J. Parallel Distrib. Comput. I (RREN) INE-EEN

journal homepage: www.elsevier.com/locate/jpdc

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

Optimized FFT computations on heterogeneous platforms with

application to the Poisson equation
Jing Wu*, Joseph JaJa

Department of Electrical and Computer Engineering and Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742,

United States

HIGHLIGHTS

New strategy to decompose large multi-dimensional FFTs on CPU-GPU platforms.
Executions of GPU kernels are almost completely overlapped with PCI bus transfer.
Multi-dimensional data is transferred only once between the GPU and CPU.
Scheme is equally effective for the single and double precision computations.

ARTICLE INFO ABSTRACT

Article history:

Received 21 August 2013
Received in revised form
18 March 2014

Accepted 21 March 2014
Available online xxxx

Keywords:

Fast Fourier transforms

Parallel and vector implementations
CUDA GPU

Poisson equations

We develop optimized multi-dimensional FFT implementations on CPU-GPU heterogeneous platforms
for the case when the input is too large to fit on the GPU global memory, and use the resulting techniques
to develop a fast Poisson solver. The solver involves memory bound computations for which the large 3D
data may have to be transferred over the PCle bus several times during the computation. We develop a new
strategy to decompose and allocate the computation between the GPU and the CPU such that the 3D data is
transferred only once to the device memory, and the executions of the GPU kernels are almost completely
overlapped with the PCI data transfer. We were able to achieve significantly better performance than
what has been reported in previous related work, including over 145 GFLOPS for the three periodic
boundary conditions (single precision version), and over 105 GFLOPS for the two periodic, one Neumann
boundary conditions (single precision version). The effective bidirectional PCle bus bandwidth achieved
is 9-10 GB/s, which is close to the best possible on our platform. For all the cases tested, the single 3D data
PCle transfer time, which constitutes a lower bound on what is possible on our platform, takes almost 70%

of the total execution time of the Poisson solver.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

There has been recent interest in the development of high per-
formance direct Poisson solvers due partly to the introduction
of immersed-boundary methods [13]. A Poisson solver is an ex-
tremely important tool used in many applications, which most of-
ten constitutes the most computationally demanding component
of the application. In an earlier work [19], we developed an FFT-
based direct Poisson solver for GPUs, which was optimized for
the case when the 3D grid fits onto the device memory. The per-
formance reported there assumes that both the input and out-
put reside on the device memory, which is the typical assumption

* Corresponding author.
E-mail addresses: jingwu@umiacs.umd.edu (J. Wu), joseph@umiacs.umd.edu

J.JajJa).

http://dx.doi.org/10.1016/j.jpdc.2014.03.009
0743-7315/© 2014 Elsevier Inc. All rights reserved.

made by most of the published GPU algorithms. In this work, we
consider the case when the grid is much larger than the size of
the device memory, but can still fit in the main memory of a host
multicore CPU, and develop optimized FFT computations, and FFT-
based direct Poisson solver on such platforms, which significantly
expand our earlier work in [20]. Our approach exploits the partic-
ular strengths of each processor while carefully managing the data
transfers needed between the CPU and the GPU. In particular, our
algorithm includes optimized 2D or 3D FFT implementations and
optimized tridiagonal solver implementations for such heteroge-
neous environments in which both the input and the output reside
in the main memory of the CPU.

Most of the recently published work of FFT algorithms on GPUs
[6,8,15,14,7,3], assume data sizes limited by the device mem-
ory size. This assumption results in efforts that are concentrated
on GPU optimization, including data transfers between device
memory and the shared memory or registers of the streaming

Comput. (2014), http://dx.doi.org/10.1016/j.jpdc.2014.03.009

Please cite this article in press as: J. Wu, J. JaJa, Optimized FFT computations on heterogeneous platforms with application to the Poisson equation, J. Parallel Distrib.

http://dx.doi.org/10.1016/j.jpdc.2014.03.009
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:jingwu@umiacs.umd.edu
mailto:joseph@umiacs.umd.edu
http://dx.doi.org/10.1016/j.jpdc.2014.03.009

2 J. Wu, J. Jaja / J. Parallel Distrib. Comput. 1 (11EE) IIE-11R

multiprocessors. For memory bound computations, such as FFTs,
the performance bottleneck becomes the device memory band-
width and the type of the global memory accesses. For recent GPUs,
the peak device memory bandwidth can be 100-200 GB/s.

We compare our results to two recent results on a similar
model. Chen et al. [1] used a cluster of 4 or 16 nodes, each node
includes two GPUs (Tesla C1060 and GTX 285), to handle large
3D FFT computations. They reported a performance of around 50
GFLOPS on four nodes, somewhat lower than our performance on
a single node with a Tesla C1060 (in fact, our performance num-
ber is an under-estimate since it does not take into consideration
all the components of our Poisson solver). Another recent work is
reported by Gu et al. [9], which tries to optimize both CPU-GPU
data transfer and GPU computations for 1D, 2D, and 3D FFTs. In
particular, they develop a blocked buffered technique for 1D FFTs
which achieves a high bandwidth on the CPU-GPU data channel.
For their multi-dimensional FFTs, the data has to be transferred
back and forth between the CPU and GPU at least twice, and for 3D
double-precision FFT, their best performance is around 15 GFLOPS
on the NVIDIA Tesla C2070, 13 GFLOPS on the NVIDIA GTX480
and 9 GFLOPS on the NVIDIA Tesla C1060, respectively. Our per-
formance numbers for the single-precision FFTs reach 60 GFLOPS
using the Tesla C1060. And when using Tesla K20, which sup-
ports bidirectional PCle bus transfers (similar as Tesla C2070), we
achieved more than 140 GFLOPS for the single precision FFTs and
more than 70 GFLOPS for the double precision FFTs.

Our main contributions can be summarized as follows.

e The computation is organized in such a way that the 3D grid
data is transferred between the CPU memory and the device
memory only once, while achieving a PCle bus bandwidth close
to the best possible on our platforms.

e The GPU kernel computations are almost completely over-
lapped with the data transfers on the PCle bus, and hence the
GPU execution time contributes very little to the overall exe-
cution time. This is due to an effective use of the CUDA page-
locked host memory allocation, asynchronous function calls,
stream scheduling, and write-combining.

e Our CPU-GPU workload decomposition is equally effective for
both the single precision and double precision implementa-
tions. While our single precision implementation achieves an
accuracy comparable to a double precision implementation, it
achieves double the GFLOPS for the same data sizes.

e Experimental tests on our platform for problems of large sizes
show that almost 70% of the total execution time is consumed
by the single 3D grid data transfer over the PCle bus, and most
of the rest is consumed by the initial CPU computation of the
FFT along the X dimension. The overall performance of our FFT-
based Poisson solver is in ranges of 50-60 GFLOPS for a rela-
tively older CPU-GPU platform and around 140 GFLOPS for a
newer platform.

2. Overview and background

In this section, we provide an overview of the algorithms
behind the FFT-based Poisson solver, which include FFT and tridi-
agonal linear system computations. Basic FFT algorithms that are
related to our work are then summarized, followed by an overview
of Thomas’ algorithm for solving tridiagonal linear systems. We
end this section with an overview of the general architecture of
our platforms that consists of a multicore processor with a GPU ac-
celerator.

2.1. FFT-based Poisson solver

The three-dimensional Poisson equation is defined by:

2 2 2
vig= 2 00 00y

ax 9y? 0zl n 2. M

In our earlier work [21], we presented algorithms for the FFT-
based Poisson solver, which were optimized for grid sizes that fit
in the device memory. Please refer to [21] for the detailed mathe-
matical formulation and related algorithms. Here, we provide the
computational procedures corresponding to a grid of size I x J x K.

In a nutshell, for the 3 periodic boundary conditions (BC) case,
the overall algorithm consists of the following steps:

e Compute the 3D Fast Fourier Transform of the 3 dimensional
source dataset ﬁ ik to generate fz,m,n-
e Divide eachﬁ,myn by a scalar D, n to get the 3 dimensional un-

known dataset ¢ ..
e Compute the 3D Fast Inverse Fourier Transform of the new 3

dimensional unknown dataset q},-,j,k to obtain the solution.
We refer to Dy, , as scalars and to Dy, Dy, as subscalars defined by:

Dl,m,n = Dl + Dm + Dn»
I
D, = 22 [cos(Zni) - 1]
2 m
Dy = 2J [cos(zn]—) - 1]

n
D, = 2K> [cos(Zn—) - 1].
K

For the 2 periodic, 1 Neumann BC case, the overall procedure
can be described as follows:

where

e For each value of k, 0 < k < K — 1, compute the 2D forward
Fast Fourier Transform on the corresponding slice of the 3 di-
mensional source datasetﬁj,k to get fz,m,k-

e Solve the I x J tridiagonal linear systems (with size K x K co-
efficient matrices) to get (%l,m,k-

e For each value of k, compute the 2D inverse Fast Fourier Trans-
form on the corresponding slice of the 3 dimensional unknown
dataset &»J,k.

Clearly both procedures require FFT computations discussed
next.

2.2. Fast Fourier transform

The one-dimensional discrete Fourier transform of n complex
numbers of a vector X is the complex vector Y defined by:

n—1
YIkl =) X[jle,)
Jj=0

where w, is the nth root of unity. A fundamental decomposition
strategy introduced by the Cooley-Tukey algorithm [2] can be
explained through the following equation, where n = nqn;.

np—1 ni—1
Ylki +koml =) [(Z X[jina +J'2]w£1‘1k1> w”‘} w2 (3)

J2=0 J1=0

Eq. (3) expresses the DFT computation as a sequence of three
steps. The first step consists of n, DFT’s each of size ny, called radix-
ny; DFT, and the second step consists of a set of twiddle factor
multiplications (multiplications by «/2!). Finally, the third step
consists of ny DFTs each of size n,, called radix-n, DFT.

The Cooley-Tukey algorithm can be implemented in a number
of ways depending on the recursive structure and the input/output
order. Two important variations based on the recursive structure
are the so-called the decimation in time (DIT) and the decimation in
frequency (DIF) algorithms. The DIT algorithm uses 1, as the initial
radix, and recursively decomposes the DFTs of size ny, while the DIF
algorithm uses n; as the initial radix, and recursively decomposes
the DFTs of size n;.

Comput. (2014), http://dx.doi.org/10.1016/j.jpdc.2014.03.009

Please cite this article in press as: . Wu, J. JaJa, Optimized FFT computations on heterogeneous platforms with application to the Poisson equation, J. Parallel Distrib.

J. Wu, J. Jaja / J. Parallel Distrib. Comput. I (11EE) IRE-ENR 3

Another possible variation of the Cooley-Tukey algorithm
stems from the input/output element ordering. For the forward FFT
computation, suppose the input is in the original order, the output
can either be in bit-reversed order, or in-order; vice versa for the
inverse FFT [18].

The advantage of the in-order algorithm [18] is obvious: the
output appears in the natural order, which is a key feature of the
CUDA FFT library. However, when a DFT or Inverse DFT is used in
intermediate steps of a computation, the bit-reverse ordering may
provide additional optimization opportunities. In particular, a key
feature of the bit-reversed algorithm is that it is an in-place al-
gorithm that overwrites its input with its output data using only
0(1) auxiliary storage. The benefits of the in-place algorithm are:
(1) the memory requirement is half of the out of place algorithm
(potentially doubling the solvable problem size), (2) the butterfly
diagrams of the bit-reversed DIF and DIT algorithms are symmet-
rical [18], which not only indicate symmetrical computation sub-
steps, but also a symmetrical memory access pattern. Hence, on
the one hand, for GPU computations, the intermediate results for a
large size transform can stay in the faster but smaller shared mem-
ory and/or registers without being swapped out into the global
memory for multiple computation sub-steps. The second feature
is of special importance for larger size problems since the in-place
algorithm makes it possible to carry out the implementation with
a single PCle back and forth transfer of the grid data.

The multi-dimensional DFT can be defined recursively as a set
of DFTs applied to all the vectors along each of the dimensions of
a multi-dimensional array. In our algorithms, we use the DIF in or-
der input Cooley-Tukey algorithm on the forward FFT along each
dimension and use the DIT in-order output variation on the inverse
FFT. We specify corresponding decompositions along each dimen-
sion with forward and inverse flag which would be discussed later.

Many parallel FFT libraries have been designed to exploit the
computing power of modern processors: both on general purpose
CPUs and on accelerators such as GPUs. For multicore CPUs, widely
used FFT libraries include the FFTW [4] library and Intel's MKL [11].
The FFTW is known as the fastest free software that achieves high
performance by auto-tuning the decomposition that most suits the
target hardware architecture. Intel has their own version of FFT im-
plementation as part of the Intel MKL, which seems to perform ex-
tremely well for Intel architecture-based platforms. On the other
hand, for GPU implementations, CUFFT [17] typically leads the in-
card sized FFT performance on NVIDIA latest GPUs. At the time of
this revision, CUDA Version 6.0 just introduced a “multi-GPU” ver-
sion of CUFFT which is limited to two GPUs on the same board (such
as a Tesla K10), in addition to restrictions of the library functional-

ity.
2.3. Tridiagonal linear systems

An important component of our Poisson Solver is a tridiagonal
linear solver. A tridiagonal solver handles a system of n linear equa-
tions of the form Ax = d, where A is a tridiagonal matrix, x and d
are vectors. This can be represented in matrix form by:

b() Co 0 Xo dO
a b ¢ X1 d
a b2 . X — dz
. Cn—2 ’
0 a1 bn_1 Xn—1 dn_1

A simplified form of Gaussian elimination, called Thomas’ al-
gorithm, is a well-known classical algorithm to solve this prob-
lem. The algorithm consists of two sweeps: forward elimination
and backward substitution. The forward sweep updates both the
vectors b and d, and the backward substitution determines the un-
known vector x.

for (int i = 1; i < n; i++) {
double m = a[i]/b[i—1];
b[i] = b[i] — mxc[i—1];
d[i] = d[i] — mxd[i—1];
}

Listing 1: Forward Elimination

x[n—1] = d[n—1]/b[n—1];
for (int i =n—2; i > 0; i—)
x[i]=(d[i]—c[i]xx[i+1])/b[i];

Listing 2: Backward Substitution

We make the following observations regarding Thomas’ algo-
rithm.

e The complexity of the algorithm is O(n), and the algorithm as
described seems to be inherently sequential.

e Four one-dimensional arrays for the inputs a, b, ¢ and d are
needed in the general case.

e It may appear that we need an array for the output x vector;
however, the unknown vector can be stored in the d vector
during the backward substitution step.

2.4. Architecture overview

Our experimental platforms are heterogeneous processors,
each of which consists of a multicore CPU and a GPU accelerator,
such that the CPU memory is substantially larger than the GPU de-
vice memory. More specifically, we use two testbeds for our work.
The first is a dual socket quad-core Intel Xeon X5560 CPU with
24 GB main memory and an NVIDIA Tesla C1060 with 4 GB de-
vice memory—we refer to this testbed as the Nehalem-Tesla node,
after the codename of the CPU and the architecture of the GPU,
respectively. The second is a dual socket octal-core Intel E5-2690
with 128 GB main memory and an NVIDIA Tesla K20 with 5 GB de-
vice memory—we refer to this testbed as the Sandy-Kepler node
(we use Sandy rather than Sandy Bridge for brevity). The input
data is much larger than the device memory and is assumed to
be initially held in the CPU memory. At the end of the compu-
tation, the output data must reside in the CPU memory as well.
Data transfers between the CPU main memory and the GPU device
memory are carried out by a PCle 2.0 bus: unidirectional for the
Nehalem-Tesla node (compute capability 1.3) and bidirectional for
the Sandy-Kepler node (compute capability 3.5).

2.4.1. CUDA programming model

The CUDA programming model assumes a system consisting
of a host CPU and a massively data parallel GPU acting as a co-
processor, each with its own separate memory [16]. The GPUs con-
sist of a number of Streaming Multiprocessors (SMs), each of which
contains a number of Streaming Processors (SPs or cores). The GPU
executes data parallel functions called kernels using thousands
of threads. The mapping of threads onto the GPU cores are ab-
stracted from the programmers through—(1) a hierarchy of thread
groups, (2) shared memories, and (3) barrier synchronization. Such
abstraction provides fine-grained data parallelism and thread par-
allelism, nested within coarse-grained data parallelism and task
parallelism and this is based on similar hardware architecture
among generations. Details of the CUDA programming model can
be found at [16] and we will only refer to the aspects that are
key to our optimization scheme. In this work, we are concerned
with Tesla C1060 and K20 whose main features are summarized in
Table 1. Note that, for the Tesla K20, the L1 cache and the shared
memory per SM share a total amount of 64 kB on-chip memory
whose ratio is configurable.

Comput. (2014), http://dx.doi.org/10.1016/j.jpdc.2014.03.009

Please cite this article in press as: J. Wu, J. JaJa, Optimized FFT computations on heterogeneous platforms with application to the Poisson equation, J. Parallel Distrib.

4 J. Wu, J. Jaja / J. Parallel Distrib. Comput. 1 (11EE) IIE-11R

Table 1

The two GPUs used in this paper.
GPUs Tesla C1060 Tesla K20
SMs per GPU 30 14
SPs per SM 8 192
Registers per SM 16 K 64 K
Shared mem per SM 16 kB 16-48 kB
L1 cache per SM NA 48-16 kB
L2 cache per GPU NA 1.25 MB
Global Mem per GPU 4GB 5GB
GPU clock rate 1296 MHz 706 MHz
Memory clock rate 800 MHz 2600 MHz
Memory bandwidth 102.4 GB/s 208 GB/s
Compute capability 1.3 35

2.4.2. PCle bus

The PCle 2.0 bus between the CPU and GPU is of central im-
portance for large size problems and for memory bound computa-
tions such as ours. The PCle 2.0 has a theoretical single directional
peak bandwidth of 8 GB/s—with a relatively smaller best achiev-
able bandwidth in our evaluation. On the Sandy-Kepler node, sin-
gle directional memory transfer from pinned host memory to
device memory (H2D-host to device) reaches 5.7 GB/s bandwidth
and from device memory to pinned host memory (D2H-device
to host) achieves 6.2 GB[s bandwidth. However, when bidirec-
tional memory transfer is done concurrently, a further slight band-
width degradation is observed: 5.44 GB/s for D2H and 5.34 GB/s
for H2D are the best we were able to achieve for pure bidirec-
tional memory transfer with varying data sizes. This gives a com-
bined 10.78 GB/s upper bound on the best achievable bandwidth.
On the Nehalem-Tesla node, only single directional memory trans-
fer is supported and the observed H2D bandwidth is 5.4 GB/s and
for a D2H copy the best bandwidth achievable is 5.3 GB/s. Simi-
lar observations were reported by others including NVIDIA [12,9].
Clearly the data transfer between the host and the device memo-
ries constitutes the major bottleneck for our problem.

2.4.3. Multicore CPU

In addition to acting as the CUDA host, the multicore CPU of-
fers in itself a multi-threaded environment with a shared memory
programming model. In most previous work, the focus has been
on GPU optimization without trying to make use of the CPU com-
putational resources. In our approach, we make use of the multi-
core CPU in two ways: (1) we allocate part of the computation to
the CPU cores and partition the CPU and GPU work in such a way
that the GPU work requires only one iteration of data transfer over
the PCle bus; (2) we use the multicore CPU to enable concurrent
asynchronous transfers between the host memory and the pinned
memory: unidirectional for the Nehalem-Tesla node and bidirec-
tional for the Sandy-Kepler node. In addition, modern multicore
CPUs are built with SIMD support: SSE is supported on the Xeon
X5560 and AVX is supported on the Xeon E5-2690. Such features
allow us to carry out a limited amount of data intensive parallel
computations quite effectively on the CPU.

2.4.4. Asynchronous CUDA streams

CUDA supports asynchronous concurrent execution between
host and device through some asynchronous function calls—
control is returned to the host thread before the device has
completed the requested task [16]. Data transfer and kernel exe-
cution from different CUDA streams [16] can be overlapped when
memory copies are performed between page-locked host mem-
ory and device memory. Some devices of compute capability of
2.x and higher (K20 in our evaluation) can perform memory copy
from page-locked host memory to device memory (H2D) con-
currently with a copy from device memory to page-locked host

memory (D2H). With careful orchestration of the CPU work and
CUDA streams, we essentially establish a CPU-GPU work pipeline
of depth of four (for the Nehalem-Tesla node) and five (for the
Sandy-Kepler node) in which computation and communication are
almost completely overlapped. Moreover, our effective CPU-GPU
work pipeline of bidirectional PCle bus transfer essentially doubles
the PCle bus performance of the unidirectional PCle bus transfer
version.

3. Overall approach

In this section and the following section, we describe our over-
all strategy to handle the FFT-based direct Poisson solver compu-
tations for the cases of three periodic boundary conditions, and the
two periodic, one Neumann boundary conditions. In each case, we
describe how the overall computation is decomposed and sched-
uled onto each of the CPU-GPU platforms, and how data transfers
between the CPU memory and the GPU global memory are man-
aged to cause an almost complete overlap between computation
and data transfer.

3.1. Three periodic boundary condition case

The 3 periodic Boundary Condition (BC) case involves a 3D for-
ward FFT, a scaling of each element, and a 3D inverse FFT. The
scaling (division) of each element during the intermediate step de-
pends only on the 3D indices of the element, which allows us to in-
corporate the scaling operations within the forward FFT or inverse
FFT computations. In our implementation, we choose the in-order
input FFT DIF variation for the forward FFT, and the in-order output
FFT DIT variation for the inverse FFT computation. A straightfor-
ward implementation of the 3D FFT algorithm would require mov-
ing the 3D data once along each dimension, resulting in the 3D data
being exchanged between the CPU and the GPU over the PCle bus
three times.

We start by noting that the CPU cores offer opportunities for a
significant amount of parallelism on highly irregular computations,
and that the availability of caches makes the CPU quite effective in
handling FFTs along the X dimension due to the memory layout
of the 3D data. Note also that the SIMD capability of the CPU
presents possibilities for additional performance enhancement.
On the other hand, the GPU architecture is much more effective
for massive data parallel computations using more structured
memory access patterns. Therefore, we decompose the overall
work among the CPU and the GPU in such a way that: (1) the
volume of the data transferred over the PCle bus is minimized. In
our case, the 3D data will be transferred only once between the
two devices; (2) the FFT computations along the X dimension will
be effectively carried out by the CPU cores; and (3) the rest of the
FFT computations will be carried out by the GPU cores through a
sequence of asynchronous streams of chunks of the 3D data. Each
asynchronous stream will go through a 5-stage pipeline consisting
of: data transfer from the host system memory to the host pinned
memory; memory copy from the host to the device memory (H2D);
GPU kernel executions; memory copy from the device to the
host pinned memory (D2H); and data transfer to the host system
memory. We orchestrate the data movements to overlap H2D
memory copy, kernel execution, and D2H memory copy.

We illustrate our strategy in detail by focusing on the problem
of size 1024 x 1024 x 1024. Similar strategies work as effectively
for other sizes.

3.1.1. Multi-threaded CPU forward X dimensional FFT
As mentioned before, the FFT computations along the X dimen-
sion are carried out by the CPU cores. We make use of Intel’'s Math

Comput. (2014), http://dx.doi.org/10.1016/j.jpdc.2014.03.009

Please cite this article in press as: . Wu, J. JaJa, Optimized FFT computations on heterogeneous platforms with application to the Poisson equation, J. Parallel Distrib.

J. Wu, J. Jaja / J. Parallel Distrib. Comput. I (11EE) IRE-ENR 5

GBls GFLOPS
120 200

180

100
160
140

80
120

60 100

=@=Memory Bandwidth =#=GFLOPS / 20

0 2 4 6 g 10 12 14 16 18 20
log(radix-k)

Fig. 1. Performance of batched 1D DFT using MKL library.

Kernel Library (MKL) SIMD OpenMP based DFT routines to execute
this step. This library seems to effectively exploit the multicore ar-
chitecture, the memory hierarchy, and the SIMD capability of the
core processors. As an example, we demonstrate the performance
of this library on batches of one-dimensional FFTs of sizes ranging
from 2° up to 2'° on the CPU of the Sandy-Kepler node. The results
are shown in Fig. 1, where the performance is illustrated through
two curves — one showing the GFLOPS performance and the second
showing the memory bandwidth achieved as a function of the in-
put size assuming only one memory read and store were done for
each element. As can be seen from this figure, the memory band-
width achieved is quite good (relative to the peak of 79.55 GB/s
reported in [10]), especially in the range we are interested in (be-
tween 1and 4 K). While the GFLOPS performance varies over arela-
tively significant range, it is quite good over the range of interest to
us (between 1 and 4 K). Therefore, the forward and the inverse FFTs
along the X dimension are completed by calling the MKL library.

3.1.2. Asynchronous streams of data movements and GPU kernels

CUDA allows the use of streams for asynchronous memory copy
and concurrent kernel executions to hide long PCle bus latency
[16]. A stream is a sequence of commands that execute in order;
different streams may execute their commands out of order with
respect to one another or concurrently. Asynchronous memory
copy has to be carried out between page-locked host memory and
device memory. The H2D and D2H memory copies can be done
concurrently on the Kepler GPUs but only one-directional memory
copy can be executed at a time on the Tesla GPUs. This would result
in a slightly different organization of the CPU and GPU pipeline on
each platform.

We now focus on the Nehalem-Tesla node and later address the
streams used for the Sandy-Kepler node. In order to make effective
use of the asynchronous CPU-GPU memory copy for our running
example, we organize the remaining FFT computations into four
batches, each consisting of four asynchronous streams where each
stream involves a subarray of size 64 x 1024 x 1024 (0.5 GB)—
this means a vector size of 64 along the X dimension, which is
demonstrated as “XW” in Fig. 2. The choice of vector size 64 is
determined to optimize the use of the PCle bus bandwidth. The
corresponding memory layout of the problem decomposition is
shown in Fig. 2.

For our running example, staging page-locked host memory of
size 2 GB (0.5 GB*4) is allocated to enable asynchronous memory
copy, as indicated in Fig. 3. By default, page-locked host memory
is allocated as cacheable and write-combining flag can be used to
enable the memory not to be snooped at during data transfer across
the PCle bus, which can boost the host to device bandwidth in

Stream 0, 1, ..., SN-1

Zr",—vﬁ- ---------- - Z
A7 A
1024 ~ { 1024
_./'/ yd ra
/L I
A A S . — x |
)
i X
|
|
- |
g -8
=4 p #r===t=-==--7 & batch(batch1 | batch2 | batch3
s - /
PV iyl
P 4 // 4 v
v_ﬁig SR "E:B?.IG{JQ"_E@ Y — 1024

3D data of TKx1Kx1K
<batch #, stream #=

1024
3D data of TKx1Kx1K
Problem decomposition

Fig. 2. 3D data memory layout.

X(XW)
fe X (1024) ¥ X W) Stream
0
Stream
0
Stream
—_ . 1
z ? Stream .E
T ¥ 1 ¥
¥ |Bajeh| Batch | Batch | Batch :_; E Stream
= 1 z 3 et = 2
N N Str;am N
> & =
& o Stream
3
Stream
3 Optional
Scratch
o [« device
XW (stream 0) mem

Pinned host mem GPU device mem
<batch O, stream #> <batch 0, stream #>

System host mem layout
<batch #, stream #>

Fig. 3. CPU and GPU device memory usage.

practice [16]. However, the bandwidth on the opposite transfer
direction is prohibitively slow. So we allocate two scratch page-
locked memories: one with default flag and using for device to host
transfer and one with write-combining flag and using for host to
device transfer.

Fig. 4 shows one batch of the complete pipelined execution
of multi-threaded CPU (including the main thread and the helper
threads) and 4 GPU streams (stream 0, 1, 2, 3). Each stream is
defined as follows.

e The 3D data subset allocated to each stream is 64 x 1024 x 1024
along the X, Y and Z dimensions, respectively. This corresponds
to the system host memory layout versus (batch#, stream#)
in Fig. 5, which indicates 1 K x 1 K lines of 64 8-byte words
with 1024 x 8-bytes stride between every two lines. Each
line is denoted by XW in the figure, corresponding to the X-
dimensional-Width.

These apart elements need to be packed consecutively in the
page-locked memory so that the following PCle bus transfer
bandwidth would be effective. The data movement for each
data subset is a pipeline of block-wise movement involving a
multi-threaded CPU memory copy of a large number of 64-
element words into a consecutive block in the paged-locked
memory, followed by a PCle bus transfer. The data movement
from the system host memory to the pinned host memory and
the data movement from the pinned host memory to the device
memory is simultaneous as indicated by the two arrows in
Fig. 5.

The entire process overlaps PCle bus transfers with multi-
threaded CPU data copy into pinned memory. Due to band-
width differences of the PCle bus and the multi-threaded

Comput. (2014), http://dx.doi.org/10.1016/j.jpdc.2014.03.009

Please cite this article in press as: J. Wu, J. JaJa, Optimized FFT computations on heterogeneous platforms with application to the Poisson equation, J. Parallel Distrib.

J. Wu, J. Jaja / J. Parallel Distrib. Comput. 1 (11EE) IIE-11R

8 CPU
children H;l“s qa AL :I:I:L
threads

CPU

[
[
oo
o

A

Single thread

CPU-GPU

main thread

Stream 0

Stream 1

Stream 2

Stream 3

CPU multi-thread mem copy from | <Stream #, Block #> Async copy from
the pinned mem to the device mem

system mem to pinned mem

CPU single thread copy from the
pinned mem to the system mem
—2 Main CPU thread forks helper thread(s)

—2 Main CPU thread joins helper thread(s)

Fig.4. CPU-GPU pipeline for Nehalem-Tesla node.

X (1024) XW(64) XW(64)

blockd
Block-wise Multi-threaded .
One Big

CPU Memory Copy of many Asvnehromous
Small sized memory copies ¥
fy cop Memory Copy|blackl
(PCle)
< — —
& <
i T T~ |block2
« g &
N N N
L [Batcho 15 other j & |black3
S0 <batch, stream>

Pinned host mem GPU device mem

System host mem
<batchO, stream0> <batch0, stream0>

<batch #, stream #>

Fig. 5. Block memory copy for one stream (Tesla C1060).

et ot b [t

Total max overlappable compute time

Stream 0
Stream 1
Stream 2
Stream 3

mem queve (30 HBA 62 3
F-
compute queue

Fig. 6. Async CUDA streams for Tesla C1060.

time

system memory copy, by the time PCle bus is done with the
previous sub-chunk, the next sub-chunk will be ready for the
asynchronous memory copy into the device memory.
Immediately after we execute the memory copy for one chunk
of 64 x 1024 x 1024 data, and launch the asynchronous ker-
nel calls for that stream and start the same work of the next
64 x 1024 x 1024 data chunk. Upon the completion of the ker-
nel calls, we make use of asynchronous copy attached to the
same stream for the copy back. However, due to the limitation
of Tesla C1060, there are no concurrent data transfers back and
forth between pinned memory and device memory. When we
schedule the asynchronous work, we have to schedule the copy
back calls after executing all the copying from the pinned host
memory to the device memory and their kernel calls. This asyn-
chronous stream execution is shown in Fig. 6.

e Compute the 2D forward FFT, scaling and 2D inverse FFT com-
putation (of 64 along the X dimension) on a chunk of size

[HD#: Host to Device copies of stream #] _

[ow#: Device to Host copes of stream
Stream 0 EE!!
Stream 1 [HD1
Stream 2 | HD2|
Stream 3 | HD3 |
time
H2D mem [fioo]Woa] o] 3]
queue

compute queue

D2H mem
queue

Fig. 7. Async CUDA streams for Tesla K20.

64 x 1024 x 1024 on the GPU using 7 optimized kernels. The
total execution time of the kernels (of the 4 streams) should be
smaller than the total transfer time of 3 streams (3 host to de-
vice and 3 device to host, Fig. 6); otherwise, one or more of the
streams’ memory transfer back needs to be held back until the
completion of its kernel. This is illustrated in Fig. 6. Since we
want to achieve a high PCle bus bandwidth, the kernels have
to execute as fast as well. Once the data is loaded onto the
GPU device memory, we can use techniques similar to those
introduced in our previous work [19] to compute the Y and Z
dimensional FFTs of each subarray of size 64 x 1024 x 1024.
An intermediate global memory (shared by 4 streams due
to their sequential execution of kernels) is introduced for
smaller strides between consecutive global memory accesses
when multiple Z dimensional computation kernels are involved
(Fig. 3), without limiting the maximum number of concurrent
streams. The scaling step is included in the last step of the for-
ward FFT and the first step of the inverse FFT with the scalars
computed using bit-reversed indices.
We borrow the following notation from our earlier work [19]:
{Y(p, q, r, n), forward} amounts to the execution of p radix-q
forward FFTs along the Y dimension with a stride of r with a
group size of n. Using this notation, the GPU kernels can be de-
fined by the following computations:
- {Y(32, 32, 32, 1024), forward}
- {Y(32, 32, 1, 32), forward}
- {Z(32, 32, 32, 1024), forward}
- {Z(32, 32, 1, 32), forward}

{scaling, GPU}

{Z(32, 32, 1, 32), inverse}
- {Z(32, 32, 32, 1024), inverse}
- {Y (32, 32, 1, 32), inverse}
- {Y(32, 32, 32, 1024), inverse}.

Please cite this article in press as: J. Wu, J. JaJa, Optimized FFT computations on heterogeneous platforms with application to the Poisson equation, J. Parallel Distrib.

Comput. (2014), http://dx.doi.org/10.1016/j.jpdc.2014.03.009

J. Wu, J. Jaja / J. Parallel Distrib. Comput. I (11EE) IRE-ENR 7

CPU

StreamID%4 =1
StreamID%4 = 2
StreamID%4 = 3

time

CPU multi-thread mem copy from
system mem to pinned mem

CPU multi-thread mem copy from
pinned mem to system mem

Dependency in
scheduling

<Stream #> Async copy from the
pinned mem to the device mem

Kernel #: kernels of stream #

Fig. 8. CPU-GPU pipeline for Sandy-Kepler node.

Note that all the arithmetic computations are carried out on
register contents, all global memory transfers involve coalesced
memory access (the vector size along the X dimension is se-
lected to ensure the global memory coalescing). Therefore, we
complete the 64 sets of 1024 x 1024 forward FFT, scaling and
inverse FFT using 7 kernels.

e Once the kernels are completed, we perform block-wise asyn-
chronous memory copy from the device memory to the pinned
host memory and then to the system host memory for each
stream. cudaStreamSynchronize() is used to let the CPU memory
copy back wait for the completion of the asynchronous GPU-to-
CPU memory copy for that data chunk (Fig. 4).

3.1.3. Asynchronous streams of data transfers and GPU kernels for the
Sandy-Kepler node

On the Sandy-Kepler node, memory transfers between the host
memory and the device memory are possible in both directions
concurrently (see Fig. 7). Therefore, rather than postpone the mem-
ory transfer of the next batch from the host memory to device
memory until the completion of device memory to host memory
transfer, the next batch of memory transfer could start immedi-
ately as long as the pinned host memory portion used by the same
stream in the previous batch is copied into the device memory,
namely, we want to ensure no overwrite hazard is possible as il-
lustrated in Fig. 8. Only in this way bidirectional memory transfer
could be maintained between batches without the pipeline being
underfed—essentially we need to establish a 5-stage pipeline: (1)
S2P memory copy; (2) H2D memory copy; (3) kernel execution; (4)
D2H memory copy; and (5) P2S memory copy. This implies that we
need at least 5 streams of data movements and GPU computations
for a non-stalling pipeline.

Moreover, CUDA 5.0 added a new runtime function that allows
the insertion of a callback function at any point in a stream. Such a
callback function is executed on the host once all commands issued
on the stream before the callback have been completed. We em-
ploy the callback for the data movement between the pinned host
memory and the system host memory for that stream. The call-
back function for each data subset needs a private memory space to
store the information about the source and destination addresses
of the data subset. Because of the asynchronous execution of the
memory copy and the kernel launches, we use separate space for
each data subset to avoid any type of data hazards. Therefore, a
straightforward implementation would be to assign each data sub-
set to a stream, but the stream is scheduled in such a way that in
the intermediate execution a fixed number of streams are active as
illustrated in Fig. 8—four streams were illustrated in the figure for
clarity.

In order to minimize the non-overlapping transfer time of the
first and last streams, we try to reduce the size of each data sub-
set (while still large enough to achieve high PCle bandwidth). On

the other hand, we need to guarantee the efficiency of the resul-
tant GPU kernels—one key feature being to ensure coalesced global
memory access. As 128-bytes being the largest device memory
transaction size and the GPU L2 cache line size, we choose 128
bytes as the X dimension size of each data subset. As we already
completed the X dimensional FFT, the choice of the 128 bytes for
the X dimension is merely to optimize the GPU memory through-
put performance during kernel execution. Last, we avoid the block-
wise memory copy technique used in the Nehalem-Tesla node since
each subset is already small and the overhead of blocking the sub-
set could not be justified based on our tests.

For concreteness, let us focus on the single precision case for
our running example. The entire 1 K x 1 K x 1 K dataset is di-
vided into 64 sets, each of size 16 x 1K x 1K (128 MB) and orga-
nized into 64 asynchronous streams. The double precision version
is merely half of the number of elements along the X dimension
for each stream. The pinned host memory is large enough to hold 8
data subsets. These 64 streams are mapped into the 8 slots, eight at
a time, and scheduled into execution in a round-robin order while
data hazards are avoided through a shared status update protected
by a MUTEX. Specifically, the possible data overwrite can only hap-
pen between streams that map to the same pinned host memory
space one after another. As we are using two pinned host memory
spaces for the sake of better PCle bus bandwidth, the forward copy
pinned host memory space is available for the next stream as long
as the data is copied to the GPU’s device memory. That is, we can
proceed after the completion of the asynchronous memory copy
from the pinned host memory to the GPU’s device memory. As we
are already using a CUDA stream callback upon the completion of
the asynchronous memory copy back from the device memory to
the host memory and we have enough concurrent streams ready to
feed the PCle bus, we postpone this “Green” light status update in
the callback function right before the multi-threaded memory copy
from the pinned host memory to the system host memory. Later,
in the next round, the CPU main thread would check if the “Green”
light is on before launching another streaming of copy data from
the system host memory to the pinned host memory, otherwise, it
would go to sleep for a while and repeat.

As a result, the GPU kernels can be defined by the following
computations:

o {Y(4, 256, 4, 1024), forward}
o {Y(256, 4,1, 4), forward}
o {Z(4,256, 4, 1024), forward}
e {Z(256,4, 1, 4), forward}
{scaling, GPU}
{Z(256, 4, 1, 4), inverse}
e {Z(4, 256, 4, 1024), inverse}
o {Y(256, 4,1, 4), inverse}
o {Y(4, 256, 4, 1024), inverse}.

Comput. (2014), http://dx.doi.org/10.1016/j.jpdc.2014.03.009

Please cite this article in press as: J. Wu, J. JaJa, Optimized FFT computations on heterogeneous platforms with application to the Poisson equation, J. Parallel Distrib.

8 J. Wu, J. Jaja / J. Parallel Distrib. Comput. 1 (11EE) IIE-11R

3.1.4. Multi-threaded CPU inverse radix FFT computation

This step is similar to the first step—we use the MKL library to
compute the X dimensional FFT with batched execution using all
available cores.

4. 2 periodic 1 Neumann boundary condition case

4.1. Algorithm

Suppose our 3D input data is of size NX x NY x NZ.The 2 peri-
odic 1 Neumann BC case involves NZ sets of 2D forward FFTs, each
of size NX x NY, followed by NX x NY sets of tridiagonal linear sys-
tems, each of size NZ x NZ, followed by NZ sets of 2D inverse FFT
of size NX x NY. We use a strategy similar to the one used before to
decompose the computation between the CPU and GPU while care-
fully organizing streams of data transfers between the two devices.

4.2. Strategy

We illustrate our strategy for the case of 1024 x 1024 x 1024,
and examine in some detail how the work is allocated between the
CPU and the GPU for this case. The same strategy works for other
problem sizes as we demonstrate later. We start with the specific
details for the Nehalem-Tesla node, followed by the details for the
Sandy-Kepler node.

4.2.1. Details on the Nehalem-Tesla node

e As before, the first step is carried out on the CPU, using a batch
of 1D X dimensional MKL FFT library calls on all the available
CPU cores.

e We launch a set of asynchronous streams involving memory
copy such that each of the streams performs the following com-
putations of data size 64 x 1024 x 1024 running on the GPU:
- Compute the forward FFTs along the Y dim:

{Y(1, 1024, 1, 1024, forward, GPU)}.
- Using Thomas’ algorithm, solve the tridiagonal linear systems
of equations
{Z(1024, tridiagonal solver, GPU)}.
- Compute the inverse FFT along the Y dim:
{Y(1, 1024, 1, 1024, inverse, GPU)}.

e After the GPU completes the execution of all the kernels and the
intermediate results are written back in the CPU main memory,
we execute a batch of 1D X dimensional MKL inverse FFT library
calls on the available cores.

Note that, once a chunk is loaded into the GPU global memory,
we ensure a fast GPU execution by minimizing the number
of global memory accesses, all of which are guaranteed to be
coalesced.

The CUDA streams are employed to combine the CPU and GPU
work using asynchronous memory copy and kernel executions in
a similar way to what we did for the 3 periodic BC case: for our
running example, 4 streams achieve a very good PCle bandwidth
(around 4.5 GB/s) on the Nehalem-Tesla node.

4.2.2. Details on the Sandy-Kepler node

On the Sandy-Kepler node, a similar strategy using the MKL DFT
library calls is equally effective. The only difference of the 2 peri-
odic 1 Neumann BC case from the 3 periodic BC case on the Sandy-
Kepler node is that the Z dimensional kernels are done using
different kernel functions and separate scratch space is allocated
for the corresponding dataset to store vector B.

As a result, the GPU kernels can be defined by the following
computations:

o {Y (4,256, 4, 1024), forward}
e {Y(256, 4,1, 4), forward)
e {Z dim forward reduction}

Table 2
Compiler and library configuration.

Node Nehalem-Tesla Sandy-Kepler
CUDA driver 304.88 319.23
CUDA SDK 5.0 5.5

Intel compiler & MKL library 2011 2013

e {Z dim backward elimination}
e {Y(256, 4,1, 4), inverse}
e {Y(4, 256, 4, 1024), inverse}.

4.3. Arithmetic precision

When it comes to GPU performance, single precision floating
point arithmetic enjoys significant benefits over double precision
arithmetic [5]. Since single precision floating points use half of the
memory space of double precision floating points, single precision
implementations potentially save half of the memory transfer
time, for the PCle bus and for the global memory accesses. Also,
single precision computations are faster than double precision
computations on many architectures, including the two GPUs we
are using. An important characteristic of our algorithm is to secure
a 2nd order convergence, and hence if we make the grid twice as
dense, the accuracy would be four times better. In our experiments,
double precision arithmetics can easily guarantee such property
at the expense of slower computation time, while pure single
precision implementations showed a relatively larger error when
compared to the discretized analytic function used in our tests.
And due to the slow PCI peak bandwidth and fast GPU kernels,
these two variations show almost the same performance in our
experiments.

To achieve high performance while ensuring the 2nd order con-
vergence, we make use of a precision boost for the intermediate
data. Through careful examination, we notice that the step that
most affects the precision is the division step in the forward elim-
ination stage: m = al[i]/b[i — 1]. More specifically, the error be-
comes large when b[i—1] is small. Note that in our implementation,
the b[i — 1] is stored and updated as we iterate along i. Hence we
use double precision to store the b[i — 1] values and immediately
related variables, and then cast the results back into single floating
points. By using this trick, we can avoid the performance degra-
dation of converting the entire data into double precision while
achieving the desired accuracy.

5. Performance

In this section, we present a summary of the performance tests
that have been conducted on our CPU-GPU platforms (see Tables 1
and 2).

In our tests, the problem size is a power of two in each of the
three dimensions. We use input sizes that cannot be accommo-
dated by the device memory alone.

Since the essence of our algorithms is based on either 3D or 2D
FFT computations, we use the following well-known formula to es-
timate the FFT GFLOPS performance, assuming that the execution
of a one dimensional FFT on data size NX is t seconds:
5. NX - log,(NX) - 10°

. - (4)

We compare the performance of our FFT implementations against
implementations obtained by employing SIMD enabled OpenMP
based 2D or 3D FFT routines using Intel’s MKL library.

We also evaluate the effective PCle bandwidth achieved using
Formula (5) to get a sense about the performance of our CPCU-GPU
asynchronous streaming strategy.

_ 2 sizeof (element) - NX - NY - NZ - 27
- t

GFLOPS =

BW

(3)

Comput. (2014), http://dx.doi.org/10.1016/j.jpdc.2014.03.009

Please cite this article in press as: . Wu, J. JaJa, Optimized FFT computations on heterogeneous platforms with application to the Poisson equation, J. Parallel Distrib.

J. Wu, J. Jaja / J. Parallel Distrib. Comput. I (11EE) IRE-ENR 9

where sizeof (element) is the number of bytes occupied by each
data element—8 bytes for a single precision complex number or
16 bytes for a double precision complex number. The factor of 2
captures the fact that we are moving the data from the CPU to the
GPU and then back to the CPU. The time ¢t used in the formula
excludes the CPU runtime for the X dimensional forward and
inverse FFT work—it starts from the moment that the CPU begins
to copy data from the system host memory to the pinned memory
for the asynchronous memory copy and ends at the moment that
all the results are copied back into the system host memory. The
performance numbers reported are the median performance of 5
runs for each data size and boundary condition combination.

5.1. The case of the three periodic boundary conditions

Our three periodic BC Poisson solver consists of a forward 3D
FFT, a scaling (division) step for each element of the intermediate
3D array, followed by an inverse 3D FFT. Therefore, the number
of GFLOPS achieved by our algorithm can simply be calculated
based on the 3D FFT GFLOPS formula. Since we do not include
the intermediate division scaling step in our estimate, we under-
estimate the performance of our algorithm. Specifically, if the total
execution time on a 3D dataset of size NX x NY x NZ is t seconds,
then its GFLOPS can be measured using the standard formula:

GFLOPS

_2-5-NX-NY -NZ - [log, (NX - NY - NZ)] - 10~°)
= ; .

The coefficient 2 in the above formula captures the forward and the
inverse FFT.

Fig. 9(a) and (b) illustrate the GFLOPS performance on the
Sandy-Kepler node of our 3 periodic BC case Poisson solver and
the combined 3D forward and inverse FFT using the MKL library
for the single precision and double precision cases, respectively.
Fig. 10(a) shows the GFLOPS performance on the Nehalem-Tesla
node using single precision. Due to the Tesla C1060’s relatively low
performance of double precision floating point operations, we did
not test our algorithms on the double precision version.

For the MKL library performance on each node, the performance
improved with the number of threads up to the maximum number
of physical cores available on the machine. We show only the
curves corresponding to the best performance on our nodes. In
particular, the performance numbers of using 8 and 16 threads
are similar on the dual socket quad-core Nehalem-Tesla node’s
CPU and the performance numbers of using 16 and 32 threads are
similar on the dual socket octa-core Sandy-Kepler node’s CPU—
both cases achieve the peak performance of the MKL library on our
platforms.

A quick comparison shows that our Poisson solver, which in-
cludes 3D forward FFT, intermediate division scaling and 3D in-
verse FFT almost doubles the peak performance of the MKL library
on the same node. A cross comparison of the single precision ver-
sion and the double precision version on the Sandy-Kepler node
shows that the single precision version is almost double the per-
formance of the double precision version—which indicates the ro-
bustness of our CPU-GPU workload decomposition and that our
implementation is indeed limited by the PCle bus bandwidth.

In Fig. 9(d) we illustrate the effective bidirectional PCle bus
bandwidth of the 3 periodic BC case on the Sandy-Kepler node: it
ranges from 9 to 10 GB/s. We indicated the bidirectional bandwidth
upper bound, which is the sum of pinned host memory to device
memory bandwidth (5.44 GB/s) and device memory to pinned host
memory bandwidth (5.34 GB/s) when the asynchronous mem-
ory copies are steady and completely overlapped. As mentioned
before, when only single directional memory transfer is con-
ducted, its performance is slightly better than concurrent memory

transfer: the pinned host memory to device memory copy has
a bandwidth of 5.7 GB/s and the device memory to pinned host
memory has a bandwidth of 6.2 GB/s. Similarly, an average 4.5 GB/s
effective PCle bus bandwidth is achieved on the Nehalem-Tesla
node.

Figs. 9(c) and 10(c) illustrate the effectiveness of the work de-
composition on the Sandy-Kepler and the Nehalem-Tesla nodes, re-
spectively. As we can see from these figures, the runtime of the GPU
related work - including the CPU memory copy work for the GPU -
constitutes more than 2/3 of the total runtime on both nodes. Re-
call that the execution rate of our GPU work is close to the PCle bus
bandwidth limit, and assuming more than one PCle bus transfer
is conducted, the additional runtime would surely exceed our CPU
part work runtime.

5.2. The case of two periodic one Neumann boundary conditions

As described before, for the problem of size NX x NY x NZ,
the two periodic and one Neumann BC case Poisson Solver consists
of NZ number of 2D forward FFTs, each of size NX x NY,NX x
NY tridiagonal linear systems with matrix size NZ x NZ, and NZ
number of 2D inverse FFTs, each of size NX x NY. We conduct
similar experimental tests as those carried out for 3 periodic BC
case; however, we employ a GFLOPS formula that is appropriate
for the corresponding computations. The number of GFLOPS now
consists of two components: the 2D FFT computations, and the 1D
tridiagonal solvers.

The 2D FFT or IFFT component can be easily captured as follows.
If the execution time of 2D FFT or IFFT on data of size NX x NY is t
seconds, then

5-NX - NY - [log, (NX - NY)] - 107° 7
; .

The number of GFLOPS needed to solve a tridiagonal linear system
of size N using Thomas algorithm is 8N, and hence the total
GFLOPS formula for the 2 periodic (say, the X and Y dimensions)
1 Neumann (say, Z dimension) BC is the following:

GFLOPS =

NX -NY - NZ - [10 - log, (NX - NY) + 8] - 107° ®)
:)

The total GFLOPS performance of our Poisson solver for this
case is shown in Fig. 9(e) (single precision-SP), Fig. 9(f) (double
precision-DP) and Fig. 10(b) (SP). In this case, we are comparing
the performance of our algorithm to the multi-threaded CPU ver-
sion implementation based on OpenMP based MKL 2D DFT rou-
tines and a fairly optimized multi-threaded tridiagonal solver. The
multi-threaded CPU implementation includes the following steps:
(1) NZ batched execution of the 2D forward DFT of size NX x NY;
(2) transpose data from memory layout of (x, y, z) to (z, x, y); (3)
solve NX x NY tridiagonal linear systems, each of NZ unknowns; (4)
transpose memory layout from (z, x, y) to (x, y, z); (5) NZ batched
execution of the 2D inverse DFT of size NX x NY. The data trans-
positions of steps 2 and 4 are performed to enable better memory
locality for the tridiagonal solver. Otherwise, the performance will
be significantly worse. In order to capture an idealized lower bound
of this optimized implementation, we did not include the runtime
of the memory transposition when we calculate the GFLOPS per-
formance. Note that in reality, no matter how the boundary condi-
tions are aligned in x, y, z dimensions, poor memory locality would
be experienced in one dimension or additional memory transposi-
tions are necessary, which would degrade the performance of the
CPU implementations significantly.

As we can see from the Sandy-Kepler node performance figures,
our single precision complete solver is significantly faster than our
idealized CPU version; however such advantage decreases as we

GFLOPS =

Comput. (2014), http://dx.doi.org/10.1016/j.jpdc.2014.03.009

Please cite this article in press as: J. Wu, J. JaJa, Optimized FFT computations on heterogeneous platforms with application to the Poisson equation, J. Parallel Distrib.

10 J. Wu, J. Jaja / J. Parallel Distrib. Comput. 1 (11EE) IIE-11R

GFLOPS
160
140 /N—
120 1 =#=MKL 1-way Threading 3D FFT+IFFT =E=MKL 2-way Threading 30 FFT+FFT
=2r=MKL 4-way Threading 3D FFT+IFFT ===MKL 8-way Threading 3D FFT+IFFT
100 4 =se=MKL 16-way Threading 3D FFT+|FFT =0=MKL 32-way Threading 3D FFT+IFFT
==0ur Solver 3D FFT+Scaling+FFT
80 <
O s e ﬂ%\
60 =
40 | ann
r— m—r i "
20
= — - - e —
- T
]
10x10x10 10x10x11 10x11x10 10x11x11 11x10x10 11x10x11 11x11x10

Data size: logX*logY*logZ

(a) 3 periodic BC SP performance.

80%
75%
70% -
65%
60% -
==&==3 Periodic BC SP Solver
55% =i=2 Periodic 1 Neumann BC SP Solver
= 3 Periodic BC DP Solver
=== 2 Periodic 1 Neumann BC DP Solver
50% g T T T T
10x10x10 10x10x11 10x11x10 11x10x10 10x11x11 11x10x11 11x11x10
Data size: logX*logY*logZ
(c) GPU work runtime vs. total runtime.
GFLOPS
120
100 —-’/&—”\/
80
60 5
=t=MKL based 1-way Threading Solver (ignoring transposition cost)
“=@=MKL based 2-way Threading Solver (ignoring transposition cost)
=é=MKL based 4-way Threading Solver (ignoring transposition cost)
40 ==kt based 8-way Threading Solver {ignoring transposition cost)
==MKL based 16-way Threading Solver (ignoring transposition cost)
=@=MKL based 32-way Threading Solver (ignoring transposition cast)
===Qur 5P Solver 20 FFT + Tridiagonal Solver + 2D IFFT
20 & * —tr
0
10x10x10 10x10x11 10x11x10 11x10x10 10x11x11 11x10x11 11x11x10

Data size: logX*logY*logZ

(e) 2 periodic 1 Neumann BC SP performance.

GFLOPS
100
=#=MKL 1-way Threading 3D FFT+IFFT =i=MEKL 2-way Threading 3D FFT+IFFT
90 =ir=MKL 4-way Threading 3D FFT+FFT =KL 8-way Threading 3D FFT+IFFT
=#=MKL 16-way Threading 3D FFT+IFFT =O=MKL 32-way Threading 3D FFT+IFFT
80 ===Qur Solver 3D FFT+Scaling+IFFT
70 M. —
60
50
40 ¥ —_— —
30
20
—— o
10 L ii— — -
0
10x10x10 10 11x10x10

x10x11 10x11x10
Data size: logX*logY*logZ

(b) 3 periodic BC DP performance.

GBfs
12

11

8 ===7 Periodic 1 Neumann BC DP Solver PCle BW
===3 Periodic BC DP Solver PCle BW
==/= 2 Periodic 1 Neumann BC 5P Solver PCle BW

7
=== 3 Periodic BC SP Solver PCle BW
==Bidirectional PCle BW Upper bound
[
10x10x10 10x10x11 10x11x10 11x10x10 10x11x11 11x10x11 11x11x10
Data size: logX*logY~logZ
(d) Bidirectional PCle bandwidth.
GFLOPS

80
=#=MKL based 1-way Threading Sclver (ignoring transposition cost)
=@=N\KL based 2-way Threading Sclver (ignoring transposition cost)

70 =e=MKL based 4-way Threading Solver (ignoring transposition cost)
===\KL based 8-way Threading Solver (ignoring transposition cost)
=s#=MKL based 16-way Threading Solver (ignoring transposition cost)

60 =0=MKL based 32-way Threading Solver (ignoring transposition cost)
====0ur DP Solver 20 FFT + Tridiagonal Solver + 2D IFFT

50

—

P “‘s\:

30

20

- .
10
L]
10x10x10 10x10x11 10x11x10 11x10x10

Data size: logX*logY*logZ

(f) 2 periodic 1 Neumann BC DP performance.

Fig. 9. Performance on the Sandy-Kepler node (SP: single precision, DP: double precision).

convert to double precision. The reason for the advantage degrada-
tion is because for double precision, the same amount of data was
transferred by the PCle bus with half the FLOPS computation as that
of the single precision version—with the vast compute power of the
GPU under-utilized. However, considering the excluded transposi-
tion time, which could be quite significant, our solvers still show
superior performance as a complete solver. Our solver naturally

makes use of the memory locality of the X dimension FFT com-
putation, and carefully eliminates the need of matrix transposition
when utilizing the GPU in a vector-processor way. Similar conclu-
sion can be drawn for the Nehalem-Tesla node—though it is single
precision version, the advantage of using GPU is degraded by the
restriction of single directional PCle bus transfer and the relatively
smaller best achievable bandwidth.

Comput. (2014), http://dx.doi.org/10.1016/j.jpdc.2014.03.009

Please cite this article in press as: J. Wu, J. JaJa, Optimized FFT computations on heterogeneous platforms with application to the Poisson equation, J. Parallel Distrib.

J. Wu, J. Jaja / J. Parallel Distrib. Comput. I (11EE) IRE-ENR 11

GFLOPS
£

=#=MKL 1-way Threading 3D FFT+IFFT
80 7 =i=MKL 4-way Threading 3D FFTHFFT
=#=MKL 16-way Threading 3D FFT+IFFT

=@=MKL 2-way Threading 3D FFT+IFFT
===MKL 8-way Threading 3D FFT+IFFT
=@=Qur Solver 3D FFT+Scaling+IFFT
70 7

60 —— e ———

50

30 7
20 — —_—
10 E—___q-_-'ﬂ——-_u.——__a_'——-ﬂ

0

9x10x10 10x9x10 10x10x9 10x10x10

Data size: logX*logY*logZ

11x9x10 11x10x9

(a) 3 periodic BC SP performance.

GFLOPS
50

45

40 + *"-—-._.___/

35

30 e ——

==MKL based 1-way Threading Solver
(ignoring transposition cost)

25 =@=VKL based 2-way Threading Solver
(ignoring transposition cost)
20 =i=MEKL based 4-way Threading Solver

(ignoring transposition cost)
===MKL based 8-way Threading Solver

15 ' (ignoring transpaosition cost)
=#=MKL based 16-way Threading Solver
10 (ignoring transposition cost)

=@=Qur SP Solver 2D FFT + Tridiagonal
Solver + 2D IFFT

10x10x9 10x9x10 9x10x10 11x10x9

Data size: logX*logY*logZ

10x10x10 11x9x10

(b) 2 periodic 1 Neumann BC SP performance.

GB/s

80%

75%
70%
65%
60%
=4=3 Periodic SP Solver
55% N
=2 Periodic 1 Neumann BC Solver
50%

10x10x10 10x10x9 10x9x10 11x10x9

Data size: logX*logY*logZ

11x9x10 9x10x10

(c) GPU work runtime vs. total runtime.

B""--—--Q.,__._..'—____n-aa--—-gu--"-'-g

=== 3 Periodic BC SP Solver PCle BW
=@ 2 Periodic 1 Neumann BC SP Solver PCle BW
=== Average PCle BW Upper Bound

10x10x10 10x10x9 10x9x10 11x10x9

Data size: logX*logY*logZ
(d) Effective PCle bandwidth.

11x9x10 9x10x10

Fig. 10. Performance on the Nehalem-Tesla node (SP: single precision, DP: double precision).

In terms of the PCle bus bandwidth, Figs. 9(d) and 10(d) indicate
a good PCle bandwidth for the 2 Periodic 1 Neumann BC case—
for both single and double precisions on both nodes. Moreover,
Figs. 9(c) and 10(c) indicate our CPU-GPU work decomposition is
quite general and effective for both the 3 periodic BC case and the
2 periodic 1 Neumann BC case.

6. Conclusion

We presented in this paper a new strategy to map an FFT-
based direct Poisson solver on a CPU-GPU heterogeneous platform,
which optimizes the problem decomposition using both the CPU
and the GPU. The new approach effectively pipelines the PCle bus
transfer and GPU work, almost entirely overlapping the CPU-GPU
memory transfer time and the GPU computation time. Experimen-
tal results over a wide range of grid sizes have shown very high
performance, both in terms of the number of floating point opera-
tions per second and the effective PCle bus memory bandwidth.
Our strategies were demonstrated equally effective across plat-
forms and for different precision requirements.

Acknowledgments

This work was partially supported by an NSF PetaApps award,
grant 0CI0904920, the NVIDIA Research Excellence Center at the
University of Maryland, and by an NSF Research Infrastructure
Award, grant number CNS 0403313. Joseph JaJa was also supported

by the National Socio-Environmental Synthesis Center (SESYNC),
which is an NSF-supported center.

References

[1] Y. Chen, X. Cui, H. Mei, Large-scale FFT on GPU clusters, in: Proceedings of
the 24th ACM International Conference on Supercomputing, ICS’10, ACM, New
York, NY, USA, 2010, pp. 315-324. URL: http://doi.acm.org/10.1145/1810085.
1810128.

[2]].Cooley,]. Tukey, An algorithm for the machine calculation of complex Fourier
series, Math. Comp. 19 (90) (1965) 297-301.

[3] Y. Dotsenko, S. Baghsorkhi, B. Lloyd, N. Govindaraju, Auto-tuning of fast Fourier
transform on graphics processors, in: Proceedings of the 16th ACM Symposium
on Principles and Practice of Parallel Programming, PPoPP’'11, ACM, New
York, NY, USA, 2011, pp. 257-266. URL: http://doi.acm.org/10.1145/1941553.
1941589.

[4] M. Frigo, S.G. Johnson, The design and implementation of FFTW3, Proc. IEEE
(2005) 216-231.

[5] D. Goddeke, R. Strzodka, Cyclic reduction tridiagonal solvers on GPUs applied
to mixed-precision multigrid, IEEE Trans. Parallel Distrib. Syst. 22 (1) (2011)
22-32. http://dx.doi.org/10.1109/TPDS.2010.61.

[6] N.K.Govindaraju, S. Larsen,]. Gray, D. Manocha, A memory model for scientific

algorithms on graphics processors, in: Proceedings of the 2006 ACM/IEEE

Conference on Supercomputing, SC'06, ACM, New York, NY, USA, 2006, URL:

http://doi.acm.org/10.1145/1188455.1188549.

N.K. Govindaraju, B. Lloyd, Y. Dotsenko, B. Smith, J. Manferdelli, High per-

formance discrete Fourier transforms on graphics processors, in: Proceed-

ings of the 2008 ACM/IEEE Conference on Supercomputing, SC'08, IEEE Press,

Piscataway, NJ, USA, 2008, pp. 2:1-2:12. URL: http://dl.acm.org/citation.cfm?

id=1413370.1413373.

L. Gu, X. Li,]. Siegel, An empirically tuned 2D and 3D FFT library on CUDA GPU,

in: Proceedings of the 24th ACM International Conference on Supercomputing,

ICS’10, ACM, New York, NY, USA, 2010, pp. 305-314. URL: http://doi.acm.org/

10.1145/1810085.1810127.

[7

8

Comput. (2014), http://dx.doi.org/10.1016/j.jpdc.2014.03.009

Please cite this article in press as: J. Wu, J. JaJa, Optimized FFT computations on heterogeneous platforms with application to the Poisson equation, J. Parallel Distrib.

http://doi.acm.org/10.1145/1810085.1810128
http://doi.acm.org/10.1145/1810085.1810128
http://doi.acm.org/10.1145/1810085.1810128
http://doi.acm.org/10.1145/1810085.1810128
http://doi.acm.org/10.1145/1810085.1810128
http://doi.acm.org/10.1145/1810085.1810128
http://doi.acm.org/10.1145/1810085.1810128
http://doi.acm.org/10.1145/1810085.1810128
http://refhub.elsevier.com/S0743-7315(14)00065-3/sbref2
http://doi.acm.org/10.1145/1941553.1941589
http://doi.acm.org/10.1145/1941553.1941589
http://doi.acm.org/10.1145/1941553.1941589
http://doi.acm.org/10.1145/1941553.1941589
http://doi.acm.org/10.1145/1941553.1941589
http://doi.acm.org/10.1145/1941553.1941589
http://doi.acm.org/10.1145/1941553.1941589
http://doi.acm.org/10.1145/1941553.1941589
http://refhub.elsevier.com/S0743-7315(14)00065-3/sbref4
http://dx.doi.org/doi:10.1109/TPDS.2010.61
http://doi.acm.org/10.1145/1188455.1188549
http://dl.acm.org/citation.cfm?id=1413370.1413373
http://dl.acm.org/citation.cfm?id=1413370.1413373
http://dl.acm.org/citation.cfm?id=1413370.1413373
http://dl.acm.org/citation.cfm?id=1413370.1413373
http://dl.acm.org/citation.cfm?id=1413370.1413373
http://dl.acm.org/citation.cfm?id=1413370.1413373
http://dl.acm.org/citation.cfm?id=1413370.1413373
http://dl.acm.org/citation.cfm?id=1413370.1413373
http://doi.acm.org/10.1145/1810085.1810127
http://doi.acm.org/10.1145/1810085.1810127
http://doi.acm.org/10.1145/1810085.1810127
http://doi.acm.org/10.1145/1810085.1810127
http://doi.acm.org/10.1145/1810085.1810127
http://doi.acm.org/10.1145/1810085.1810127
http://doi.acm.org/10.1145/1810085.1810127
http://doi.acm.org/10.1145/1810085.1810127

12 J. Wu, J. Jaja / J. Parallel Distrib. Comput. 1 (11EE) IIE-11R

[9] L. Gu,]. Siegel, X. Li, Using GPUs to compute large out-of-card FFTs,
in: Proceedings of the International Conference on Supercomputing, ICS'11,
ACM, New York, NY, USA, 2011, pp. 255-264. URL: http://doi.acm.org/10.1145/
1995896.1995937.

[10] Intel, Intel Xeon Processor E5-2600 Product Family, 2012. https://www-
ssl.intel.com/content/www/us/en/benchmarks/server/xeon-e5-hpc/xeon-e5-
hpc-memory-bandwidth-stream.html?.

[11] Intel, Math Kernel Library. http://developer.intel.com/software/products/mKkl/.

[12] P. Micikevicius, Multi-GPU Programming, NVIDIA CUDA Webinars.
http://developer.download.nvidia.com/CUDA/training.

[13] R. Mittal, G. laccarino, Immersed boundary methods, Annu. Rev. Fluid Mech.
37 (2005) 239-261.

[14] A. Nukada, S. Matsuoka, Auto-tuning 3-D FFT library for CUDA GPUs, in: Pro-
ceedings of the Conference on High Performance Computing Networking, Stor-
age and Analysis, SC'09, ACM, New York, NY, USA, 2009, pp. 30:1-30:10. URL:
http://doi.acm.org/10.1145/1654059.1654090.

[15] A.Nukada, Y. Ogata, T. Endo, S. Matsuoka, Bandwidth intensive 3-D FFT kernel
for GPUs using CUDA, in: Proceedings of the 2008 ACM/IEEE Conference on
Supercomputing, SC'08, IEEE Press, Piscataway, NJ, USA, 2008, pp. 5:1-5:11.
URL: http://dl.acm.org/citation.cfm?id=1413370.1413376.

[16] NVIDIA Corporation, NVIDIA CUDA C Programming Guide, 2013.

[17] NVIDIA Corporation, NVIDIA CUDA CUFFT Library, 2014.

[18] B.C. Sidney, Fast Fourier transforms. Appendix 1: FFT flowgraphs, 2012.
http://cnx.org/content/m16352/latest/?collection=col10550/1.20.

[19] J. Wu, J. JaJa, Optimized strategies for mapping three-dimensional FFTs onto
CUDA GPUs, in: Innovative Parallel Computing (INPAR), IEEE Press, 2012.

[20] J. Wu, J. JaJa, High performance FFT based Poisson solver on a CPU-GPU
heterogeneous platform, in: Parallel and Distributed Processing Sympo-
sium, International, Vol. 0, 2013, pp. 115-125. http://dx.doi.org/http://doi.
ieeecomputersociety.org/10.1109/IPDPS.2013.18.

[21] J.Wu,].]JaJa, An optimized FFT-based direct Poisson solver on CUDA GPUs, IEEE
Trans. Parallel Distrib. Syst. 25 (3) (2014) 550-559.

Jing Wu received the B.Eng. degree from the Department
of Electronic Information Science and Technology at the
Harbin Institute of Technology, China, in 2008. She is
currently a Ph.D. student in the Department of Electrical
and Computer Engineering at the University of Maryland,
College Park. Her area of research is high performance
scientific computing and GPU acceleration.

Joseph JaJa is currently Professor of Electrical and Com-
puter Engineering with a permanent appointment in the
Institute for Advanced Computer Studies at the University
of Maryland, College Park. In addition, he is the Director of
Cyberinfrastructure at the National Socio-environmental
Synthesis Center located in Annapolis, Maryland. Dr. JaJa
received his Ph.D. degree in Applied Mathematics from
Harvard University and has since published extensively in
a number of areas including parallel and distributed com-
puting, theoretical computer science, circuits and systems,
and data-intensive computing. His current research inter-
ests are in high performance computing, long term management and preservation
of digital information, and scientific visualization. Dr. JaJa has received numerous
awards including the IEEE Fellow Award in 1996, the 1997 R&D Award for the de-
velopment software for tuning parallel programs, the ACM Fellow Award in 2000,
and the Internet2 IDEA Award in 2006. He served on several editorial boards, and is
currently serving as a subject area editor for the Journal of Parallel and Distributed
Computing and as an editor for the International Journal of Foundations of Com-
puter Science.

Please cite this article in press as: J. Wu, J. JaJa, Optimized FFT computations on heterogeneous platforms with application to the Poisson equation, J. Parallel Distrib.

Comput. (2014), http://dx.doi.org/10.1016/j.jpdc.2014.03.009

http://doi.acm.org/10.1145/1995896.1995937
http://doi.acm.org/10.1145/1995896.1995937
http://doi.acm.org/10.1145/1995896.1995937
http://doi.acm.org/10.1145/1995896.1995937
http://doi.acm.org/10.1145/1995896.1995937
http://doi.acm.org/10.1145/1995896.1995937
http://doi.acm.org/10.1145/1995896.1995937
http://doi.acm.org/10.1145/1995896.1995937
https://www-ssl.intel.com/content/www/us/en/benchmarks/server/xeon-e5-hpc/xeon-e5-hpc-memory-bandwidth-stream.html?
https://www-ssl.intel.com/content/www/us/en/benchmarks/server/xeon-e5-hpc/xeon-e5-hpc-memory-bandwidth-stream.html?
https://www-ssl.intel.com/content/www/us/en/benchmarks/server/xeon-e5-hpc/xeon-e5-hpc-memory-bandwidth-stream.html?
https://www-ssl.intel.com/content/www/us/en/benchmarks/server/xeon-e5-hpc/xeon-e5-hpc-memory-bandwidth-stream.html?
https://www-ssl.intel.com/content/www/us/en/benchmarks/server/xeon-e5-hpc/xeon-e5-hpc-memory-bandwidth-stream.html?
http://developer.intel.com/software/products/mkl/
http://developer.download.nvidia.com/CUDA/training
http://refhub.elsevier.com/S0743-7315(14)00065-3/sbref13
http://doi.acm.org/10.1145/1654059.1654090
http://dl.acm.org/citation.cfm?id%3D1413370.1413376
http://cnx.org/content/m16352/latest/?collection%3Dcol10550/1.20
http://refhub.elsevier.com/S0743-7315(14)00065-3/sbref19
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/IPDPS.2013.18
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/IPDPS.2013.18
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/IPDPS.2013.18
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/IPDPS.2013.18
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/IPDPS.2013.18
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/IPDPS.2013.18
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/IPDPS.2013.18
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/IPDPS.2013.18
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/IPDPS.2013.18
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/IPDPS.2013.18
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/IPDPS.2013.18
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/IPDPS.2013.18
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/IPDPS.2013.18
http://refhub.elsevier.com/S0743-7315(14)00065-3/sbref21

	Optimized FFT computations on heterogeneous platforms with application to the Poisson equation
	Introduction
	Overview and background
	FFT-based Poisson solver
	Fast Fourier transform
	Tridiagonal linear systems
	Architecture overview
	CUDA programming model
	PCIe bus
	Multicore CPU
	Asynchronous CUDA streams

	Overall approach
	Three periodic boundary condition case
	Multi-threaded CPU forward X dimensional FFT
	Asynchronous streams of data movements and GPU kernels
	Asynchronous streams of data transfers and GPU kernels for the Sandy--Kepler node
	Multi-threaded CPU inverse radix FFT computation

	2 periodic 1 Neumann boundary condition case
	Algorithm
	Strategy
	Details on the Nehalem--Tesla node
	Details on the Sandy--Kepler node

	Arithmetic precision

	Performance
	The case of the three periodic boundary conditions
	The case of two periodic one Neumann boundary conditions

	Conclusion
	Acknowledgments
	References

