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Abstract—In many computer vision systems, the same object can be observed at

varying viewpoints or even by different sensors, which brings in the challenging

demand for recognizing objects from distinct even heterogeneous views. In this

work we propose a Multi-view Discriminant Analysis (MvDA) approach, which

seeks for a single discriminant common space for multiple views in a non-pairwise

manner by jointly learning multiple view-specific linear transforms. Specifically, our

MvDA is formulated to jointly solve the multiple linear transforms by optimizing a

generalized Rayleigh quotient, i.e., maximizing the between-class variations and

minimizing the within-class variations from both intra-view and inter-view in the

common space. By reformulating this problem as a ratio trace problem, the

multiple linear transforms are achieved analytically and simultaneously through

generalized eigenvalue decomposition. Furthermore, inspired by the observation

that different views share similar data structures, a constraint is introduced to

enforce the view-consistency of the multiple linear transforms. The proposed

method is evaluated on three tasks: face recognition across pose, photo versus.

sketch face recognition, and visual light image versus near infrared image face

recognition on Multi-PIE, CUFSF and HFB databases respectively. Extensive

experiments show that our MvDA achieves significant improvements compared

with the best known results.

Index Terms—Multi-view discriminant analysis, cross-view recognition, heteroge-

neous recognition, common space

Ç

1 INTRODUCTION

IN many computer vision applications, the same object can be
observed at various viewpoints or even by heterogeneous sensors,
thus generating multiple distinct even heterogeneous images, e.g.,
[1], [2]. Recently, more and more applications need to match
images from different viewpoints or different sensors, usually
denoted as heterogeneous recognition or cross-view recognition.
Due to the large gap between views, the samples from different
views might lie in completely different spaces. Therefore, directly
matching the samples from different views is no longer applicable.

To address the above mentioned heterogeneous recognition (or
cross-view matching) problem, one need either transform samples
of different views into a common space or learn distance metrics
that can match heterogeneous samples of various views. As these
two methodologies can be equivalently converted in some cases
[3], this work focuses on the former, i.e., learning a common sub-
space shared by various views. This line of methods can be further
grouped into two categories: two-view methods and multi-view
methods. The multi-view methods attempt to seek for a single uni-
fied common space shared by all views. In contrast, the two-view
methods essentially can only obtain a common space for two
views, but can also be extended to address multiple views problem

by using pairwise (i.e., one-versus-one) strategy, i.e., converting a

v-view problem to C2
v two-view problems. However, such a pair-

wise manner is neither efficient nor optimal for recognition across
multiple views. In addition, according to whether the class label
information is exploited, the methods in each category can run in
either supervised mode or unsupervised mode.

Two-view methods in unsupervised mode. The most typical
approach to obtain a common space for two views should be the
canonical correlation analysis (CCA) [4], [5]. CCA attempted to
learn two transforms, one for each view, to respectively project the
samples from the two views into a common subspace, by maximiz-
ing the cross correlation between two views. In [6], [7], to recognize
faces with variations in pose, resolution and imaging source, par-
tial least squares (PLS) regression was employed to regress the
samples from one view to another. For photo versus sketch face
recognition, a coupled information-theoretic projection tree [8] was
proposed to reduce the modality gap by maximizing the mutual
information between photos and sketches in the quantized feature
spaces. In [9], a pair of semi-coupled dictionaries were proposed to
characterize both views with a mapping function modeling the
intrinsic relationship between the two views, and this work was
further extended by using a unified model for coupled dictionary
and feature space learning in [10]. Besides, some methods
employed either view as the common space, e.g., a pseudo-sketch
of photo was synthesized for photo-sketch recognition [11], [12].
Although the gap between two views was minimized by these
methods, the discriminant information, e.g., class label, was not
explicitly taken into account.

Two-view methods in supervised mode. To learn a discriminant
common space for two views, the class label information is gener-
ally incorporated. In [13], [14], [15], CCA was extended to correla-
tion discriminant analysis (CDA) and discriminative canonical
correlation analysis (DCCA) by maximizing the within-class corre-
lation and minimizing between-class correlation across two-view.
In [16], [17], multiview Fisher discriminant analysis (MFDA) was
proposed to employ the label information for binary classification.
In [18], the Fisher linear discriminant analysis is interpreted as
CCA between appropriately defined vectors. In [19], common dis-
criminant feature extraction (CDFE) was proposed to minimize the
intra-class scatter and meanwhile maximize the inter-class separa-
bility, resulting in very encouraging performance. In [20], a large
margin approach was proposed to discover a predictive latent sub-
space representation shared by two views based on an undirected
latent space Markov network. In [21], coupled spectral regression
(CSR) learnt a projection from the observation to the common low-
dimensional embedding of the class label through least squares
regression. Similarly, in [22], two coupled linear regression models
were used to project data from different modalities into a common
subspace that is directly defined by the class label. In [23], a local
feature-based discriminant analysis method was proposed to
match a forensic sketch and a mug shot photo, and also other effec-
tive features can be used such as [24]. Besides, some other methods
proposed to apply discriminant classifier in the common space
achieved from some unsupervised method, like [25]. Benefitted
from the supervised information, these discriminant common
space methods usually outperform the unsupervised ones.

Multi-view methods. As mentioned, the two-view methods essen-

tially are only applicable to two-view scenario. To deal with multi-

view cases, the pairwise strategy is usually exploited, resulting in

multiple two-view models. However, in scenario of multiple

views, a more efficient and robust solution is to learn a unified

common space shared by all views rather than only two views. For
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this purpose, the Multiview CCA (MCCA) [26], [27] was proposed

to obtain one common space for v views. In MCCA, v view-specific

transforms, one for each view, were obtained by maximizing the

total correlations between any two views. However, MCCA did

not take discriminant information into account, which may be not

good for classification across views. Recently, a generalized multi-

view analysis (GMA) framework was proposed in [28], in which

the supervised information was incorporated, leading to a discrim-

inant common subspace. Although GMA can obtain a discriminant

common subspace, it only considered the intra-view discriminant

information, but ignored the inter-view discriminant information.

Some other methods attempted to decompose the variations of

each view. In [29], a multilinear analysis method named Tensorfa-

ces was proposed to decompose the modes due to identity, pose,

and illumination. Furthermore, a multimodal discriminant analysis

(MMDA) [30] method was proposed for discriminative multimodal

decomposition based on the Fisher Criterion, thus favorable for

multimodal pattern recognition.

Following the multi-view strategy for cross-view recognition,
this paper proposes a multi-view discriminant analysis (MvDA)
method that can learn single unified discriminant common space
for v views by jointly optimizing v view-specific transforms, one
for each view. In this common space, the between-class variations
from both inter-view and intra-view are maximized, while the
within-class variations from both inter-view and intra-view are
minimized. Moreover, inspired by the observation that different
views share similar structures, a constraint enforcing the consis-
tency of the multiple linear transforms is introduced to achieve a
more robust common space. Specifically, the between-class and
within-class variations are formulated into a Rayleigh quotient,
with which the v view-specific transforms can be solved analyti-
cally and simultaneously through generalized eigenvalue decom-
position. Overal speaking, MvDA is a multi-view method, rather
than pairwise two-view method; MvDA considers both inter-view
and intra-view variations leading to a more discriminative com-
mon space; and MvDA can be solved analytically.

In the following, Section 2 introduces the related works,
Section 3 presents the formulation of MvDA with some discussions
on difference from previous works, and Section 4 evaluates the
MvDA on three databases, followed by a conclusion.

2 RELATED WORKS

2.1 Canonical Correlation Analysis [4]

CCA attempts to find a common subspace where the samples from
two views are most correlated. Formally, let S represent the
samples from two views: S ¼ fðx11;x12Þ; . . . ; ðxn1;xn2Þg, where
xij 2 Rpj ; j ¼ 1; 2, represents the ith sample from the jth view of pj
dimension. TwomatricesX1 ¼ x11; . . . ;xn1½ � andX2 ¼ x12; . . . ;xn2½ �
are defined to represent the data from the two views. Two linear
transforms w1 and w2 are obtained to respectively project the sam-
ples from two views into the common subspace, by maximizing the

correlation betweenwT
1X1 andwT

2X2 as below:

max
w1 ;w2

wT
1X1X

T
2w2

s:t: wT
1X1X

T
1w1 ¼ 1; wT

2X2X
T
2w2 ¼ 1:

(1)

With the Lagrange multiplier, Eq. (1) can be solved by resorting to
the eigenvalue decomposition.

With w1 and w2, the samples from two views can be compared
after projecting to the common space. As an unsupervised
approach, CCA can be considered as a two-view extension of PCA
[31]. CCA is only designed for two-view case, and thus the pair-
wise strategy is needed when applied to the multi-view scenario.

Another limitation of CCA is that the training data for CCA must
be given in view-pair mode, i.e., the number of samples from both

views should be the same to makeX1X
T
2 computable.

2.2 Multi-view CCA [26], [27]

In [27], CCA is further generalized for multi-view scenario termed
as multi-view canonical correlation analysis (MCCA). The goal of
MCCA is to find a set of linear transforms wijvi¼1, to respectively
project the samples of v views fX1; . . . ;Xvg to one common space,

i.e., fwT
1X1; . . . ;w

T
v Xvg. The total correlation in the common space

is maximized as below:

max
w1 ;w2 ;...;wv

X
i < j

wT
i XiX

T
j wj

s:t: wT
i XiX

T
i wi ¼ 1; i ¼ 1; 2; . . . ; v;

(2)

where Xi 2 Rpi�n is the data matrix of the ith view with n samples
of pi dimension. Like CCA, the number of samples in each view
should be the same. Similarly, MCCA is also an unsupervised
method.

In [26], CCA is also generalized to multi-view CCA, and several
kinds of the characteristics calculated from the transformed varia-
bles are investigated. The method in [27] can be considered as a
special case of [26] under the denoted constraint 3.

2.3 Generalized Multiview Analysis (GMA) [28]

In [28], a general framework for multiview analysis is proposed to
achieve a discriminative common subspace for all views. The
GMA aims at preserving the supervised structure of each view and
meanwhile keeping the projections of different views close to each
other in the latent common space as follows:

max
w1 ;���;wv

Xv
i¼1

miw
T
i Aiwi þ

X
i < j

2�ijw
T
i XiX

T
j wj;

s:t:
X

i
giw

T
i Biwi ¼ 1;

(3)

where mi, �ij, gi are balance parameters, Ai and Bi are the
between-class and within-class scatter matrices from the ith view
respectively. GMA can be regarded as an extension of Fisher Dis-
criminant analysis [31] for cross-view matching.

GMA considers class label information in a multi-view manner
which makes it efficient and discriminative for recognition across
multiple views. However, GMA only employs the discriminant
information within each individual view but without considering
the discriminant information from the inter-view, and this may
degenerate the performance of cross-view matching. Besides,
GMA has about v�ðvþ3Þ�4

2 parameters (i.e., those �ij;mi and gi) in
case of v views, which means a lot of tedious parameter tuning.

3 MULTI-VIEW DISCRIMINANT ANALYSIS

In this section, we firstly introduce the basic idea and formulation
of MvDA and then present its analytic solution, followed by
extended MvDA with view consistency (MvDA-VC). Finally, we
discuss the differences of MvDA from previous methods. Please
note that, for the sake of clarity, some of the detailed inferences are
put in the supplemental material, which can be found on the Com-
puter Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPAMI.2015.2435740.

3.1 MvDA: Overview and Formulation

As shown in Fig. 1, our MvDA attempts to find v linear transforms
w1;w2; . . . ;wv that can respectively project the samples from v

views to one discriminant common space, where the between-class
variation is maximized while the within-class variation is
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minimized. For this purpose, formally, let us define

XðjÞ ¼ fxijkji ¼ 1; . . . ; c; k ¼ 1; . . . ; nijg as the samples from the jth

view (j ¼ 1; . . . ; v), where xijk 2 Rdj is the kth sample from the jth

view of the ith class of dj dimension, c is the number of classes and

nij is the number of samples from the jth view of ith class.

The samples from v views are then projected to the same com-
mon space by using v view-specific linear transforms. We denote

the projection results as Y ¼ fyijk ¼ wT
j xijkji ¼ 1; . . . ; c; j ¼

1; . . . ; v; k ¼ 1; . . . ; nijg. In the common space, according to our

goal, the between-class variation Sy
B from all views should be

maximized while the within-class variation Sy
W from all views

should be minimized. We formulate this objective as a generalized
Rayleigh quotient:

ðw�
1;w

�
2; . . . ;w

�
vÞ ¼ arg max

w1;���;wv

Tr Sy
B

� �
Tr Sy

W

� � : (4)

Here, the within-class scatter matrix Sy
W and the between-class

scatter matrix Sy
B of the projected samples in the common space are

computed as below:

Sy
W ¼

Xc

i¼1

Xv

j¼1

Xnij

k¼1
yijk � mmi

� �
yijk � mmi

� �T
; (5)

Sy
B ¼

Xc

i¼1
ni mmi � mmð Þ mmi � mmð ÞT ; (6)

where mmi ¼ 1
ni

Pv
j¼1

Pnij
k¼1 yijk is the mean of all the samples of

the ith class over all views in the common space,

mm ¼ 1
n

Pc
i¼1

Pv
j¼1

Pnij
k¼1 yijk is the mean of all samples over all views

in the common space, ni ¼
Pv

j¼1 nij the number of samples of the

ith class in all views, and n ¼Pc
i¼1 ni is the number of samples

from all classes and all views.
From Eq. (5) and Eq. (6), it is clear that the within-class and

between-class variations are computed from the samples of all views,
not only intra-view ones but also inter-view ones. In other words, not
only the discriminant information from the intra-view but also that
from the inter-view are considered. After obtaining w1;w2; . . . ;wv

from Eq. (4), the samples from v views can be compared after respec-
tively projected to the discriminant common space.

3.2 Analytical Solution of MvDA

Although Eq. (4) seems like LDA [31], it is much more complicated,
as it needs to jointly optimize v distinct linear transforms. Fortu-
nately, we work out an analytic solution by reformulating the trace
ratio problem in Eq. (4) into a ratio trace problem.

Formally, the within-class scatter matrix in the common space
in Eq. (5) can be reformulated as follows:

Sy
W ¼ wT

1 wT
2 � � � wT

v

� � S11 � � � S1v

..

. ..
. ..

.

Sv1 � � � Svv

0
B@

1
CA

w1

w2

..

.

wv

2
6664

3
7775 ¼ WTSW; (7)

with W ¼ wT
1 ;w

T
2 ; . . . ;w

T
v

� �T
and Sjr is defined as below with

mm
ðxÞ
ij ¼ 1

nij

Pnij
k¼1 xijk:

Sjr ¼
Pc

i¼1

Pnij
k¼1 xijkx

T
ijk � nijnij

ni
mm

ðxÞ
ij mm

ðxÞT
ij

� �
; j ¼ r

�Pc
i¼1

nijnir
ni

mm
ðxÞ
ij mm

ðxÞT
ir ; otherwise

8><
>: : (8)

Similarly, the between-class scatter matrix in Eq. (6) can be fur-
ther reformulated as follows:

Sy
B ¼ wT

1 wT
2 � � � wT

v

� � D11 � � � D1v

..

. ..
. ..

.

Dv1 � � � Dvv

0
B@

1
CA

w1

w2

..

.

wv

2
6664

3
7775 ¼ WTDW; (9)

whereW is the same as above andDjr is defined as:

Djr ¼
Xc
i¼1

nijnir

ni
mm

ðxÞ
ij mm

ðxÞT
ir

 !
� 1

n

Xc
i¼1

nijmm
ðxÞ
ij

 ! Xc
i¼1

nirmm
ðxÞ
ir

 !T

;

(10)

With this, Eq. (4) can be reformulated as:

ðw�
1;w

�
2; . . . ;w

�
vÞ ¼ arg max

w1 ;���;wv

Tr WTDW
� �

Tr WTSW
� � : (11)

According to [32], the objective in Eq. (11) is in the form of trace
ratio, which implies the closed form solution does not exist. We
therefore relax it into a more tractable one in the form of ratio trace:

ðw�
1;w

�
2; � � � ;w�

vÞ ¼ arg max
w1 ;...;wv

Tr
WTDW

WTSW

� 	
; (12)

which can be solved analytically through generalized eigenvalue
decomposition.

3.3 MvDA with View-Consistency

As multiple views actually correspond to the same objects, there
should be some correspondence between multiple views. For
example, if two views of human faces are taken from left 45� and
right 45� (yaw), denoted as X1 and X2 respectively, each view
should be the flipping of the other one, i.e., X1 ¼ RX2, where R is
the transform matrix that can flip the image from left 45 to right
45� or vice versa. As a result, the transforms obtained from Eq. (12)
for these two views should also have similar relationship, i.e.,
w1 ¼ Rw2. Following Representer Theorem, the transform wi for
ith view can be equivalently formulated as follows:

wi ¼ Xibbi; (13)

where bbi captures the structure of eachwi.
Then, we can reach the following equivalence:

X1bb1 ¼ RX2bb2 ¼ X1bb2; (14)

which demonstrates that bb1 ¼ bb2. In other words, the structure of
each transformwi captured by bbi is the same for different views.

Without loss of generality, if X1;X2; . . . ;Xv from v views corre-
spond to the same underlying objects, they should have similar

Fig. 1. The overview of Multi-view Discriminant Analysis. The samples from distinct
views are projected into a discriminant common space by using v transforms, one
for each view. Here, images from distinct views, e.g., photo, sketch, NIR are
denoted in distinct colors and images from distinct classes are denoted in distinct
shapes. (Best viewed in color)
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structures, which implies that the structures of the transforms of
different views should be also similar. This observation further
implies that bb1;bb2; . . . ;bbv, which depict the transforms, should
resemble mutually. In this work, we call this resemblance as view-
consistency, modeled by the following term:

Xv

i;j¼1
kbbi � bbjk22: (15)

We then minimize this term by adding it into the original
denominator of Eq. (11) and reach the following new objective:

ðw�
1;w

�
2; . . . ;w

�
vÞ

¼ argmaxw1 ;...;wv

Tr WTDW
� �

Tr WTSW
� �þ �

Pv
i;j¼1 kbbi � bbjk22

; (16)

where � is the balance parameter. We denote this extended MvDA
as MvDA-VC.

At first glance, this new objective might make the optimization
very complicated, but fortunately, it still has analytical solution as
illustrated below.

From Eq. (13), bbi can be equivalently represented as:

bbi ¼ XT
i Xi

� ��1
XT

i wi , Piwi; (17)

with Pi , XT
i Xi

� ��1
XT

i . Then, Eq. (15) can be reformulated as
follows:

Xv

i;j¼1
kbbi � bbjk2 ¼ Tr WTMW

� �
; (18)

M ¼
M11 � � � M1v

..

. ..
. ..

.

Mv1 � � � Mvv

0
B@

1
CA;Mij ¼

2ðv� 1ÞPT
i Pi; i ¼ j

�2PT
i Pj; i 6¼ j

8<
: (19)

With Eq. (18), the objective of MvDA-VC in Eq. (16) can be
rewritten as a trace ratio form:

ðw�
1;w

�
2; . . . ;w

�
vÞ ¼ arg max

w1;...;wv

Tr WTDW
� �

Tr WT ðSþ �MÞW� � : (20)

Evidently, Eq. (20) can also be solved analytically after relaxing to
the ratio trace problem as Eq. (11).

3.4 Discussions

To further clarify the significance of our method, this section will
discuss in details the difference between our MvDA and previous
closely related methods.

Difference from other inter-view methods. In the proposed MvDA,
both intra-view and inter-view variations are considered when cal-
culating the within-class and between-class scatter matrices. To
show this, we reformulate the within-class scatter in Eq. (5) as :

Sy
W ¼

Xc

i¼1

Xv

j¼1

Xnij

k¼1

Xnij

l¼1
yijk � yijl

� �
yijk � yijl

� �T�
þ
Xv

j¼1

Xv

r¼1;r 6¼j

Xnij

k¼1

Xnij

l¼l
yijk � yirl

� �
yijk � yirl

� �T Þ:
(21)

It can be easily seen that the first term models the variations
within each view and the second term models the variations
across view. Similarly, in our MvDA both intra-view and inter-
view variations are considered in the between-class scatter
matrix. In contrast, in most existing inter-view methods, e.g.,
CDFE and GMA, only part of the discriminative information in
either intra-view or inter-view variations is considered. Another

key difference is that our MvDA projects the samples from v

views to a single common space, rather than C2
v common spaces

as most previous two-view methods do.
Difference from metric learning methods. Many researchers argue

that metric learning and dimension reduction are equivalent in
some sense but with quite different primary objectives [3]. Our
MvDA can be also considered to learn a metric computed as

dMvDA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wT

1X1 �wT
2X2

� �T
wT

1X1 �wT
2X2

� �q
. However, for

multi-view problem, our MvDA is superior to the cross-view met-
ric learning methods. Specifically, for v view problem, the cross-

view or heterogenous metric learning methods have to learn C2
v

view-pair metrics, while MvDA needs only v transforms. In addi-
tion, in case of multi-class scenario, the cross-view or heterogenous
metric learning methods usually need convert multi-class problem
to two-class problem, while MvDA can naturally handle the multi-
class problem more efficiently, benefited from the objective in the
form of Rayleigh quotient.

Difference from MCCA [26], [27]. Both MCCA and MvDA obtain
only one common space for multiple views. MCCA obtains a com-
mon space where only the correlation between views is maxi-
mized, but neither intra-view correlation nor class label is
considered. Differently, MvDA endeavors to obtain a discriminant
common space, which considers the discriminative information
from both intra-view and inter-view.

Difference from MFDA [16] and MMDA [30].MFDA is originally
designed for binary classification, and one-versus-all or hierar-
chical strategy are needed for multi-class scenarios. For the same
reason, MFDA also requires the classes to classify should be the
same as those in the training set. On the contrary, as a feature
extraction method, our MvDA is originally designed for multi-
view and multi-class scenario, and can even be applied to classes
not presented in the training set. Both MMDA and MvDA are
discriminant methods for multi-view or multimodal problem.
MMDA individually decomposes each mode, which implies the
between-class variation in one mode (e.g., pose) is contained in
the within-class variations of another mode (e.g., expression),
leading to a better performance than LDA. But also attributed to
this property, we argue that it becomes difficult to eliminate all
the factors irrelevant to identity. In contrast, our MvDA can
remove all the identity-irrelevant factors and induce a more dis-
criminant model.

Difference from GMA [28]. Both MvDA and GMA are dis-
criminant multi-view methods for recognition across multiple
views. However, MvDA is quite different from GMA in the fol-
lowing aspects: 1) In GMA, only the intra-view discriminant
information is considered, while in MvDA both intra-view and
inter-view discriminant information is considered. The inter-
view discriminant information is especially important since
object recognition across views is about the inter-view distin-
guishing. 2) In case of only single sample per class per view,
the supervised GMA will fail to work because it is impossible
to compute the within-class variations with single sample per
class. On the contrary, in this case our MvDA can still work
since the within-class variations are computed from all views
rather than single view. 3) GMA has many (about v�ðvþ3Þ�4

2 ) free
parameters to tune, which can be very tedious especially in
case of large number of views. In contrast, our MvDA has no
parameter to tune, while MvDA-VC has only one balance
parameter, thus much easier to use in practice.

4 EXPERIMENTS

In this section, MvDA is evaluated on three heterogeneous face rec-
ognition tasks, i.e., face recognition across pose, photo vs. sketch
recognition and visual light (VIS) image versus near infrared (NIR)
image recognition respectively on three datasets.
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4.1 Datasets

Multi-PIE dataset [1] is employed to evaluate face recognition
across pose. It contains more than 750,000 images of 337 subjects
under various view points, illumination and expressions. In this
work, a subset consisting of images from all subjects at 7 poses
(�45, �30, �15, 0, 15, 30, 45�), three expression (Neutral, Smile,
Disgust), no flush illumination from all four sessions is selected as
the evaluation data. This subset is divided into two parts: the
images from the first 231 subjects with 4 randomly selected images
under each pose of each subject (about 231� 7� 4 = 6,468) are used
as training data and the images (about 2,289) from the rest subjects
are used as testing data.

CUHK Face Sketch FERET (CUFSF) dataset [8], [33] is used to
evaluate photo versus sketch face recognition. CUFSF consists of
the images from 1,194 subjects from FERET dataset [34] with light-
ing variations. For each subject, only one photo is available and a
sketch is drawn with shape exaggeration according to each photo.
On this dataset, the images from the first 700 subjects are used for
training and images from the rest 494 subjects are used for testing.

Heterogeneous Face Biometrics (HFB) dataset [2] is used to evalu-
ate Visual (VIS) light image versus NIR image heterogeneous rec-
ognition. This dataset contains images from 100 subjects, with four
NIR and four VIS images per subject. The evaluation follows the
standard Protocol II, i.e., the images from the first 70 subjects are
used as training data and the images from the rest 30 subjects are
used as testing data.

4.2 Experimental Settings

All images fromMulti-PIE and CUFSF are cropped into 64 x 80 pix-
els and images from HFB dataset are cropped into 32 � 32 accord-
ing to the standard protocol. In all experiments, each image is
represented as a column vector by vectorizing its grey intensities.
The proposed MvDA is compared to most related existing methods
including Pairwise CCA (PW-CCA) [4], CDFE [19], CSR [21], PLS
[6], Unified LDA [31] (U-LDA), Multiset CCA (MCCA) [26],
MCCA [26]+LDA, MMDA [30] and GMA [28]. Among them, PW-
CCA, CDFE, CSR and PLS are two-view methods; therefore we
exploit the pairwise strategy for multi-view classification. The so
called U-LDA is the traditional Fisherface [31] regardless of the
view discrepancy. For CDFE, the parameter a and bb are traversed
in [0.01 1] and [0.0001 1] respectively to report the best result. For
CSR, the parameter � and h are traversed in [0.01 10] to obtain a
best result. For GMA, following the suggestions in [28] we set
m ¼ 1, g ¼ trace ratio, and tune the � in [1 100]. For our MvDA
without view consistency, there is no parameter needed to tune.
For our MvDA-VC, the balance parameter � is traversed in [0.001
0.3], and an illustration of the performance w.r.t different � on
Multi-PIE dataset is shown in Table 1. As seen, MvDA performs
better when with a stronger constraint, but begins to degrade
when with a very large constraint. This is because the structures of

different views are similar but not exactly the same, which thus
prefers a moderate constraint.

To reduce dimensionality, principal component analysis (PCA)
[35] is first applied for all methods. For CCA, CDFE, CSR and PLS,
the PCA dimensions are empirically set to achieve the best recogni-
tion accuracies via traversing possible dimensions. In contrast, for
all other comparative methods, the reduced dimension is set to
100, 100 and 80 to preserve more than 95 percent energy on Multi-
PIE, CUFSF and HFB datasets respectively.

4.3 Face Recognition Across Pose

Face recognition across pose is evaluated on Multi-PIE dataset by
taking each pose as one view. The testing is conducted in pairwise
manner, i.e., the images from one view are used as gallery while the
ones from another view are used as probe. Here, note that the gal-
lery and probe contain the enrolled faces to be recognized, which
has no overlap with the training set for MvDA learning. The sam-
ples in Multi-PIE are from seven views, thus leading to 7� 6 = 42
evaluations in terms of rank-1 recognition rate (as in the supplemen-
talmaterial, available online). Then, all 42 results are averaged as the
mean accuracy (mACC) as shown in Table 2.

As seen, CCA and PLS perform poorly, which we argue can be
ascribed to their ignorance of supervised information. Further-
more, CDFE that considers supervised information performs bet-
ter. Although CSR is supervised method, it performs unexpectedly
badly on this dataset, which may be due to the difficult regression
between the appearance and the class labels.

Compared with the pairwise two-view methods, the multi-view
ones such as MCCA, MCCA+LDA, GMA and MvDA perform
much better. As seen, compared with PW-CCA, MCCA can signifi-
cantly improve the recognition accuracy, up to 7.9 percent in terms
of mACC. The unsupervised MCCA even outperforms the U-LDA
which exploits the supervised information but disregards the view
information. The methodMCCA+LDA performs better, but still not
good enough. We attribute this inferiority to the separately model-
ing of the cross-view gap and discriminancy, leading to some dis-
criminancy loss in the first step (MCCA) that cannot be recalled by
LDA anymore. Furthermore, GMA performs better than MCCA
since it exploits the discriminant informationwithin each view.

TABLE 2
Evluation on Multi-PIE Dataset in Terms of Mean Accuracy (mACC)

Pairwise Methods Multi-viewMethods

PW-CCA [4]� CDFE [19] CSR [21] PLS [6] U-LDA [31] MMDA [30] MCCA [26] MCCA[26]+LDA GMA [28] MvDA MvDA-VC

83.7% 88.8% 72.0% 77.4% 84.3% 86.9% 91.6% 92.6% 92.0% 95.0% 96.3%

�In [36], the constraints in Eq. (1) were not enforced to satisfy. Here, it is corrected and thus the results are slightly different.

TABLE 1
The Performance of MvDA-VC w.r.t. � in Terms of Mean Accuracy (mACC) on Multi-PIE Dataset

� 0 0.001 0.01 0.02 0.03 0.1 0.2 0.3

mACC 95.0% 95.3% 96.0% 96.2% 96.3% 95.9% 95.5% 95.0%

Fig. 2. The 2D embeddings of Euclidean space, common space from MCCA and
MvDA for the samples from 7 views on Multi-PIE dataset. Different classes are
denoted in different colors and shapes.
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Furthermore, our MvDA even without view-consistency out-
performs GMA with an absolute improvement up to 3.0 percent,
due to the employment of more discriminant information embed-
ded in both inter-view and intra-view variations. By adding the
view-consistency, the MvDA-VC further improves the mean accu-
racy by 1.3 percent, which demonstrates the effectiveness of the
view-consistency. It is worth noting that the above-mentioned
improvements are very significant since they are the average of
42 cross-view accuracies (as shown in the supplemental material,
available online). Especially, our MvDA and MvDA-VC outper-
form the competitive methods more significantly in case of larger
pose deviations. For example, in case of large pose deviations, the
improvements of MvDA-VC over MCCA and GMA are as high as
11.9 and 15.6 percent respectively. Fig. 2 displays the common
spaces obtained by the MCCA and our MvDA for samples from
seven views. As seen, the common space obtained by our method
is more compact and discriminative.

4.4 Photo versus Sketch Face Recognition

Face recognition across photo and sketch is evaluated on CUFSF
dataset. The results are shown in Table 3. Please note that on this
dataset GMA fails to work, since there is only one sample per class
per view. Besides, in this two-view case MCCA degenerates to
PW-CCA.

As seen, CCA performs the worst and PLS performs much bet-
ter benefited from the consideration of the intra-view variations
besides the inter-view correlation considered in CCA. Moreover,
CDFE and CSR also outperform CCA by employing the discrimi-
nant information. As expected, our MvDA and MvDA-VC per-
forms the best. Especially, the MvDA-VC achieves improvements
of 6.1 percent for Photo-Sketch and 8.1 percent for Sketch-Photo
compared with the best results of competitive methods (i.e., CSR
and U-LDA respectively). One can also find that MvDA-VC again
achieves impressive gain over MvDA, which further validates the
effectiveness of the view-consistency regularizer.

4.5 Visual Light versus Near Infrared Recognition

We also test MvDA for heterogeneous face recognition on HFB
dataset. As in face recognition across photo and sketch, the samples
in HFB dataset are only from two views, visual light image and
near infrared image. The comparisons are shown in Table 3.

From Table 3, the same conclusion can be drawn even more
safely. Besides, on this dataset MvDA achieve much larger
improvements over all competitive methods than that on CUFSF,
e.g., MvDA-VC has improved the recognition rates to 59.2 percent
from the best known results of GMA. The larger gain can be attrib-
uted to the more intra-view discriminative information exploited
by our MvDA, since there are more (i.e., 4) images per view per
subject on HFB than that (i.e., 1) on CUFSF.

From the above evaluations, it can be seen that the common
space obtained by the multi-view methods is more suitable for
multi-view classification by jointly modeling multiple views. Fur-
thermore, by taking advantages of both intra-view and inter-view
variations, MvDA can obtain a more discriminant common space
shared deeply by multiple views.

5 CONCLUSIONS AND FUTURE WORKS

To address the object recognition from multiple views problem,
this work developed a multi-view discriminant analysis method
that can obtain single discriminant common space shared by all
views, in which the samples from different views can be readily
matched. By exploiting both the intra-view and inter-view correla-
tions, MvDA achieves better discriminability and generalizability.
The problem is formulated as a generalized Rayleigh quotient lead-
ing to an analytical solution. Experiments on three heterogeneous
face recognition tasks demonstrate the superiority of our method
over the existing methods.

Obviously, our MvDA can be easily kernelized in future. We
will also extend MvDA by modeling how each view originates
from the commonality.
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