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Abstract. A combinatorial random variable is a discrete random vari-
able defined over a combinatorial set (e.g., a power set of a given set). In
this paper we introduce combinatorial Markov random fields (Comrafs),
which are Markov random fields where some of the nodes are combinator-
ial random variables. We argue that Comrafs are powerful models for un-
supervised and semi-supervised learning. We put Comrafs in perspective
by showing their relationship with several existing models. Since it can
be problematic to apply existing inference techniques for graphical mod-
els to Comrafs, we design two simple and efficient inference algorithms
specific for Comrafs, which are based on combinatorial optimization.
We show that even such simple algorithms consistently and significantly
outperform Latent Dirichlet Allocation (LDA) on a document clustering
task. We then present Comraf models for semi-supervised clustering and
transfer learning that demonstrate superior results in comparison to an
existing semi-supervised scheme (constrained optimization).

1 Introduction

Three decades have passed since McGurk and MacDonald published their work [1]
revealing the multi-modal nature of speech perception: sound and moving lips
compose one system, so to better process audio signals, an audio/video interac-
tion should be modeled. Since then, machine learning researchers have widely ex-
ploited data multi-modality, using many approaches, such as multi-modal neural
networks [2], multivariate information bottleneck [3], and more recently multi-
view expectation maximization [4] and multi-way distributional clustering [5].

Multi-modality plays an important role in unsupervised learning; given no
class labels, learning results mostly depend on data representation. For example,
one cannot expect a system to cluster documents by topic if only their lengths
are given. However, when documents are represented as bags of words, mean-
ingful clustering can be built. Moreover, if in addition to bags of words, another
representation based on documents’ authorship is obtained, the two modalities
show different angles of documents’ topicality and thus provide useful structure
to documents’ representation that can be leveraged during learning.

In many real-world situations multiple modalities of data can be easily ob-
served. Indeed, consider an email inbox, where in addition to message bodies,



one can observe subject lines, names of senders and recipients, markup items,
attachments etc. Nevertheless, early multi-modal systems rarely went beyond
two modalities (documents/words, audio/video, genes/samples, etc.). Currently,
with the availability of massive computational power, using more than two
modalities is a feasible and attractive research opportunity.

In many cases, each modality interacts differently with the others, with some
interactions being negligibly weak. Hence, when many modalities are available
(each of which having its own interaction pattern with the others), we can con-
struct a graph representation of the modalities and their interactions. In previ-
ous work, Friedman et al. [3] use a Bayesian network to define input and output
spaces in the multivariate Information Bottleneck; Bekkerman et al. [5] use a
pairwise interaction graph to describe dependencies between the modalities. In
both those studies, the graph is an auxiliary, descriptive component of the model.

Our approach uses the Markov random field (MRF) formalism (see, e.g., [6]).
In Section 2, we propose a combinatorial Markov random field (Comraf), which
allows us to model each modality of the data as a single combinatorial random
variable in the MRF graph, with edges representing probabilistic interactions be-
tween the modalities. Comraf models are (a) compact — the number of nodes in
a Comraf is the order of the number of modalities, which allows for easier model
learning; and (b) data-driven — no generative assumptions are made, which mini-
mizes the model’s bias. The main contribution of this work is to present a general
framework for multi-modal learning, which is based on the most probable expla-
nation (MPE) inference in a Comraf. For unsupervised learning, we show that
Comrafs are a general framework that subsumes a number of existing models as
special cases (Section 3) and allows us to also explore new modeling possibilities
for other learning tasks, such as semi-supervised clustering and transfer learn-
ing (Section 4). We show that Comrafs lend themselves to naturally modeling
multi-model data, obtaining strong empirical results (Section 5).

2 Combinatorial MRF's

Definition 1. A combinatorial random variable (or combinatorial r.v.) X¢ is
a discrete random variable defined over a combinatorial set.

A combinatorial set in mathematical parlance means a set of all subsets,
partitionings, permutations etc. of a given finite set. To capture this intuition,
we define a finite set A as combinatorial if its size is exponential with respect
to another finite set B, i.e. log|A| = O(|B|). As an example, a combinatorial
r.v. X¢ can be defined over all the outcomes of lotto 6 of 49, in which 6 balls are
selected from 49 enumerated balls to produce an outcome of the lottery. In this
case, set B consists of 49 balls, while set A consists of (469) possible choices of 6
balls from B. In a fair lottery, the distribution of X¢ is uniform: each outcome
is drawn with probability 1/ (469). However, in an unfair lottery, some outcomes
are more probable than others.

From the theoretical perspective, a combinatorial r.v. behaves exactly as an
ordinary discrete random variable with a finite domain. However, from the prac-



tical point of view, a combinatorial r.v. is different: in most real-world cases, the
event space of X¢ is so large that the distribution P(X¢) cannot be explicitly
specified. Moreover, the MPE task for combinatorial r.v.’s can be computation-
ally hard. Considering an unfair lottery example, in which the distribution of X¢
is flat (close to uniform), say, the probability of value {7,23,29,35, 48,49} is 0
and the probability of value {4,18,28,37,39,43} is 2/ (469), while the rest of the
values still have the probability 1/(%’). An exponentially long sampling process
is required to detect the most probable value.

It is easy to come up with other examples of combinatorial r.v.’s: all the
possible translations of a sentence, orderings in a ranked list of retrieved docu-
ments, etc. In this paper, we consider combinatorial r.v.’s over all partitionings of
a given set. In most complex systems random variables interact with each other.
Such interactions are usually represented in a directed or undirected graphical
model. In multi-modal systems, which are the focus of our paper, interactions
between modalities are symmetric, so the undirected case is more appealing.

A Markov random field (MRF) is a model (G, P), where G is an undirected
graph whose nodes X = {Xy,...,X,,} represent random variables and whose
edges E denote interactions between these variables. P is a joint probability
distribution defined over X. The Markov property holds in this model.

Definition 2. A combinatorial Markov random field (Comraf) is an MRF, at
least one node of which is a combinatorial random variable.

2.1 MPE inference in Comrafs

An inference procedure in MRFs answers questions about the model, such as
what is the most likely assignment x* = {z7,..., 2%} to variables {X1,..., X, }
(i.e. MPE). Naturally, answering most of such questions is NP-hard since it
potentially requires considering every possible assignment. Thus, most inference
techniques fall into the category of approximation methods.

The Hammersley-Clifford theorem [7] states that the joint distribution over
nodes of an MRF is a Gibbs distribution: P(x) = Z% exp Y, fi(x), where f;(x)
are arbitrary potential functions defined over cliques in G, and Zf is a nor-
malization factor called a partition function. Unsupervised learning problems
are usually solved using the mazimum likelihood (ML) framework (see, e.g. [8]),
where model parameters that best explain the data are estimated. Most ML
methods deal with approximating Zg, which is generally a hard task, because
Zs depends on the particular choice of f;’s and is a sum over all the possible
configurations. However, in our setting the potentials f; are fixed for each clique,
the partition function Z¢ becomes a constant, so log P(x) oc ). f;(x). Thus, for
MPE, it is sufficient to directly optimize:

x* = arg max P(x) = arg mgxz fi(x). (1)

This relatively simple formulation is still quite powerful, as it allows us to use a
wide variety of potential functions that might be too complicated to use in the
general setting where the partition function still needs to be approximated.



3 Unsupervised learning with Comrafs

To illustrate the power of the Comraf framework, we initially focus on unsuper-
vised learning (e.g., data clustering) and show how several existing clustering
schemes are specific instances on Comrafs. Let sq, so, ..., sy be a dataset of NV
i.i.d. samples drawn from some discrete distribution. Let X = {z1,xa, ..., 2, } be
the set of n unique values comprising the event space from which samples s; are
drawn. We now define a random variable X such that P(X = x;) is given by
the empirical frequencies of samples with value z; in the dataset (i.e., X has a
multinomial distribution estimated using maximum likelihood).

Define a hard clustering ¢ to be a partitioning of X'. Let X¢ = {Z5, %5, ..., #%}
be the combinatorial set of all K partitionings of X, where K is exponential
in the size of X. We will refer to the subsets of the j-th partitioning 7§ as
{#,1,%52, ..., %%, }- That is, the first subscript is the index of the particular
partitioning, and the second subscript is the subset within that partitioning.

Define X ; to be a random variable over the subsets (clusters) in a partitioning
z§, with the probability of a selected cluster being the probability of choosing
any one of its elements, that is, P(X =&;;) = }_,c; , P(x). Finally, define Xe
to be a combinatorial r.v. with the event space X°. In this work, we shall use
parallel notation for different modalities of data, replacing the “z’s” in the above
notation with variables appropriate for the data source. For example, w; would
represent a specific word in a dataset, @W° a partitioning of words, and so on.

Interactions between combinatorial r.v.’s (possibly, with ordinary r.v.’s) are
represented by edges in a Comraf graph. To use the objective from Equation (1),
we should choose relevant cliques in the Comraf graph and define potential
functions over these cliques. To make the inference feasible, we consider only the
smallest cliques, i.e. adjacent pairs. Since our inference objective allows using
complicated potential functions (see Section 2.1), we use the mutual information
(MI) between r.v.’s defined over values of adjacent nodes. Let Z{ and g be such
values (particular partitionings of two modalities). A potential is then defined:

e - S L P(Z;4,955)
F@5,95) = I(X3Y;) = > P(&,0,75,5) log 50—l
/ ! Z ! P(Zs,0)P(g5,50)

y
V)

Our motivation for choosing MI as a potential function is as follows: a linear
combination of MI terms has traditionally been used as a clustering criterion,
both in 1-way clustering methods, such as Information Bottleneck (IB) [9], and
in 2-way methods [10]. Friedman et al. [3] generalize the IB clustering criterion to
a multivariate case: in place of MI, they use Multi-Information, which naturally
factors over a directed graphical model. With little effort, we can show that
Multi-Information also factors over a tree-structured undirected graphical model,
reducing to a sum of pairwise MI terms defined over edges of the tree. However,
in the case of an arbitrary Comraf graph, the Multi-Information can only be
approzimated by a sum of pairwise MI terms. Estimating the quality of such an
approximation remains an open question that we will address in future work.
Presently, we show how existing models can be cast as Comrafs:
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Fig. 1. Comraf graphs for: (a) hard version of Information Bottleneck; (b) information-
theoretic co-clustering; (c) 4-way MDC; (d) semi-supervised clustering; (e) clustering
with transfer learning.

A hard version of Information Bottleneck [9] is a special case of a Com-
raf. In IB, a clustering £* is constructed that maximizes information about a
variable Y (and minimizes information about X), i.e. 2°* = arg maxz« (I(X;;Y)—
BI(X;; X)), where 3 is a Lagrange multiplier. The compression constraint I(X;; X)
can be omitted if the number of clusters is fixed: [#§| = k. Consider graph G' in
Figure 1(a), where a shaded Y represents an observed variable.® On the only
clique in G we define one potential which is the mutual information I(X 53 Y).
The MPE objective is then: 2°* = arg maxze P(%§,y°) = arg maxge I(X;;Y).

Information-theoretic co-clustering [10] is a task of simultaneously clus-
tering documents X and their words ), while minimizing the information loss
I(X;Y) — I(X;,Y;) under the constraint |Z5] = k1 and [§§| = ko. Note that
I(X;Y) is a constant for a given dataset. This scheme is a special case of
a Comraf as well: given graph G in Figure 1(b), in analogy to the Comraf
model of IB, we define the only potential [ (Xj,ffj) Then the information-
theoretic co-clustering can be represented as an MPE procedure in the Comraf:
(i‘c*, gc*) = arg maxijc_@]c_ P(.’i‘;, :Ijjc) = arg maXi§,g; I(XJ, Y})

Multi-way distributional clustering (MDC) [5] is a generalization of [10],
where the data has a number of interdependent modalities (such as documents,
words, authors, titles, etc.). Interactions between the modalities are represented
using a pairwise interaction graph that has no probabilistic interpretation. Ac-
tually, these interactions can be represented in a Comraf, where the modalities
are combinatorial r.v.’s X¢ = {X¢,..., XS} that are nodes in a graph G with
edges E. The MPE scheme is then:

X" = argmax P(Xj) = arg max Z I(Xij; X ). (2)
E T (Rp.X)eE

Here the first subscript is the index of a combinatorial r.v., while the second
subscript is the index of this r.v.’s particular value (a partitioning). Equation (2)
is equivalent to the MDC objective proposed in [5]. An example Comraf graph
for a 4-way MDC (that corresponds to simultaneously clustering documents,
words, authors and titles) is shown in Figure 1(c).

3 For discussion on observed variables see Section 4.



We note that by casting IB and Information-theoretic co-clustering as Com-
rafs, we not only show the generality of the framework, but also demonstrate that
the generalization of these methods to additional modalities of data is naturally
accomplished via Comrafs. In the case of MDC, viewing this model as a Com-
raf allows us to consider generalizations to other tasks, such as semi-supervised
learning via the introduction of observed variables in the model.

3.1 Clustering as inference in a Comraf

Due to unique characteristics of combinatorial r.v.’s, it is problematic to apply
existing inference algorithms to Comrafs. Here we propose an inference method
specific for Comrafs, which is based on combinatorial optimization. We then craft
two simple and efficient inference algorithms based on the proposed method.
Given that a variable X has n values that are clustered into k clusters, the
combinatorial r.v. X¢ has k™ values, all of which can be represented as points
in an n-dimensional lattice L: a point ¢ = (i1, 42,...,i,) corresponds to the
fact that value xz; of X belongs to cluster ¢;, value x5 belongs to cluster is,
.., value x, belongs to cluster i,.* In the lattice L there is a (possibly non-
unique) point Z¢* = (if,143,...,45) which is most likely. Since the lattice consists
of an exponential number of points, the task of finding the most likely point can
be computationally hard. We will attempt to approximate the solution using a
quasi-random walk in the lattice. Let us start with two definitions.

Definition 3. A transaction (...,i;,...) — (...,7},...), where i; # i}, is an
elementary operation in traversing the lattice L of possible clusterings, in which

x; 1s moved from cluster i; to cluster z;

Definition 4. A path in L is a sequence of transactions. A path is called ad-
vantageous if it leads to a more likely clustering, otherwise it is disadvantageous.

Note that we can view both splits and mergers of clusters as transactions. A
split of a cluster i;/ is a transaction (...,%,,...) — (..., i;-,, ...), where 35 # j' :
ijo=i; and Vj # j' : i%, # i;. That is, cluster i;; contained at least two elements
(xj and x;), one of which (z;/) has been transferred into a newly created cluster
i%. A merger of clusters i; and 4}, is a transaction (..., iy,...) — (..., i%,...),
where 3j # j' : i’ =1i; and Vj # j': iy # ij, i.e. cluster i contained only one
element that has been added to the existing cluster i, so that the cluster i; does
not exist anymore. These operations will help us to represent both agglomerative
(bottom-up) and divisive (top-down) clustering schema as inference in Comrafs.

By applying splits, mergers and other transactions, we construct paths in the
lattice of possible clusterings. Thus, to approximate the MPE of a combinatorial
r.v. X¢, we apply the simplest, greedy combinatorial optimization algorithm—
hill climbing:® we attempt to construct a path in L which is as advantageous as

possible on each step, given the available computational resources.

4 For now, we consider only hard clustering, where P(ij|z;) = 1 for a value z; assigned
to cluster i;. Generalization of the Comraf model to soft clustering is our future task.

5 More complex algorithms, such as Branch and Bound, while applicable, may be
infeasible to use because of their high computational complexity.



Algorithm 1 A template of an MPE procedure in Comrafs.

Input:
G — Comraf graph of nodes {Xf, e ,f(fn} and edges E
P(X;,...,X,,) — joint probability distribution of data, factorized over G
| — number of optimization iterations
Output:
Most likely &7 ;,. .., &5,

Initialization:
fori=1,...,m do

Select a point in L; to be an initial value Z7 o of Xt
Compute the initial joint P(leo, e X’myo), factorized over G
Main loop:
for j=1,...,ldo

Select variable X¢ for optimization

Construct advantageous path (ig/’jfl — :Eg},j) in Ly

For all i #4 do f ; = &5,

In a Comraf that has more than one combinatorial r.v., the Comraf inference
algorithm becomes a variation of the Iterative Conditional Mode (ICM) method
[11]. ICM optimizes each node of an MRF iteratively (in a round-robin fashion),
given its Markov blanket. At an ICM iteration applied to a node Xlﬁ the MPE
objective from Equation (2) with O(|X|?) terms is reduced to:

¢ = arg max Z I(Xi,j;fci,,j) (3)
Y (Xe,X5)EeR

that sums over only O(|X|) neighbors of X¢.

A template pseudo-code for the MPE approximation in a Comraf is given
in Algorithm 1. For each combinatorial r.v. f(f in the Comraf, we first select
and fix its initial value as a point in the lattice L;. We then round-robin over
each Xf, for which we search for an advantageous path in L;. When this path
is constructed, we fix its destination point to be a new value of X¢ and move
to another node. We repeat this procedure [ times. To transform this template
into an actual algorithm, we need to make the following choices:

— Selecting initial values for each combinatorial r.v. in the Comraf. Either
random assignment of data points into k clusters or an assignment of all
data points into one cluster are two simple choices, while other methods
(such as those incorporating prior knowledge) are possible.

— Determining an ordering for variables in the optimization procedure. One
obvious approach is a plain or weighted round-robin, but more sophisticated
choices can also be made.

— Constructing an advantageous path in L. A greedy method would increase
the likelihood with each transaction, leading to a local maximum of the
objective. However, we could also consider a stochastic approach in which



some disadvantageous transactions are tolerated assuming that they may
lead closer to the global maximum.

The latter point is of especial importance. We propose two algorithms for
constructing advantageous paths. In both, we first split or merge clusters in
order to meet the traditional requirement on the number of clusters. Then, in
the sequential algorithm, we iterate over each data point in some ordering, and
assign it into its best cluster (the one for which the objective is maximized).
In the randomized algorithm, we repeat the following step a predefined number
of times:® we uniformly at random select a data point z; and a cluster Z;, and
assign x; into Z; if this transaction improves the objective.

4 Semi-supervised and transfer learning with Comrafs

The Comraf model is a convenient framework for performing semi-supervised and
transfer learning. Prior to presenting details of particular Comrafs, let us define
the concepts of hidden and observed states in the Comraf model. A combinatorial
r.v. is hidden if it can take any value from its event space. A combinatorial r.v. is
observed if its value is preset and fixed.

4.1 Semi-supervised clustering with Comrafs

Semi-supervised clustering is a clustering task that takes advantage of labeled
examples. Usually, semi-supervised clustering is performed when the number of
available labeled examples is not sufficient to construct a good classifier (e.g.,
the constructed classifier would overfit), or when the the labeled data is noisy
or skewed to a few classes. Assuming that most of the labeled data is accurate,
our goal is to incorporate it into the (unsupervised) Comraf model.

In this paper, we consider a uni-labeled case: each labeled data point x;|?_;
belongs to one ground truth category tj|§:1. We propose an intrinsic Comraf
approach for incorporating labeled data into clustering (by introducing observed
nodes to a Comraf graph), and compare it with an existing constrained optimiza-
tion scheme.

Intrinsic approach. Comrafs offer an elegant method for incorporating
labeled data, which does not require any significant changes in the model. First,
note that labels define a natural partitioning of the labeled data: for each label
tj let Zo; be a subset of X labeled with ¢, i.e. Zo; = {z;|t; = t;}. We now define
a r.v. X, over the partitioning z§ = {&;lj = 1,...,k}, and we also define a
combinatorial r.v. Xg over all the possible partitionings of the set X'. Since the
partitioning z§ is given to us, the variable X’g is observed, with Z§ being its fixed
value. Observed combinatorial random variables appear shaded on a Comraf
graph — see, e.g., Figure 1(c). The objective function from Equation (3) and
the MPE inference procedure remain unchanged (with the only difference being

6 Equal (for fair comparison) to the number of iterations in the sequential algorithm.



that there is no need in optimizing the observed nodes): at each ICM iteration
the current node is optimized with respect to the fized values of its neighbors,
whereas the values of the observed nodes are fixed by definition.

Constrained optimization. Wagstaff and Cardie [12] perform semi-supervised
clustering with two types of boolean constraints. The must-link constraint ml
equals 1 if two equally labeled data points are assigned into different clusters;
the cannot-link constraint cl equals 1 if two differently labeled data points are
assigned into the same cluster. A clustering objective function incorporates the
constraints, e.g. in Comrafs (Equation (3)) for each combinatorial r.v. X¢ it is:

~C* v .V
T; = argmax E (X35 X j) — E wi g mli g — E Wil
Y9 (R X)eE 2 7

where w; ;; are weights that we set at +oo, which means that all constraints
must be satisfied. Note that in a general case we are free to choose any non-
negative weights. In order to fairly compare two semi-supervised methods, for
both of them we must use the same underlying clustering algorithm. We use the
sequential MPE inference algorithm (see Section 3.1) in both cases.

4.2 Transfer learning with Comrafs

Transfer learning is the problem of applying the knowledge learned in one task
to effectively solve another learning task. In this paper, we represent the ac-
quired knowledge as a partitioning g pre-built for data ) that can be used for
constructing a partitioning z¢ of data X. We note that the intrinsic scheme for
semi-supervised clustering presented above allows us to directly use labeled data
not from X but rather from another collection ). Thus, in analogy to the semi-
supervised case, we introduce an observed combinatorial r.v. Y with a fixed
value g§. During the inference process, we construct £ that maximizes infor-
mation about g§, while applying the same objective function as in Equation (3).

5 Experimentation

Following [10], we use micro-averaged accuracy for evaluation of our clustering
methods. Let Z¢ be a clustering of the data X'. Let T" be the set of ground truth
categories. We fix the number of clusters to match the number of categories
|z°| = |T'| = k. For each cluster Z;, let yp(Z;) be the maximal number of Z;’s
elements that belong to one category. Then, accuracy Acc(Z;,T) of a cluster Z;
with respect to T' is defined as Acc(Z;,T) = vyr(Z;)/|Z;|. The micro-averaged
accuracy of a clustering z¢ is:

Yhoir(E) Xy ()
Sl W W

We evaluate the Comraf models on six text datasets. In addition to the
standard benchmark 20 Newsgroups dataset (20NG) we use five real-world email

Ace(z°,T) =




Table 1. Left 3 columns: statistics on the datasets. Right 3 columns: clustering ac-
curacies (with standard error of the mean) for LDA and two Comraf algorithms. We
report on only one of the two lengthy 20NG experiments with Comrafs.

DATASET ||S1zE (NUM|NUM OF DIS- [NUM OF|| LDA | COMRAF | COMRAF

OF DOCS) [TINCT WORDS|CLASSES (SEQUENT) |(RANDOM)
ACHEYER 664 2863 38 44.3+0.4| 47.8£0.4 | 47.1£0.4
MGERVASIO T 3207 15 38.5+0.4| 42.44+0.4 | 44.0£1.0
MGONDEK 297 1287 14 |/68.04+0.8| 75.940.6 | 75.5+0.5
KITCHEN-L 4015 15579 47 36.7£0.3| 42.4+0.6 | 41.6£0.8
SANDERS-R| 1188 5966 30 ||63.8+0.4| 67.44+0.3 | 67.6+0.3
20NG 19997 39764 20 ||56.7£0.6| 69.5+0.7

directories. Three of them belong to participants in the CALO project” and the
other two belong to former Enron employees.® We preprocess the data following
Bekkerman et al. [5]. Table 1 provides basic statistics on the six datasets.

We report on the clustering accuracy averaged over ten independent runs on
the email datasets and five runs on 20NG. For the (unsupervised) clustering task
we use the Comraf graph from Figure 1(b), with X¢ for document clusterings
and Y for word clusterings. We apply agglomerative clustering to documents
and divisive clustering to words. We compare two Comraf algorithms proposed in
Section 2.1 with Latent Dirichlet Allocation [8], a popular generative clustering
model. We use Xuerui Wang’s LDA implementation [13] that applies Gibbs
sampling with 10000 sampling iterations.” As shown in Table 1, both Comraf
algorithms outperform LDA on all five email datasets and by more than 12% on
an absolute scale on 20NG. Interestingly, both Comraf algorithms show almost
identical results which suggests that the method of constructing advantageous
paths does not matter a lot, as soon as the number of iterations is the same.

Figure 1(d) shows a Comraf graph for the intrinsic scheme of semi-supervised
clustering (see Section 4). Together with a node D¢ over document clusterings
and a node W€ over word clusterings, we introduce an observed node [)8, whose
value (28 is a given partitioning of labeled documents. Our objective derived from
Equation (2) is: (d°*,w"*) = arg maxXge ze I(D;; W;) + I(Dy; Do) 4 I(Wj; D).

‘We conduct the following experime]ntzjfor each email dataset, we uniformly at
random select 10%, 20%, or 30% of the data and refer to it as labeled examples
while the rest of the data is considered unlabeled. We apply both intrinsic and
constrained methods on the three setups and plot the accuracy (calculated on
unlabeled data only) vs. the percentage of labeled data used. The results are
shown in Figure 2. As we can see from the figure, both methods unsurprisingly
improve the unsupervised results, while the intrinsic Comraf method usually

" http://www.ai.sri.com/project/CALO

8 The preprocessed Enron email datasets can be obtained from http: //www.cs.umass.
edu/~ronb/enron _dataset.html.

9 We also tried David Blei’s LDA-C [8] that implements variational approximation
and obtained significantly inferior accuracy.
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Fig. 2. Plots (a)-(e): comparing accuracies of the semi-supervised Comraf and the
constrained optimization method on five email datasets. Plot (f): the semi-supervised
Comraf’s resistance to noise in labeled data.

outperforms the constrained method. On 20NG, we select 10% of data to be
labeled. The constrained method obtains 74.840.6% accuracy, while the intrinsic
method obtains 78.9 + 0.8% accuracy (over 5% and 9% absolute improvement
to the unsupervised result, respectively). For another experiment with a semi-
supervised Comraf, see [14].

The intrinsic scheme is resistant to noise. To show this, we conduct the
following experiment: on CALO datasets with 20%/80% labeled /unlabeled split,
we arbitrarily corrupt labels of 10%, 20% and 30% of the labeled data. Figure 2(f)
shows that clustering accuracy remains almost unchanged for all three datasets.

Our transfer learning experiments are set up as follows. We notice that in
two of the CALO datasets (ACHEYER and MGERVASIO) similar topics are dis-
cussed. Our hypothesis is that known categories of one dataset can improve the
clustering results on another dataset. To test this hypothesis, we first consider
one dataset to be labeled, while the other one is unlabeled, and then vice versa.
However, since the two datasets do not consist of the same documents, we decide
to use word clusters of the labeled dataset. We first cluster words distributed
over categories of the labeled dataset, as described in [15]. Then we introduce the
constructed clustering as an observed node W()C into the Comraf graph (see Fig-
ure 1(e)) and perform the inference. Using this scheme we improve the clustering
accuracy on MGERVASIO by 3% absolute over unsupervised clustering. However,
we do not see any change in the results on the ACHEYER dataset.

6 Conclusion and future work

In this paper, we have presented combinatorial MRFs and empirically shown
their utility on fundamental problems of unsupervised clustering, semi-supervised



clustering, and transfer learning. In our future work, we aim at applying Com-
rafs to non-textual domains, such as computer vision. The use of Comrafs is not
limited to clustering problems only. We plan to apply Comrafs to ranking, filter-
ing and other tasks. Another interesting research problem is model learning in
Comrafs. While model learning is often infeasibly expensive in graphical models
with thousands or millions of nodes, we have shown that useful Comraf models
can still be extremely compact, which makes model learning feasible.
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