

College Park, MD
Email: jingwu@umiacs.umd.edu

Joseph JaJa
Department of Electrical and Computer Engineering

and Institute for Advanced Computer Studies
University of Maryland

College Park, MD
Email: joseph@umiacs.umd.edu

Abstract—We develop an optimized FFT based Poisson
solver on a CPU-GPU heterogeneous platform for the case
when the input is too large to fit on the GPU global memory.
The solver involves memory bound computations such as 3D
FFT in which the large 3D data may have to be transferred
over the PCIe bus several times during the computation.
We develop a new strategy to decompose and allocate the
computation between the GPU and the CPU such that the
3D data is transferred only once to the device memory, and
the executions of the GPU kernels are almost completely
overlapped with the PCI data transfer. We were able to achieve
significantly better performance than what has been reported
in previous related work, including over 50 GFLOPS for the
three periodic boundary conditions, and over 40 GFLOPS for
the two periodic, one Neumann boundary conditions. The PCIe
bus bandwidth achieved is over 5GB/s, which is close to the
best possible on our platform. For all the cases tested, the
single 3D PCIe transfer time, which constitutes a lower bound
on what is possible on our platform, takes almost 70% of the
total execution time of the Poisson solver.

Keywords-Fast Fourier Transforms; Parallel and Vector Im-
plementations; GPU; CUDA; Poisson Equations

I. INTRODUCTION

There has been recent interest in the development of
high performance direct Poisson solvers due partly to the
introduction of immersed-boundary methods [12]. Poisson
solvers are an extremely important tool used in many appli-
cations, which most often constitute the most computation-
ally demanding component of the application. In an earlier
work [18], we developed an FFT-based direct Poisson solver
for GPUs, which was optimized for the case when the 3D
grid fits onto the device memory. The performance reported
there assumes that both the input and output reside on the
device memory, which is the typical assumption made by
most of the published GPU algorithms. In this work, we
consider the case when the grid is much larger than the
size of the device memory, but can still fit in the main
memory of a multicore CPU, and develop an optimized
FFT-based direct Poisson solver on such a platform. Our
approach exploits the particular strengths of each processor
while carefully managing the data transfers needed between

the CPU and the GPU. In particular, our algorithm includes
optimized 2D or 3D FFT implementations and optimized
tridiagonal solver implementations for such a heterogeneous
environment in which both the input and the output reside
in the main memory of the CPU.

Most of the recently published work of FFT algorithms
on GPUs [8][10][14][13][9][3], assume data sizes limited by
the device memory size. This assumption results in efforts
that are concentrated on GPU optimization, including data
transfers between device memory and the shared memory
or registers of the streaming multiprocessors. For memory
bound computations, such as FFTs, the performance bottle-
neck becomes the device memory bandwidth and the type
of the global memory accesses. For recent GPUs, the peak
device memory bandwidth is higher than 100 GB/s.

We compare our results to two recent results on a similar
model. Chen et al [1] used a cluster of 4 or 16 nodes,
each node includes two GPUs (Tesla C1060 and GTX 285),
to handle large 3D FFT computations. They reported a
performance of around 50 GFLOPS on four nodes, some-
what lower than our performance on a single node with a
Tesla C1060 (in fact, our performance number is an under-
estimate since it does not include all the components of
our Poisson solver). Another recent work is reported by
Gu et al [11], which tries to optimize both CPU-GPU data
transfer and GPU computations for 1D, 2D, and 3D FFTs.
In particular, they develop a blocked buffered technique for
1D FFTs which achieves a high bandwidth on the CPU-
GPU data channel. For their multidimensional FFTs, the data
has to be transferred back and forth between the CPU and
GPU at least twice, and for 3D double-precision FFT, their
best performance is around 15 GFLOPS on the NVIDIA
Tesla C2070, 13 GFLOPS on the NVIDIA GTX480 and
9 GFLOPS on the NVIDIA Tesla C1060 respectively. Our
performance numbers for the single-precision FFTs reach 60
GFLOPS using the Tesla C1060.

We develop a new approach that introduces the following
contributions:

• The computation is organized in such a way that the

3D grid data is transferred between the CPU memory
and the device memory only once, while achieving a
PCIe bus bandwidth close to the best possible on our
platform.

• The GPU kernel computations are almost completely
overlapped with the data transfers on the PCIe bus, and
hence the GPU execution time contributes very little to
the overall execution time. This is due to an effective
use of the CUDA page-locked host memory allocation,
asynchronous function calls, and write-combining.

• Our approach makes effective use of the multithreaded
architectures of both the CPU and GPU. In particular,
the FFTs along the X-dimension are partially computed
on the multicore CPU in a way that exploits the
presence of the processor cores and the L3 cache, and
the rest of the computations are carried out on the
GPU using a minimum number of coalesced memory
accesses with all operations executed directly on the
registers.

• While our implementation achieves an accuracy com-
parable to a double precision implementation, our FFT
based direct Poisson solver uses primarily single preci-
sion floating operations, which effectively doubles the
effective bandwidth of data movement for the same data
sizes.

• Experimental tests on our platform for problems of
large sizes show that almost 70% of the total execution
time is consumed by the single 3D grid data transfer
over the PCIe bus, and most of the rest is consumed by
the initial CPU computation of the partial FFT along
the X dimension. The overall performance of our FFT-
based Poisson solver ranges between 50 GFLOPS and
60 GFLOPS.

II. OVERVIEW AND BACKGROUND

In this section, we provide an overview of the algorithms
behind the FFT-based Poisson solver, which include FFT
and tridiagonal linear system computations. Basic FFT al-
gorithms that are related to our work are then summarized,
followed by an overview of Thomas’ algorithm for solving
tridiagonal linear systems. We end this section with an
overview of the general architecture of our platform that
consists of a multicore processor with a GPU accelerator.

A. FFT-based Poisson Solver
The three-dimensional Poisson equation is defined by:

∇2φ =
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= f, in Ω, (1)

In our earlier work [17], we presented algorithms for
the FFT-based Poisson solver, which were optimized for
grid sizes that fit in the device memory. Please refer to
[17] for the detailed mathematical formulation and related
algorithms. Here, we provide the computational procedures
corresponding to a grid of size I × J ×K.

In a nutshell, for the 3 periodic boundary conditions (BC)
case, the overall algorithm consists of the following steps:

• Compute the 3D Fast Fourier Transform of the 3
dimensional source dataset f̃i,j,k to generate f̂l,m,n .

• Divide each f̂l,m,n by a scalar Dl,m,n to get the 3
dimensional unknown dataset φ̂l,m,n .

• Compute the 3D Fast Inverse Fourier Transform of the
new 3 dimensional unknown dataset φ̃i,j,k to obtain the
solution.

We refer to Dl,m,n as scalars and to Dl, Dm as subscalars
defined by:

Dl,m,n = Dl +Dm +Dn, where

Dl = 2I2
[

cos(2π
l

I
)− 1

]
Dm = 2J2

[
cos(2π

m

J
)− 1

]
Dn = 2K2

[
cos(2π

n

K
)− 1

]
For the 2 periodic, 1 Neumann BC case, the overall

procedure can be described as follows:
• For each value of k, 0 ≤ k ≤ K − 1, compute the 2D

forward Fast Fourier Transform on the corresponding
slice of the 3 dimensional source dataset f̃i,j,k to get
f̂l,m,k.

• Solve the I × J tridiagonal linear systems (with size
K ×K coefficient matrices) to get φ̂l,m,k.

• For each value of k, compute the 2D inverse Fast
Fourier Transform on the corresponding slice of the
3 dimensional unknown dataset φ̃i,j,k.

Clearly both procedures require FFT computations dis-
cussed next.

B. Fast Fourier Transform
The one-dimensional discrete Fourier transform of n

complex numbers of a vector X is the complex vector Y
defined by:

Y [k] =

n−1∑
j=0

X[j]ωjk
n , (2)

where ωn is the nth root of unity. A fundamental decom-
position strategy introduced by the Cooley-Tukey algorithm
[2] can be explained through the following equation, where
n = n1n2.

Y [k1+k2n1]=

n2−1∑
j2=0

[(
n1−1∑
j1=0

X[j1n2+j2]ωj1k1
n1

)
ωj2k1
n

]
ωj2k2
n2

, (3)

Eq (3) expresses the DFT computation as a sequence of
three steps. The first step consists of n2 DFT’s each of size
n1, called radix-n1 DFT, and the second step consists of
a set of twiddle factor multiplications (multiplications by
ωj2k1n). Finally, the third step consists of n1 DFTs each of
size n2, called radix-n2 DFT.

The Cooley-Tukey algorithm can be implemented in a
number of ways depending on the recursive structure and
the input/output order. Two important variations based on the

recursive structure are the so-called the decimation in time
(DIT) and the decimation in frequency (DIF) algorithms. The
DIT algorithm uses n2 as the initial radix, and recursively
decomposes the DFTs of size n1, while the DIF algorithm
uses n1 as the initial radix, and recursively decomposes the
DFTs of size n2.

Another possible variation of the Cooley-Tukey algorithm
stems from the input/output element ordering. For the for-
ward FFT computation, suppose the input is in the original
order, the output can either be in bit-reversed order, or in-
order; vice versa for the inverse FFT [16].

The advantage of the in-order algorithm [16] is obvious:
the output appears in the natural order, which is a key
feature of the CUDA FFT library. However, when a DFT or
Inverse DFT is used in intermediate steps of a computation,
the bit-reverse ordering may provide additional optimiza-
tion opportunities. In particular, a key feature of the bit-
reversed algorithm is that it is an in-place algorithm that
overwrites its input with its output data using only O(1)
auxiliary storage. The benefits of the in-place algorithm
are: 1) the memory requirement is half of the out of place
algorithm (potentially doubling the solvable problem size),
2) the butterfly diagrams of the bit-reversed DIF and DIT
algorithms are symmetrical [16], which not only indicates
symmetrical computation sub-steps, but also a symmetrical
memory access pattern. Hence, on the one hand, for GPU
computations, the intermediate results for a large size trans-
form can stay in the faster but smaller shared memory and/or
registers without being swapped out into the global memory
for multiple computation sub-steps. The second feature is of
special importance for larger size problems since the in-place
algorithm makes it possible to carry out the implementation
with a single PCIe back and forth transfer of the grid data.

The multi-dimensional DFT can be defined recursively as
a set of DFTs applied to all the vectors along each of the
dimensions of a multi-dimensional array. In our algorithms,
we use the DIF in order input Cooley-Tukey algorithm on
the forward FFT along each dimension and use the DIT
in-order output variation on the inverse FFT. We specify
corresponding decompositions along each dimension with
forward and inverse flag which would be discussed later.

C. Tridiagonal Linear Systems
Another important component of our Poisson Solver is

a tridiagonal linear solver. A tridiagonal solver handles a
system of n linear equations of the form Ax = d, where
A is a tridiagonal matrix, x and d are vectors. This can be
represented in matrix form by:

b0 c0 0
a1 b1 c1

a2 b2
. . .

. . .
. . . cn−2

0 an−1 bn−1




x0
x1
x2
...

xn−1

 =


d0
d1
d2
...

dn−1



A simplified form of Gaussian elimination, called
Thomas’ algorithm, is a well-known classical algorithm to
solve this problem. The algorithm consists of two sweeps:
forward elimination and backward substitution. The forward
sweep updates both the vectors b and d, and the backward
substitution determines the unknown vector x.

f o r (i n t i = 1 ; i < n ; i ++) {
double m = a [i] / b [i −1];
b [i] = b [i] − m∗c [i −1];
d [i] = d [i] − m∗d [i −1];

}

Listing 1: Forward Elimination

x [n−1] = d [n−1]/ b [n−1];
f o r (i n t i = n − 2 ; i >= 0 ; i−−)

x [i] = (d [i]−c [i]∗ x [i + 1]) / b [i] ;

Listing 2: Backward Substitution

We make the following observations regarding Thomas’
algorithm.

• The complexity of the algorithm is O(n), and the algo-
rithm as described seems to be inherently sequential.

• Four one-dimensional arrays for the input a, b, c and d
are needed in the general case.

• It may appear that we need an array for the output x
vector; however, the unknown vector can be stored in
the d vector during the backward substitution step.

D. Architecture Overview

Our experimental platform is a heterogeneous processor
consisting of a CPU and a GPU. Our CPU consists of two
Quad-Core Intel Xeon X5560 with 24 GB of main memory
and each quad core shares an 8 MB L3 cache. The GPU
is the NVIDIA Tesla C1060 with 4 GB off-chip device
memory. Data transfers between the CPU main memory and
the GPU device memory are carried by a PCIe 2.0 bus.

1) CUDA Programming Model: The CUDA program-
ming model assumes a system consisting of a host CPU and
a massively data parallel GPU acting as a co-processor, each
with its own separate memory [15]. The GPU executes data
parallel functions called kernels using thousands of threads.
Kernels can only operate out of device memory.

The basic architecture of our GPU (Tesla C1060 in
our experiments) consists of a set of Streaming Multipro-
cessors(SMs), each of which containing eight Streaming
Processors (SPs or cores) executing in a SIMD fashion,
16384 registers, and a 16KB of shared memory. All the
SMs have access to the high bandwidth Device memory
(peak bandwidth 102 GB/s); such a bandwidth can be
exploited only when simultaneous accesses are coalesced
into contiguous 16-word lines, but the latency is quite high
(around 400-600 cycles).

2) PCIe bus: The PCIe 2.0 bus between the CPU and
GPU is of central importance for large size problems and for
memory bound applications. The PCIe 2.0 has a theoretical
peak bandwidth of 8 GB/s, but according to the tests
conducted on our Tesla C1060, the best averaged host to
device and device to host bandwidth achieved is around 5.7
GB/s. Similar PCIe bus bandwidth was observed in practice
by [1] as well. Clearly data transfer between the host and
the device memories constitutes the major bottleneck for our
problem.

3) Multi-threaded CPU: In addition to acting as the
CUDA host, the CPU offers a multithreaded environment
with a shared memory programming model. In most previ-
ous work, the focus is on GPU optimization without trying
to make use of the CPU computational resources. In our
approach, we make use of the multicore CPU in two ways:
1) we allocated part of the computation to the different
cores of the CPU so as to dramatically reduce the data
transfer over the PCIe bus; 2) we use the multi-threaded
CPU to enable fast transfers between the host memory and
the pinned memory.

4) Asynchronous CUDA streams: CUDA provides the
facility of asynchronous concurrent execution between host
and device, for some function calls, control is returned to the
host thread before the device has completed the requested
task [15]. Data transfer and kernel execution from different
CUDA streams [15] can be overlapped when memory copies
are performed between page-locked host memory and device
memory.

III. OVERALL APPROACH

In this section, we describe our overall strategy to handle
the FFT-based direct Poisson solver computations for the
cases of three periodic boundary conditions, and the two
periodic, one Neumann boundary conditions. In each case,
we describe how the overall computation is decomposed and
scheduled onto the CPU and GPU and how data transfers
between the CPU memory and the GPU global memory are
carried out.

A. Three Periodic BC case

The 3 periodic BC case involves a 3D forward FFT, a
scaling of each element, and a 3D inverse FFT. The scaling
(division) of each element during the intermediate step de-
pends only on the 3D indices of the element, which allows us
to incorporate the scaling operations within the forward FFT
or inverse FFT computations. In our implementation, we
choose the in-order input FFT DIF variation for the forward
FFT, and the in-order output FFT DIT variation for the
inverse FFT computation. A straightforward implementation
of the 3D FFT algorithm would require bringing the 3D
data into the device memory to perform the FFT along each
dimension, and hence the 3D data will be passed three times
between the CPU and device memories.

We start by noting that the CPU cores offer opportunities
for a limited amount of parallelism on highly irregular
computations, and that the availability of caches makes the
CPU quite effective in handling small size FFTs along the
X dimension. On the other hand, the GPU architecture is
much more effective for massive data parallel computations
with more structured memory access patterns.

Therefore, on the one hand, we try to minimize the
number of data movements using the PCIe bus by optimizing
the work allocation between the CPU and the GPU; on the
other hand, we carefully orchestrate the data movements
between the CPU host memory and the GPU global memory
to overlap data transfer and kernel execution. In addition,
we use a minimum number of fast GPU kernels, using only
coalesced global memory accesses with a large number of
threads executing the operations directly on the registers.

In a nutshell, our solver consists of
• An initial stage of forward small-radix FFT computa-

tion along the X dimension using the available CPU
cores in an optimal fashion.

• Several batches of multiple asynchronous streams, each
involving its 3D data sub-chunk to be transferred from
the host system memory to the host pinned memory,
then to the device memory, a number of FFT-type GPU
kernel functions to be executed on the data, and transfer
back the intermediate data into the host system memory
eventually.

• The final stage consists of the inverse small-radix FFT
computation along the X dimension using the available
CPU cores.

We illustrate our strategy in details by focusing on the
problem of size 1024×1024×1024. Similar strategies work
as effectively for other sizes.

1) Multi-threaded CPU forward radix FFT computation:
During the first stage of the forward FFT on the CPU,
a set of 64 FFTs, each of radix 16, are computed on
the 1024 elements along each dimension X with a stride
of 64 between consecutive elements for the same radix
FFT. We borrow the following notation from our earlier
work [18]: {X(64, 16, 64, 1024, forward,CPU)}, which
amounts to the execution of the first FFT stage on each set
of 1024 elements along the X dimension. More precisely,
X(p, q, r, n, forward,CPU) indicates that p radix-q for-
ward FFTs along the X dimension are computed over n
elements with a stride of r using CPU. Once this step is
done, the rest of forward 3D FFT computation is merely
a set of 16 independent forward FFTs on data chunks of
size 64× 1024× 1024. Moreover, the same data chunks of
size 64× 1024× 1024 can be used to compute the inverse
FFT, except for the last stage along the X dimension. The
corresponding memory layout of the problem decomposition
is shown in Figure 1a.

In order to exploit data locality and maintain independent
work for the different threads, we use different threads to

(a) 3D data memory layout (b) CPU and GPU device memory usage

(c) Async CUDA streams applicable to Tesla C1060 (d) block memory copy for one stream

Figure 1: Data decomposition and CPU+GPU memory mapping

work on multiple contiguous rows of 1024 elements: each
thread in our implementation is responsible for carrying
out the 64 sets of FFT(16) for a 1024-element row. Upon
completing the work on 8 rows, the 8 threads move onto
to the next 8 consecutive rows, and so on. Since there
is no dependency between threads, no synchronization is
necessary for correctness and such balanced yet independent
workload distribution makes a very effective use of the cache
by each thread. As a result, we achieve an almost perfect
speed-up by a factor of 8 relative to using just one thread.

2) Asynchronous Streams of Data Transfers and GPU
Kernels: CUDA allows the use of streams for asynchronous
memory copy and concurrent kernel executions to hide long
PCIe bus latency[15]. A stream is a sequence of commands
that execute in order; different streams may execute their
commands out of order with respect to one another or
concurrently. Asynchronous memory copy has to be carried
out between page-locked host memory and device memory.

In order to make effective use of the asynchronous CPU-
GPU memory copy, we organize the remaining FFT com-
putations into 4 batches, each consisting of 4 asynchronous
streams where each stream involves a subarray of size
64×1024×1024 (0.5 GB). For our running example, staging
page-locked host memory of size 2GB (0.5GB*4) is allo-

cated to enable asynchronous memory copy, as indicated in
Figure 1b. By default, page-locked host memory is allocated
as cacheable and write-combining flag can be used to enable
the memory not being snooped during the transfer across the
PCIe bus, which can boost the host to device bandwidth
in practice[15]. However, the bandwidth on the opposite
transfer direction is prohibitively slow. So we allocate two
scratch page-locked memory: one with default flag and using
for device to host transfer and one with write-combining flag
and using for host to device transfer. Figure 2 shows one
batch of the complete pipelined execution of multi-threaded
CPU (including the main thread and the helper threads) and
4 GPU streams (stream 0, 1, 2, 3). Each stream is defined
as follows.

• The 3D data subset allocated to each stream is 64 ×
1024×1024 in the X, Y and Z dimension respectively.
This corresponds to the system host memory layout ver-
sus <batch #, stream#>in Figure 1d, which indicates
1K × 1K lines of 64 8-byte words with 1024 8-bytes
between every two lines. These apart elements need to
be packed consecutively in the page-locked memory so
that the following PCIe bus transfer would be effective.
The data movement for each data subset is a pipeline
of block-wise movement involving a multi-threaded

Figure 2: CPU-GPU Pipeline

CPU memory copy of a large number of 64-element
words into a consecutive block in the paged-locked
memory, followed by a PCIe bus transfer. The data
movement from the system host memory to the pinned
host memory and the data movement from the pinned
host memory to the device memory is simultaneous
as indicated by the two arrows in Figure 1d. The
entire process overlaps PCIe bus transfers with multi-
threaded CPU data copy into pinned memory. Due to
bandwidth differences of the PCIe bus and the multi-
threaded system memory copy, by the time PCIe bus
is done with the previous sub-chunk, the next sub-
chunk will be ready for the asynchronous memory copy
into the device memory. Immediately after we finish
the memory copy for one chunk of 64× 1024× 1024
data, we launch the asynchronous kernel calls for that
stream and start the same work of the next chunk of
64 × 1024 × 1024 data. Upon the completion of the
kernel calls, we make use of asynchronous copy at-
tached to the same stream for the copy back. However,
due to the limitation of Tesla C1060, there are no
concurrent data transfers back and forth between pinned
memory and device memory. When we schedule the
asynchronous work, we have to schedule the copy back
calls after executing all the copying from the pinned
host memory to the device memory and their kernel
calls. This asynchronous stream execution is shown in
Figure 1c.

• Compute the 3D forward FFT, scaling and 3D inverse
FFT computation (except for a partial inverse small
radix FFT along the X dimension) on a chunk of size
64 × 1024 × 1024 on the GPU using 7 optimized
kernels. The total execution time of the kernels should
be smaller than the total transfer time of 3 streams
(3 host to device and 3 device to host, Figure 1c);
otherwise, one or more of the streams’ memory transfer

back needs to be held back until the completion of its
kernel. This is illustrated in Figure 1c. Since we want to
achieve a high PCIe bus bandwidth, the kernels have to
execute as fast as well. Once the data is loaded onto the
GPU device memory, we can use techniques similar to
those introduced in our previous work [18] to compute
the FFT of each subarray of size 64× 1024× 1024. In
particular, the X-dimensional radix-64 forward FFT and
inverse FFT are included in the Y and Z dimensional
FFT computation kernels to avoid additional global
memory accesses. Moreover, effective shared memory
transpose strategies are used to guarantee no bank
conflicts. An intermediate global memory (shared by
4 streams due to their sequential execution of kernels)
is introduced for smaller strides between consecutive
global memory accesses when multiple Z dimensional
computation kernels are involved (Figure 1b), without
limiting the maximum number of concurrent streams.
The scaling step is included in the last step of the
forward FFT and the first step of the inverse FFT with
the scalars computed using bit-reversed indices.
As a result, the GPU kernels can be defined by the
following computations:

– {X(8, 8, 8, 64), Y (32, 32, 32, 1024), forward}
– {X(8, 8, 1, 8), Y (32, 32, 1, 32), forward)}
– {Z(32, 32, 32, 1024), forward}
– {Z(32, 32, 1, 32), forward}
{scaling,GPU)}
{Z(32, 32, 1, 32), inverse}

– {Z(32, 32, 32, 1024), inverse}
– {X(8, 8, 1, 8), Y (32, 32, 1, 32), inverse}
– {X(8, 8, 8, 64), Y (32, 32, 32, 1024), inverse}

Note that all the arithmetic computations are carried out
on register contents, all global memory transfers involve
coalesced memory access, and transpose computations
use shared memory without any bank conflicts. There-
fore, we complete the 64× 1024× 1024 forward FFT,
scaling and inverse FFT using 7 kernels.

• Once the kernels are completed, we perform block-
wise asynchronous memory copies from the device
memory to the pinned host memory and then to the
system host memory for each stream. CPU function
calls are synchronous in nature, and CPU memory
copy back calls have to wait for the completion of the
asynchronous GPU-to-CPU memory copy for that data
chunk (Figure 2).

3) Multi-threaded CPU inverse radix FFT computation:
This step is similar to the very first step to compute
partial FFTs along the X dimension using the 8 cores
of the CPU. Such a computation can be described by
{X(64, 16, 64, 1024, inverse, CPU)}

IV. 2 PERIODIC 1 NEUMANN POISSON SOLVER

A. Algorithm

Suppose our 3D input data is of size IxJxK. The 2 periodic
1 Neumann BC case involves K sets of 2D forward FFTs,
each of size IxJ, followed by IxJ sets of tridiagonal linear
systems, each of size KxK, followed by K sets of 2D
inverse FFT of size IxJ. We have a similar computation
decomposition and distribution on the CPU and GPU, as
the three periodic BC case.

B. Strategy

We illustrate our strategy for the case of 1024× 1024×
1024 , and examine in some detail how the work is allocated
between the CPU and the GPU. The same strategy works
for other problem sizes as we demonstrate later. The overall
approach can be described as follows.

• As before, the first step is carried out on the
CPU, and partially computes the forward FFT along
the X dimension using the scheme described by:
{X(64, 16, 64, 1024, forward,CPU)}, i.e., 64 FFTs
each of radix-16, stride-64, for each 1024-element row.

• Launch a set of asynchronous streams involving mem-
ory copy and each of the streams performs the follow-
ing computations of data size 64×1024×1024 running
on the GPU:

– Compute the forward radix-64 FFT
along the dimension X as described by:
{X(1, 64, 1, 64, forward,GPU)} and the
forward FFTs along the Y dimension:
{Y (1, 1024, 1, 1024, forward,GPU)}

– Using Thomas’ algorithm, solve the
tridiagonal linear systems of equations
{Z(1024, tridiagonal solver,GPU)}

– Compute the inverse FFT along the Y dimension:
{Y (1, 1024, 1, 1024, inverse,GPU)} and the in-
verse radix-64 FFT along the X dimension:
{X(1, 64, 1, 64, inverse,GPU)}

• After the GPU completes the execution of all
the kernels and the intermediate results are

written back in the CPU main memory, we
execute the following inverse FFT computation:
{X(64, 16, 64, 1024, inverse, CPU)} using the 8
CPU cores.

Note that, once a chunk is loaded into the GPU global
memory, we ensure a fast GPU execution by minimizing
the number of global memory accesses, all of which are
guaranteed to be coalesced. Similar as in the 3D periodic
case, the X dimensional radix-64 forward and inverse FFTs
can be included in the 2 kernels within the Y dimensional
size 1024 forward and inverse FFTs. Such a GPU allocation
allows us to use 64 CUDA threads to process the Y and/or
Z dimensional computations in a vector-wise manner, which
naturally guarantee coalesced global memory access of all
data.

CUDA streams are employed to combine the CPU and
GPU work using asynchronous memory copy and kernel
executions in a similar way to what we did for the 3 periodic
BC case: 4 streams achieve typically a very good PCIe
bandwidth (around 5GB/s) in our experiments.

C. Arithmetic Precision

When it comes to GPU performance, single precision
floating point arithmetic enjoys significant benefits over dou-
ble precision arithmetic[7]. Since single precision floating
points use half of the memory space of double precision
floating points, single precision implementations potentially
save half of the memory transfer time, for the PCIe bus
and for the global memory accesses. Also, single precision
computations are faster than double precision computations
in many architectures, including the Tesla C1060 we are
using. An important characteristic of our algorithm is to
secure a 2nd order convergence, and hence if we make the
grid twice as dense, we expect the accuracy to double. In our
experiments, double precision arithmetics can easily guar-
antee such property at the expense of slower computation
time, while pure single precision implementations showed
a relatively larger error when compared to the discretized
analytic function used in our tests. And due to the slow PCI
peak bandwidth and fast GPU kernels, these two variations
show almost the same performance in our experiments.

To achieve high performance while ensuring the 2nd order
convergence, we make use of a precision boost for the
intermediate data. Through careful examination, we notice
that the step that most affects the precision is the division
step in the forward elimination stage: m = a[i]/b[i − 1].
More specifically, the error becomes large when b[i − 1] is
small. Note that in our implementation, the b[i−1] is stored
and updated as we iterate along i. Hence we use double
precision to store the b[i−1] values and immediately related
variables, and then cast the results back into single floating
points. By using this trick, we can avoid the substantial
overhead of converting the entire data into double precision
while achieving the desired accuracy.

Table I: Basic Parameters of Tesla C1060 (SM: Streaming Multiprocessor;
SP: Streaming Processor)

of
SMs

of
SPs

of
Registers

Shared
Mem.

Global
Mem.

Nvcc
Cufft

Tesla C1060 30 8 16K 16KB 4GB 3.2.16

Table II: CPU configuration

CPU Freq. Cores Sys. Mem. GCC FFTW
Xeon X5560 2.80GHz 2 quad-core 24 GB 4.7.2 3.3.2

V. PERFORMANCE

In this section, we present a summary of the performance
tests that have been conducted on our CPU-GPU platform.
Our CPU consists of two Quad-Core Intel Xeon X5560, each
Quad-core with an 8 MB L3 cache, such that the total main
memory is of size 24 GB . Our GPU card is an NVIDIA
Tesla C1060 GPU, and data transfer between the CPU main
memory and the GPU device memory is through PCIe 2.0
bus. Tables I and II provide more detailed information about
our GPU and CPU configurations.

In our tests, the problem size is a power-of-two in each
of the three dimensions. We use input sizes that cannot be
accommodated by the device memory alone (in particular,
we would not be able to run CUFFT on the sizes that should
in principle fit the device memory).

Since the core of our algorithms is based on either
3D or 2D FFT computations, we use the following well-
known formula to estimate the FFT GFLOPS performance,
assuming that the execution time of a one-dimensional FFT
on data size NX is t seconds:

GFLOPS =
5 ·NX · log2 (NX) · 10−9

t
(4)

At some point, we compare the performance of our FFT
implementations against implementations obtained by the
single-precision multi-threaded Single Instruction Multiple
Data (SIMD) code enabled version FFTW library [6][4][5]
(2D or 3D). We use “MEASURE” patient level when
generating the execution plan since using a more rigorous
patient level will take over 8 hours to generate the execution
plan for the problem sizes we are dealing with.

A. The Case of Three Periodic Boundary Conditions

Our three periodic BC Poisson solver consists of a for-
ward 3D FFT, a scaling (division) step for each element
of the intermediate 3D array, followed by an inverse 3D
FFT. Therefore, the number of GFLOPS achieved by our
algorithm can simply be calculated based on the 3D FFT
GFLOPS formula. Since we do not include the intermediate
scaling step in our estimate, we under-estimate the perfor-
mance of our algorithm. Specifically, if the total execution
time on a 3D data set of size NX×NY×NZ is t seconds, then

its GFLOPS can be measured using the standard formula:

GFLOPS =
2· 5·NX ·NY ·NZ ·[log2 (NX ·NY ·NZ)]·10−9

t
(5)

The coefficient 2 in the above formula captures the forward
and the inverse FFT. Figure 3a illustrates the GFLOPS
performance of our Poisson solver and ourcombined 3D
forward and inverse FFTs. We have also included the per-
formance of the 3D forward and inverse FFTW running on
our CPU as a point of reference. As can be seen from the
figure, we were able to achieve more than 55 GFLOPS for
all data sizes for our Poisson solver and for our combined
forward and inverse FFTs. The best that we were able to
achieve using FFTW is around 20 GFLOPS.

As stated in the introduction, and as illustrated in the
above figure, our performance is substantially better than
those reported in the most recent related works of [1] and
[11].

We now compare the PCIe transfer time to the total
Poisson solver time. Figure 3c shows the ratio of the best
possible achievable PCIe transfer time and the total solver
time for several 3D grid sizes. The best achievable bus trans-
fer time is computed by simply moving the corresponding
data from main memory to the GPU global memory, and
immediately writing it back to the CPU main memory. As
can be seen from this figure, more than 50% of the total
solver time is consumed in moving the data once between
the CPU main memory and the device memory. The best
previous algorithm for the 3D forward FFT moved the data
twice, and hence incur a substantial overhead compared to
our algorithm, even without including the scaling and the
inverse FFT steps. Figure 3c also shows the ratio of the
total GPU time of our solver versus the entire solver time.
The total GPU time starts from the moment the CPU begins
to copy data from the system host memory to the pinned
host memory and ends at the moment that all the GPU
computations are completed and the output is stored back
in the original system host memory. As we can see from
the figure for the 3 periodic BC case, the GPU related time
(which in fact results from one round of PCIe bus memory
transfer) represents around 60%-70% of the total runtime.

We now turn our attention to our CPU partial FFT
computation along the X dimension. The allocation of the
this computation to the CPU has enabled us to perform the
whole computation with just one transfer of the 3D data
over the PCIe bus. Figure 4 demonstrates the scalability of
the CPU implementation relative to the number of threads
for different sizes. On the other hand, Figure 3c provides the
ratio of CPU part radix FFT runtime and the best achievable
PCIe bus bandwidth on the same data size. Therefore with
4 or more threads, the execution time of this part of the
computation is substantially less than the best achievable
transfer time of the 3D data between the CPU main memory
and the GPU global memory. In fact, with 8 threads, the

(a) 3 Periodic BC Performance Comparison (b) 2 Periodic 1 Neumann BC Performance Comparison

(c) Ratios of PCIe transfer time to solver time, GPU solver time,
for both types of boundary conditions

(d) CPU radix FFT runtime vs. PCI transfer time

(e) 3 Periodic BC BW vs # of Threads (f) 2 Periodic 1 Neumann BC BW vs # of Threads

Figure 3: Performance Evaluation Summary

CPU radix-FFT time is around 40% of the best possible
data transfer time over the PCIe bus.

We now take a closer look at the PCIe bandwidth achieved
by our solver and at how we were able to overlap the execu-

tion of the GPU kernels with the CPU-GPU asynchronous
memory copy enabled by the asynchronous CUDA streams.

We evaluate the effective PCIe bandwidth using Formula

Table III: Arithmetic Accuracy of 3D Periodic BC Solver

Data size Our Solver Using FFTW
512× 1024× 1024 0.000028 0.000028
1024× 512× 1024 0.000012 0.000013
1024× 1024× 512 0.000028 0.000028
1024× 1024× 1024 0.000011 0.000012
2048× 1024× 512 0.000024 0.000024
2048× 512× 1024 0.000008 0.000008

Figure 4: CPU radix FFT runtime scalability

6:
BW =

2 · 8 ·NX ·NY ·NZ · 10−9

t
(6)

where 8 in the formula is due to the fact that the number
of bytes occupied by each single floating point complex
element is 8 and 2 indicates moving the data from the
CPU to the GPU and then back to the CPU.The time
t used in the above formula excludes the CPU runtime
for the first stage of X dimensional forward FFT and the
last stage of X dimensional inverse FFT. The time t starts
from the momentthat the CPU begins to copy data from
the system host memory to the pinned memory for the
asynchronous memory copy, and ends at the moment that
all the complete results are copied back into the system
host memory. Figure 3e demonstrates the achieved PCIe
bus bandwidth when different numbers of threads are used
when copying data from the system host memory to the
pinned memory in blocks. We use multi-threading memory
copy for each block, followed by an immediate CPU to GPU
asynchronous memory copy call for that block.

Finally, Table III shows the maximum absolute difference
between the results obtained by our solver and the dis-
cretized the analytic function cos(2πx) ·sin(2πy) ·cos(2πz)
on the grid used to generate our input data. Our solver
demonstrates similar accuracy compared to the FFTW li-
brary single precision.

B. The Two-Periodic and One-Neumann BC Case

As described before, for the problem of size NX×NY ×
NZ, the two periodic and one Neumann BC case Poisson

Table IV: Arithmetic Accuracy of 2 Periodic 1 Neumann BC Solver

Data size Our Solver Using FFTW
512× 1024× 1024 0.000008 0.000006
1024× 512× 1024 0.000008 0.000007
1024× 1024× 512 0.000006 0.000006
1024× 1024× 1024 0.000008 NA
2048× 512× 1024 0.000008 NA
2048× 1024× 512 0.000005 NA

Solver consists of NZ number of 2D forward FFTs, each
of size NX×NY , NX×NY tridiagonal linear systems with
matrix size NZ×NZ, and NZ number of 2D inverse FFTs,
each of size NX×NY . We conduct a similar experimental
tests as those carried out for 3 periodic BC case; however,
we employ a GFLOPS formula that is appropriate for the
corresponding computations. The number of GFLOPS now
consist of two components: the 2D FFT computations, and
the 1D tridiagonal solvers.

The 2D FFT or IFFT component can be easily captured
as follows. If the execution time of 2D FFT or IFFT on data
of size NX×NY is t seconds, then

GFLOPS =
5·NX ·NY ·[log2 (NX ·NY)]·10−9

t
(7)

The number of GFLOPS needed to solve the tridiagonal
linear system of size N is 8N , and hence the total GFLOPS
formula for the 2 periodic (say, the X and Y dimensions) 1
Neumann (say, Z dimension) BC is the following:

GFLOPS =
NX ·NY ·NZ ·[10·log2 (NX ·NY) + 8]·10−9

t
(8)

The total GFLOPS performance of our Poisson solver for
this case is shown in Figure 3b. As can be seen from this
figure, we were able to achieve over 40 GFLOPS for all the
problem sizes tested. We now compare our implementation
against an implementation that uses a single-precision FFTW
library to compute the 2D FFTs and an optimized Thomas
algorithm based tridiagonal solver. The tridiagonal solver
is customized to the Poisson Solver for better performance
and is essentially a double precision solver with single-
precision input and output data. Double precision is neces-
sary to achieve second order accuracy. Intermediate memory
transpositions were needed between the FFT and the tridi-
agonal solver to guarantee the efficiency of both the FFTW
library and the tridiagonal solver; however, we exclude
the transposition time when evaluating the performance to
indicate a best possible achievable performance using the
standard library. Figure 3b demonstrates the comparison
between the two implementations. As we can see, our solver
demonstrates superior performance in all cases even if we
just compare to the 2D FFTW library to our solver, which
includes a tridiagonal solver.

On the other hand, in terms of the effective PCIe band-
width, we still use of the same Formula 6 since the same
type of data movements are occurring as before.

Due to the sufficient number of concurrent CUDA
streams, and relatively smaller total time of the GPU kernels
of each stream, we were able to better hide the GPU kernel
executions which yields a higher effective PCIe transfer
bandwidth. As we can observe from Figure 3f, around 5
GB/s effective PCIe bandwidth is achieved for all data sizes
by using 4 or 8 CPU threads for memory copy.

Finally, we compare in Table IV the accuracy using our
single precision solver on the discretized analytic function
sin(2πx + π

10) · cos(2πy) · cos(2πz) on the grid with the
precision boost step against the naive standard method
implementation with single precision FFTW and double
precision tridiagonal solver. Due to the additional memory
used for intermediate array transposition, some larger sized
problems could not be completed. As can be seen from the
table, our solver achieves similar accuracy as the FFTW sin-
gle precision algorithm and the double precision tridiagonal
solver.

VI. CONCLUSION

We presented in this paper a new strategy to map an FFT-
based direct Poisson solver on a CPU-GPU heterogeneous
platform, which optimizes the problem decomposition using
both the CPU and the GPU. The new approach effectively
pipelines the PCIe bus transfer and GPU work, almost
entirely overlapping the CPU-GPU memory transfer time
and the GPU computation time. Experimental results over a
wide range of grid sizes have shown very high performance,
both in terms of the number of floating point operations
per second and the effective PCIe bus memory bandwidth.
The performance numbers are superior to those that were
achieved in previous related work.

ACKNOWLEDGMENT

This work was partially supported by an NSF PetaApps
award, grant OCI0904920, the NVIDIA Research Excel-
lence Center at the University of Maryland, and by an NSF
Research Infrastructure Award, grant number CNS 0403313.

REFERENCES

[1] Y. Chen, X. Cui, and H. Mei. Large-scale FFT on GPU
clusters. In Proceedings of the 24th ACM International
Conference on Supercomputing, ICS ’10, pages 315–324,
New York, NY, USA, 2010. ACM.

[2] J. Cooley and J. Tukey. An algorithm for the machine calcula-
tion of complex Fourier series. Mathematics of Computation,
19(90):297–301, 1965.

[3] Y. Dotsenko, S. Baghsorkhi, B. Lloyd, and N. Govindaraju.
Auto-tuning of fast Fourier transform on graphics processors.
In Proceedings of the 16th ACM symposium on Principles and
practice of parallel programming, PPoPP ’11, pages 257–266,
New York, NY, USA, 2011. ACM.

[4] M. Frigo. A fast Fourier transform compiler. SIGPLAN Not.,
34(5):169–180, May 1999.

[5] M. Frigo and G. Johnson. The FFTW website, 2012. http:
//www.fftw.org.

[6] M. Frigo, Steven, and G. Johnson. The design and imple-
mentation of FFTW3. In Proceedings of the IEEE, pages
216–231, 2005.

[7] D. Goddeke and R. Strzodka. Cyclic reduction tridiagonal
solvers on GPUs applied to mixed-precision multigrid. IEEE
Trans. Parallel Distrib. Syst., 22(1):22–32, Jan. 2011.

[8] N. K. Govindaraju, S. Larsen, J. Gray, and D. Manocha. A
memory model for scientific algorithms on graphics proces-
sors. In Proceedings of the 2006 ACM/IEEE conference on
Supercomputing, SC ’06, New York, NY, USA, 2006. ACM.

[9] N. K. Govindaraju, B. Lloyd, Y. Dotsenko, B. Smith, and
J. Manferdelli. High performance discrete Fourier trans-
forms on graphics processors. In Proceedings of the 2008
ACM/IEEE conference on Supercomputing, SC ’08, pages
2:1–2:12, Piscataway, NJ, USA, 2008. IEEE Press.

[10] L. Gu, X. Li, and J. Siegel. An empirically tuned 2D and
3D FFT library on CUDA GPU. In Proceedings of the 24th
ACM International Conference on Supercomputing, ICS ’10,
pages 305–314, New York, NY, USA, 2010. ACM.

[11] L. Gu, J. Siegel, and X. Li. Using GPUs to compute large out-
of-card FFTs. In Proceedings of the international conference
on Supercomputing, ICS ’11, pages 255–264, New York, NY,
USA, 2011. ACM.

[12] R. Mittal and G. Iaccarino. Immersed boundary methods. In
Ann. Rev. Fluid Mech. 37, pages 239–261, 2005.

[13] A. Nukada and S. Matsuoka. Auto-tuning 3-D FFT library
for CUDA GPUs. In Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis,
SC ’09, pages 30:1–30:10, New York, NY, USA, 2009. ACM.

[14] A. Nukada, Y. Ogata, T. Endo, and S. Matsuoka. Bandwidth
intensive 3-D FFT kernel for GPUs using CUDA. In Proceed-
ings of the 2008 ACM/IEEE conference on Supercomputing,
SC ’08, pages 5:1–5:11, Piscataway, NJ, USA, 2008. IEEE
Press.

[15] NVIDIA Corporation. NVIDIA CUDA C programming
guide, 2011.

[16] B. C. Sidney. Fast Fourier Transforms. Appendix 1:
FFT flowgraphs, 2012. http://cnx.org/content/m16352/latest/
?collection=col10550/1.20.

[17] J. Wu and J. JaJa. An optimized FFT-based direct Poisson
solver on CUDA GPUs. IEEE Trans. Parallel Distrib. Syst.
To appear.

[18] J. Wu and J. JaJa. Optimized strategies for mapping three-
dimensional FFTs onto CUDA GPUs. In Innovative Parallel
Computing (INPAR). IEEE Press, 2012.

