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Abstract— This paper considers a shortcutting heuristic to
smooth jerky trajectories for many-DOF robot manipulators
subject to collision constraints, velocity bounds, and accelera-
tion bounds. The heuristic repeatedly picks two points on the
trajectory and attempts to replace the intermediate trajectory
with a shorter, collision-free segment. Here, we construct
segments that interpolate between endpoints with specified
velocity in a time-optimal fashion, while respecting velocity
and acceleration bounds. These trajectory segments consist of
parabolic and straight-line curves, and can be computed in
closed form. Experiments on reaching tasks in cluttered human
environments demonstrate that the technique can generate
smooth, collision-free, and natural-looking motion in seconds
for a PUMA manipulator and the Honda ASIMO robot.

I. INTRODUCTION

Autonomous robots that interact with humans or human

environments must have the capability to quickly generate

safe and natural-looking motion. So far, it has been a

challenge to simultaneously satisfy the three objectives of

speed, safety, and esthetics for high-DOF robots performing

complex tasks in unstructured environments. Sample-based

planners (e.g., PRM, RRT, etc., see Chapter 7 of [1]) are

widely used to plan collision-free paths for high-DOF robots.

They are often fast, but they produce jerky, unnatural paths.

This paper presents a fast smoothing algorithm that postpro-

cesses paths to produce a dynamic trajectory that respects

velocity and acceleration bounds and avoids collision.

Standard sample-based planners compute piecewise linear

paths that can be executed precisely by stopping the robot at

every vertex along the path. This is slow and looks unnatural,

so smoothing is often performed before execution. Spline

fitting approaches can overshoot or undershoot the original

path and lead to collision. Numerical trajectory optimization

can be used, but is computationally expensive because the

feasibility of the path must be checked at each iteration [2].

This paper presents a variant of a shortcutting heuristic

commonly used in robotics and animation. The heuristic

iteratively picks two points along the existing path, constructs

a segment between them, and checks it for collision [3]. If it

is collision-free, the segment replaces the subpath between

the two points. Our technique differs from traditional ap-

proaches in two ways. First, instead of operating in configu-

ration space, our algorithm operates in configuration/velocity

state space. Second, we use smooth, dynamically-feasible

trajectory segments as shortcuts. These shortcuts interpolate

between points in state space in a time-optimal fashion, given

bounded joint velocities and accelerations. The output of

Fig. 1. A manipulator reaches under a table to grasp a cup. The white
dotted curve depicts the original end effector path. The orange curve depicts
the smoothed path after 100 randomly-attempted shortcuts. Execution time
is reduced from 9.4s to 4.0s.

the algorithm is a smooth trajectory that respects collision,

velocity, and acceleration constraints.

The primary contribution of this work is an analyti-

cal derivation of time-optimal, bounded-velocity, bounded-

acceleration trajectories that interpolate between endpoints

with specified velocities. For a single joint, the time-optimal

interpolant is known to be composed of parabolic and linear

arcs and can be derived in closed form. We interpolate

multiple joints by finding the joint with the longest execution

time T , and then solve for the minimum-acceleration inter-

polants for the remaining joints with end time T fixed. We

also present a method for exact collision checking of these

trajectories based on the adaptive technique of [4].

We test the approach in moderately cluttered environments

using a PUMA760 manipulator (in simulation) and the arms

of the Honda ASIMO humanoid (both in simulation and on

the real robot). Experiments show that high-quality, smooth

paths with low execution time can be produced with only

a handful of shortcuts, which take just a few seconds of

computation time on a 3 GHz PC (Fig. 1). The approach also
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lends itself to a convenient “on-line” smoothing implemen-

tation that optimizes the path during execution. C++ code

for the algorithms in this paper are available for download

at http://cs.indiana.edu/∼hauserk/software.htm.

II. RELATED WORK

High-quality motion generation is a topic of interest

in computer animation, and a common technique is to

adapt high-quality example motions to new characters, tasks,

and environments [5], [6]. Another technique constructs

trajectories using a generative model of “natural-looking”

motion, derived from example motions or biomechanical

principles [7]–[9]. Hard motion constraints can be handled by

using the models to bias the sampling strategy of a sample-

based planner [10], [11]. A similar approach was applied to

humanoid robot locomotion [12].

Especially for non-human-like robots, “natural-looking”

can be defined in terms of a cost function that includes

obstacle potential fields [13], [14] or physical criteria like

execution time, torque, or energy consumption [15], [16].

Then, cost is minimized using iterative numerical techniques

(e.g., gradient descent) [17]. These techniques are typically

too slow for real-time use; the resulting optimization prob-

lems can be extremely large, and each iteration is expensive

because of the large number of collision queries that need

to be tested (at possibly hundreds or thousands of discrete

points along the path). To put this in perspective, querying

collisions along the path shown in Fig. 1 takes approximately

0.15 s on a 3 GHz PC.

A shortcutting heuristic tries to replace portions of a path

with shorter segments such as straight lines, and is commonly

used in robotics and computer animation [10], [11] . It is fast,

is easily implemented, and often produces high-quality paths

in practice [3]. These techniques do not achieve optimality, or

even local optimality, but in practice can produce short paths

quickly. They can also produce good initial trajectories for

further optimization using numerical techniques.

The approach of shortcutting with time-optimal trajecto-

ries has been applied to car-like vehicles using Reeds-Shepp

curves [18]. A similar technique was used for smoothing

trajectories of aerial vehicles by placing trim curves at

waypoints [19]. Our main contribution is the closed-form

solution of time-optimal trajectories for acceleration- and

velocity- bounded systems, which is applicable to a wide

variety of robot manipulators.

III. ASSUMPTIONS AND NOTATION

Let C = R
d denote the d-dimensional configuration

space, and let F denote the subset of configurations that

are collision-free and respect joint limits. Vector-valued

quantities are denoted in bold (e.g., x), and superscripts

denote joint indexing (e.g., xk).

A trajectory u(t) is represented as a curve with piecewise-

constant acceleration (and is therefore piecewise composed

of parabola and straight lines). A trajectory is considered to

be feasible if

1) Configurations u(t) lies entirely in F .

(a) (b)

(c) (d)

(e) (f)

Fig. 2. Illustrating the smoothing algorithm. (a) A jerky path produced by
a sample-based planner. (b) Converted into a trajectory that stops at each
milestone. (c) Attempting a random shortcut. The feasibility check fails.
(d),(e) Two more shortcuts, which pass the feasibility check. (f) The final
trajectory executed by the robot.

2) Velocities u′(t) are bounded by box limits |u′(t)| ≤
vmax. (Here, absolute value and inequality are taken

element-wise).

3) Accelerations u′′(t) are bounded by box limits

|u′′(t)| ≤ amax.

Our objective is to reduce the execution time of an input

trajectory as much as possible while retaining feasibility.

Some comments are warranted about these assumptions.

First, the velocity and acceleration bounds are somewhat

idealized constraints. The true physical limits are a complex,

nonlinear function of motor torque and power characteristics,

joint configuration, and dynamic interactions between joints.

Although some applications may demand that a robot be

pushed to its limits, in practice artificial velocity and accel-

eration bounds are usually justified for reasons of safety and

servo stability.

Second, reducing execution time is typically not a de-

sirable objective alone, because time-optimal trajectories

will graze obstacles with little or no room for error. Some

separation margin may be needed to prevent collisions in the

presence of uncertainties and disturbances. Or, the objective

could weight between execution time and obstacle proximity.

Either modifications may be easily implemented.

IV. SHORTCUTTING ALGORITHM

The algorithm, summarized in Fig. 3, performs N itera-

tions of shortcutting on a piecewise-linear path x1, . . . ,xn

in F . Fig. 2 illustrates three iterations of the algorithm.

Step 1 converts the path to a trajectory that stops at every

milestone, and will be described in Sec. IV-A. Steps 3–

5 selects two random states (a, c) and (b,d) along the

trajectories. The Shortcut subroutine in line 6 computes the

time-optimal interpolant s(t) between states (a, c) and (b,d)
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Input: piecewise linear path x1, . . . ,xn, iteration count N
Output: a smoothed, dynamically-feasible trajectory from

x1 to xn.

1. u← StartStop(x1, . . . ,xn)

2. Repeat for N iterations:

3. Sample ta and tb randomly from [0, T ]
4. (a, c)← (u(ta),u′(ta))
5. (b,d)← (u(tb),u

′(tb))
6. s← Shortcut((a, c), (b,d))
7. If CollisionFree?(s) then

8. Replace the section of u from ta to tb with s

9. Return u.

Fig. 3. Pseudocode for the shortcutting algorithm.

as described in Sec. IV-B. Line 7 tests if s(t) is collision free

as described in Sec. IV-E, and if so, s(t) is spliced into the

path in line 8.

A. Time-Optimal Straight-Line Trajectories

The first step of the algorithm converts a piecewise linear

path to a time-optimal trajectory that stops at each vertex.

This requires a routine algebraic computation, and we in-

clude it here for completeness.

Let the interpolation parameter s be a monotonic function

s(t), such that the trajectory u(t) = a + s(t)(b− a) tracks

the straight-line path (see Fig. 4.a). Then the velocity and

acceleration of s(t) must not exceed, respectively, vs =
mink vk

max/|bk−ak| and as = mink ak
max/|bk−ak| where

the minimums are taken over joints k = 1, . . . , d. The

optimal s(t) travels along 1) a parabolic arc with acceleration

as, 2) may reach the maximum velocity vs and travel along

a straight line, and 3) a parabolic arc with acceleration

−as. The interpolation curve is completely determined the

inflection points.

First, we consider the case where s′(t) never exceeds vs.

Then, the inflection point occurs at tP =
√

|(x2 − x1)/as.

If astP ≤ vs, then this trajectory is valid. Otherwise s(t)
must contain a linear section. Then, the first inflection point

is at t1 = vs/as, the second occurs after an additional time

t2 = 1/vs − 1/as has elapsed, and after decelerating for

duration t1 the trajectory terminates at T = 2t1 + t2. Fig. 5a

illustrates the solution for s(t) with vs = as = 1.

B. Time-Optimal, Bounded-Acceleration, Bounded-Velocity

Interpolants

The fastest dynamically feasible trajectory between (a, c)
and (b,d) consists of parabolic arcs and straight lines.

Since each joint variable is assumed to be independent,

the minimum execution time is determined by the slowest

single-joint trajectory. We first determine this time T , and

the interpolate the rest of the joints with T fixed. Of the

many possible interpolants that finish at time T , we pick

the minimum-acceleration interpolant. We will describe these

unidimensional interpolants in the next section.

More precisely, let f(x1, x2, v1, v2, vmax, amax) compute

the time of the time-optimal interpolant between x1 and x2,

with beginning and ending velocity v1 and v2 respectively,

under maximum velocity vmax and acceleration amax. Let

g(x1, x2, v1, v2, vmax, T, t) compute the state at time t of the

minimum-acceleration interpolant, given a fixed final time T .

(The next section will describe f and g in more detail.) To

construct multidimensional interpolants, we first compute the

optimal time

T = max
k

f(ak,bk, ck,dk,vk

max,ak

max), (1)

and then compute the acceleration-optimal joint trajectories

sk(t) = g(ak,bk, ck,dk,vk

max, T, t). (2)

Examples of these curves are illustrated in Fig. 4.

C. Univariate Time-Optimal Interpolants

Here we derive the function f(x1, x2, v1, v2, vmax, amax)
that computes the execution time of a univariate, time-

optimal, velocity- and acceleration-bounded trajectory. We

compute it by enumerating all bang-bang controls [20] that

connect the initial and final states, and picking the one with

the lowest execution time. For each control, we have com-

puted inflection points analytically through an elementary,

but somewhat tedious derivation. We omit the derivations

from the following discussions.

We define four motion primitives: the parabolas P+ and

P− accelerating at amax and −amax, respectively, and the

lines L+ and L− traveling at vmax and −vmax, respectively.

There are four possible classes of motion primitive combina-

tions that may be optimal: P+P−, P−P+, P+L+P−, and

P−L−P+. We examine each class for a valid execution time

T , and find the class with the minimal execution time.

For class P+P−, to find the inflection time tP when

the trajectory stops accelerating and starts decelerating, we

compute a solution t of the quadratic equation

amaxt2 + 2v1t + (v2
1 − v2

2)/(2amax) + x1 − x2 = 0 (3)

that also satisfies 0 ≤ t ≤ (v2 − v1)/amax. If no solution

exists, the class is declared invalid. If a solution exists, the

total time is T = 2tP +(v1−v2)/amax. We must also check

that the maximum speed of the trajectory v1 + tP amax does

not exceed vmax. The P−P+ solution is given by negating

amax in the above equations.

For class P+L+P−, we compute the duration tL of the

linear portion,

tL = (v2
2 + v2

1 − 2v2
max)/(2vmaxamax) + (x2 − x1)/vmax,

(4)

the duration tP1 = (vmax − v1)/amax in the first parabola,

and the duration tP2 = (v2 − vmax)/amax in the second.

If any of tL, tP1, or tP2 are negative, the class is invalid.

Otherwise, the execution time is given by

T = tP1 + tL + tP2. (5)

The P−L−P+ solution is given by negating amax and vmax

in the above equations.
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Fig. 4. 2D time-optimal trajectories from (0,0) to (3,1) under vmax = (1, 1) and amax = (1, 1) and varying start and final velocity va and vb. Squares
depict inflection points in the x parameter, and diamonds depict inflection points in the y parameter.
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(d) P−L−P+ curve starting at 0
with velocity 1 and ending at -0.5 with
velocity 1.

Fig. 5. Univariate time-optimal trajectories under vmax = 1 and amax = 1. Time is plotted on the horizontal axis. Squares depict inflection points
between parabolic and linear trajectory segments.

D. Minimum-Acceleration Interpolants

Now we derive the minimum-acceleration trajectory given

a fixed end time T . First, we compute the minimal accel-

eration a = h(x1, x2, v1, v2, vmax, T ), and then the optimal

trajectory g(x1, x2, v1, v2, vmax, T, t) is defined in a straight-

forward manner from a. Again, we use the same combina-

tions of motion primitives: P+P−, P−P+, P+L+P−, and

P−L−P+, and find the class that has minimum acceleration.

For classes P+P− and P−P+, we compute solutions a
to the equation

T 2a2 +σ(2T (v1 +v2)+4(x1−x2))a− (v2−v1)
2 = 0 (6)

whose switch time tS = 1/2(T + (v2 − v1)/a) satisfies the

condition 0 ≤ tS ≤ T . Here, σ is defined as +1 for class

P+P− and −1 for class P−P+. We must also check that

the maximum speed of the trajectory |v1 + atS | does not

exceed vmax.

For class P+L+P−, we have

a =
v2

max − vmax(v1 + v2) + 0.5(v2
1 + v2

2)

Tvmax − (x2 − x1)
(7)

We then compute the durations tL, tP1, and tP2 as in the

previous section, but replace amax with a, and check that

they are all positive. For class P−L+P+, we negate vmax

in the above equation.

E. Trajectory Collision Checking

A simple, inexact method for trajectory collision checking

is to discretize the curve to resolution ǫ and test each point

for collision. If ǫ is small, the checker will be slow, but

if ǫ is large, the checker may miss some collisions. The

risk of a missed collision increases after a large number

of smoothing steps as the trajectory approaches closer to

obstacles. One possible solution grows the geometry of the

robot or obstacles by a small but sufficiently large margin, so

that penetrations of distance ǫ do not cause actual collisions.

Another solution is exact collision checking by attempting

to cover the path with collision-free neighborhoods [4].

We extend the adaptive, recursive bisection technique

of [4] to handle parabolic paths as well as straight paths.

(see Fig. 6). Given a trajectory segment {u(t) | t1≤ t≤ t2}
we compute the maximum workspace distance λ traversed by

any point on the robot’s geometry as the robot executes the

segment. We also compute the robot-environment distances

δ1 and δ2 at u(t1) and u(t2), respectively (Fig. 6b). If

λ ≤ δ1 + δ2, then the entire segment is guaranteed to be

collision free, and it can be excluded from further collision

testing (Fig. 6d). If λ > δ1 +δ2, then the segment is bisected

at (t1 + t2)/2 and the algorithm recurses on the two halves.

The method uses a subroutine to compute a bound on

the workspace distance traveled by a point on the robot.

For example, for a serial robot with d revolute joints and

with link length at most L, a straight line motion ∆q

can move the robot geometry by at most a distance of
∑d

k=1
|∆qk|kL. For piecewise parabolic paths, we compute

a bounding box around the entire path, and replace the term

∆q with the diagonal vector of the bounding box. There

are various optimizations that speed up the basic algorithm,

such as using non-cubic neighborhoods, computing different

neighborhoods for different constraints, and using approxi-

mate distance queries, all of which are described in more

detail in [4]. In our experiments, the exact collision checker

typically performs approximately 2–10 times slower than

discretizing the path at a fine resolution. As expected, it

is slowest when the robot passes close to obstacles, for

example, near the goal configuration of Figure 1.
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Fig. 10. The ASIMO robot reaching to push a block using a smoothed
arm trajectory. Sequence proceeds from top to bottom, left to right).

VI. CONCLUSION

This paper presented a fast algorithm for smoothing

collision-free trajectories for many-DOF robot manipulators.

It uses a shortcutting heuristic that draws smooth velocity-

and acceleration-bounded shortcuts between random points

on the trajectory, and if the shortcut is collision-free, replaces

the intermediate portion of the trajectory with the shortcut.

The primary contribution of the paper is a closed-form

derivation of the time-optimal velocity- and acceleration-

bounded curves that interpolate between two endpoints with

specified velocity. Experimental results on a PUMA manip-

ulator and the Honda ASIMO robot demonstrate that the

algorithm can smooth trajectories in moderately cluttered

environments in seconds. It can also be implemented as

an on-line algorithm that smoothes the trajectory during

execution.

Like other postprocessing approaches, the algorithm may

converge to a suboptimal solution if given a poor input

path. Integrating smoothing into planning may be able to

overcome some of these problems. Other work could attempt

to reduce the time per shortcut with faster collision checking,

or improve the convergence rate with nonuniform or adaptive

shortcutting strategies.
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