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Figure 1: A comparison between frames a viewer perceives when watching the input video (a), and the ones produced by our method (b).
Image credits: Michael Fisher

Abstract

In this work we increase the apparent resolution of videos when
viewed on a high-refresh rate display by making use of perceptual
properties of the visual system. We achieve this enhancement by
exploiting the viewer’s natural tendency to track moving objects in
videos which causes the screen pixels to be projected at different
sub-pixel offsets onto the retina. We estimate the eye motion using
optical flow and use it to compute multiple low-resolution frames
for each input frame. By watching these new frames at a high
frame-rate, the viewer’s eyes integrate them over time and merges
them into a single perceived frame with a denser pixel layout. In
this work we also advance the existing approaches for resolution
enhancement in the following ways. We combine current display
resolution enhancement with super-resolution methods to enhance
input videos that are at the display resolution. We derive a new
perceived video model that accounts for actual camera sensor and
display pixel shapes in order to achieve optimal enhancement. We
analyze the degeneracies that certain motion velocities introduce to
super-resolution and resolution enhancement, and offer algorithmic
solutions for handling these scenarios as well as other difficulties
that arise when dealing with the optical flow of natural videos.

A user study finds that our approach achieves a noticeable increase
in the apparent resolution for videos even when viewed on regular
hardware (60Hz), and further enhances resolution when viewed on
higher refresh rate displays (120Hz).

CR Categories: 1.3.3 [Computer Graphics]: Picture/Image
Generation—[Display Algorithms]

Keywords: resolution enhancement, image processing, computa-
tional photography

1 Introduction

The recording and sharing of videos have become increasingly easy
to a point where any person can record and upload a video from
his/her cell phone within a few minutes. As a consequence, videos
have become omnipresent in our lives. Since most people use a
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variety of personal devices (camera recorder, cell phone, iPad, etc.)
to record and view videos, it cannot be expected that the video will
be viewed on a device with the same resolution as the recording
device. Often higher resolution videos have to be downscaled to fit
the resolution of the viewing device and thus the fine detail of the
original scene is lost.

Increasing the resolution of displays is challenging, because more
fully functional pixel units must be aligned within a smaller area.
For this reason, even modern LCD displays only reach two mega-
pixels and fall below nowadays consumer camera sensors which ex-
ceed ten mega-pixels. Furthermore, even if displays were of higher
resolution, lower resolution videos might be more desirable because
of their low transmission bandwidth and storage requirements that
make them ideal for fast and easy sharing.

In view of these limitations Didyk et al. [2010a] recently developed
an alternative perception-based method for increasing the perceived
resolution of displays. They exploit the retinal integration prop-
erty of the eye to increase the apparent resolution of still images by
moving them across the screen. When tracking the moving image,
the viewer’s eye integrates light at different sub-pixel offsets along
the motion trajectory. Didyk et al. rapidly display different im-
ages at these sub-pixel offsets that are integrated by the retina into
a single image. The displayed images are designed to produce a
perceived image with an apparent resolution that is higher than the
display resolution. Templin et al. [2011] extend this approach to
animations by relying on the natural tendency of a viewer to track
moving objects in the video. This tracking leads to the sub-pixel
offsets needed for retinal resolution enhancement. They predict the
path of the eye tracking via optical flow calculations and then use
it to compute the low-resolution frames (LRFs) that optimally con-
vey the high-resolution input frames when viewed on a high-refresh
rate display. They demonstrate their approach on high-resolution
and high frame-rate computer-generated videos with smooth mo-
tion fields.

In this paper we extend this approach in several respects. We show
that the display resolution enhancement formulation is directly
related to multi-frame video super-resolution [Patti et al. 2002;
Elad and Feuer 2002; Borman and Stevenson 2002], where high-
resolution video frames are extracted from multiple low-resolution
frames. We exploit this formal connection and combine the two
approaches to achieve a solution that increases both the resolution
of the input video as well as the device displaying it. We can thus
generate new LRFs that will be perceived as higher resolution on
a high-refresh rate display even if the input video is at the display
resolution. The integration of these two methodologies results in a
more efficient solution than executing them separately and allows
us to introduce a consistent normalization that handles degeneracies



in the optical flow.

Additional contributions of this work are: (i) a principled treatment
for degenerate motions as well as discontinuous optical flow fields,
which are two abundant phenomena in natural video sequences.
These algorithmic modifications are based on an analysis of the
inherent limitations in resolution enhancement and estimating the
effect that different flow vectors have on our system. (ii) Our model
accounts for the actual shape of the camera sensors and display
pixels and introduces matrix conditioning and kernel normalization
steps in order to cope with various degeneracies that arise in such a
system. Finally, (iii) our method computes the optimal set of LRFs
for each input frame separately and thus applies for standard 30
frames-per-second input video sequences videos of arbitrary length.

Figure 1 compares an input frame with the frame computed using
our method. Our perceived frame contains more high-frequency de-
tail for the man’s face and the mountaineer’s clothes. We show that
in ideal settings, our method can achieve a resolution enhancement
of up to a factor two for such moving image areas when compared to
the screen’s native resolution. A user study comparing our videos
to the input videos and to naively sharpened videos, finds that on
average 71% of the subjects perceive our video to have the highest
resolution when viewing them at 60Hz. This number increases to
88% of the subjects when the videos are played at 120Hz.

2 Related Work

Our method builds on several other areas of related work.

Perception-Based Techniques. Several existing display systems
make use of the retinal integration property of the eye. For ex-
ample, video interlacing used in CRT television sets is a technique
that alternates between displaying the even and odd horizonal video
scanlines of the screen. At every instant, only half of the pixels are
shown, but the viewer integrates this information temporally and
perceives one continuous image. As we discussed in the Introduc-
tion, recent works in computer graphics also use the temporal and
spatial integration properties of the eye to increase the resolution of
displays spatially [Templin et al. 2011; Didyk et al. 2010a] as well
as the temporal resolution of computer-generated videos [Didyk
et al. 2010b]. Berthouzoz and Fattal [2012] vibrate a display by a
very small amplitude to obtain the sub-pixel offsets between several
rapidly displayed low-resolution images. The viewer then merges
these images into a single perceived image of higher resolution.

Display Resolution Enhancement Techniques.  Subpixel ren-
dering is a technique that increases display resolution by consider-
ing the red, green and blue color channels as separate pixels [Platt
2002]. This technique enhances only the resolution of the lumi-
nance image component and is limited to the horizontal direction.
Researchers have also developed several techniques for projectors
that are known to suffer from insufficient resolution. Their tech-
nique consists of either projecting several low-resolution images at
small offsets [Damera-Venkata and Chang 2007; Jaynes and Ra-
makrishnan 2003] or deviating the light coming from the project
while displaying low-resolution images [Allen and Ulichney 2005].
Our work is similar to these projector techniques in the sense that
we generate an optimal set of LRFs for each input image. But in
our case, the target device is a single display. Our method therefore
does not have to account for intra- and inter-projection variations
that require careful geometric, photometric and color calibrations.

Multi-frame Super-Resolution. Super-resolution techniques
aim to reconstruct a high-resolution image from a set of low-
resolution input images taken at different translational offsets.
Super-resolution has been applied to sets of images taken from the
same static scene [Irani and Peleg 1990; Park et al. 2003], as well as

low-resolution videos [Patti et al. 2002; Elad and Feuer 2002; Bor-
man and Stevenson 2002]. In videos, optical flow is typically used
to estimate the translational offset between each frame. Ben-Ezra et
al. [2004] avoid using optical flow by physically shifting the cam-
era sensor as it records the video. Our work combines the model
used in super-resolution with our display resolution enhancement
approach, which allows us to generate a set of enhanced LRFs from
a low-resolution input video.

3 Method

We enhance the apparent resolution of a video when viewed on a
low resolution display by replacing every input frame by several
lower resolution frames that, when combined together, give rise to
a higher perceived resolution. In order to compute this set of LRFs
we have to model the image that is perceived when the eye tracks
an object in the scene. We start by formulating a static display
(and hence a static gaze) and then extend it to motion videos. The
function that describes the appearance of a single static image L in
continuum is given by

N
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where x is an integer pixel index, N is the number of pixels in L,
y is a real-valued point coordinate on the screen plane, and Py;q is
the point spread function (PSF) of the display, i.e., a function that
describes the shape of a single-pixel turned on, as it appears on the
display.

When displaying several LRFs within a period that falls below the
retinal integration time, the viewer fuses the images and perceives
them as one single image
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where T is below the retinal integration time. Assuming the eye
is following a moving object, we need to model the relative mo-
tion between the screen and the tracked point. We parameterize the
viewing coordinates of the apparent image by y — ¢(r), where ¢(t)
describes the trajectory of the tracked point at time 7.
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In practice L; is not a continuous function in time as we can only
display a small finite number n of LRFs.
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where [f;,7;11] is the time interval during which the i-th LRF is dis-
played. This model accounts for eye movements that do not depend
on the particular point in the frame. This is not the case for general
videos that contain multiple objects moving in different directions
and speeds. In such cases viewers typically scan the scene quickly
and then track one object of interest in the frame [Boccignone et al.
2002; Henderson 2003]. Hence, similarly to [Templin et al. 2011;
Boccignone et al. 2002], we predict the eye movement ¢(z,x) at
every pixel x of the input frame as the local motion of the video
content and estimate it by computing a dense optical flow [Brox
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Figure 2: (left) Static PSFs. (right) Three SPSF's generated for the
green channel. We show in red the linear trajectory along which
the PSF was smeared. All images were magnified by a factor 32.

et al. 2004]. Thus, we replace ¢(¢) in (4) by ¢(t,x).
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We call these time-averaged display point spread functions, Sg;s ;,
smeared point spread functions (SPSFs). In Figure 2 we show an
example of a static PSF and its SPSFs. Assuming the display re-
freshes at uniform periods, the time intervals [t;,#;11] divide the time
between the two input frames into n equal intervals. Thus, for each
pixel, there will be n SPSFs (one for each of the n LRFs), that are
smeared along 1/n-th of the optical flow vector for that pixel.

Finally, we use the perceived image model (5) to compute the
LRFs, L;, that produce an optimal approximation for a given high-
resolution input frame, H (y), in the I, sense, by solving the follow-
ing quadratic minimization
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In practice, we solve this minimization problem on a discrete pixel
grid, in which the y coordinates are discretized. The input im-
age H and the SPSFs are specified at this grid. The grid resolu-
tion is greater or equal to the rarget resolution, which is defined
as the maximum resolution enhancement that we can obtain with
our method. The target resolution is determined by the number and
offset between the LRFs. If we use n LRFs then, under ideal condi-
tions with a uniform arrangement between the LRFs (as we discuss
in Section 3.2), we will at most be able to match n times the high
frequency content of the LRFs. The target resolution is therefore
equal to the total number of pixels in the n LRFs.

This discretization allows us to express the minimization in (7) in
matrix form. We define a matrix W; for each LRF L;. Each W;
contains as its row vectors the SPSF Sy, ; for every pixel x in L;.
By combining these matrices into one matrix W = [Wy,..., W,],
the minimization (7) becomes

. 2
min (WL—H)", (8)

where L = [Ll,...,L,,]T is the column vector containing the un-
knowns of all the n LRFs that we are solving for, and H is the vec-
tor of the high-resolution input frame pixels. We solve (8) for each
color channel (red, green, blue) independently. Note that Equa-
tion (8) optimizes for the set of LRFs that best approximate each
high-resolution input frame, meaning that we solve for each input
frame independently.

Discussion. Unlike the previous method of Templin et al. [2011],
our perceived video model (5) allows us to use the precise display
PSF function in order to achieve optimal performance. We demon-
strate the importance of this consideration in Section 4. Further-
more, since we compute multiple LRFs from each input frame our
method applies to regular 30Hz input videos. Finally, by process-
ing each input frame individually our memory requirements do not
depend on the video length.
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videos since the eye track- Lk

ing causes each of the LRFs !

to be projected at a slightly
offsetted location onto the
retina. For example, the in-
set (left) shows two consecutive high resolution frames H*! and
H¥, and the motion vector between these two frames. Even though
the n=3 LRFs that approximate H* are at half the resolution of H*
(right), the offset between these images gives rise to a higher res-
olution grid where the LRFs overlap (shaded gray area). We thus
achieve resolution enhancement by mimicking a denser pixel lay-
out. The spatial layout of the LRFs plays a critical role in terms of
the amount of resolution enhancement achievable. We discuss this
aspect in Section 3.2.
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3.1 Combination with Super-Resolution

The method described so far uses a high-resolution input video. We
can use multi-frame super-resolution techniques [Patti et al. 2002;
Elad and Feuer 2002; Borman and Stevenson 2002] to reconstruct
high-resolution frames from several low-resolution frames and ex-
tend our approach to operate on low-resolution input videos. Rather
than using these methods as a pre-processing step, we propose to
integrate our display resolution enhancement method and super-
resolution into a single model.

In super-resolution the relation between the low-resolution frames
Fi,...,F, and the high-resolution frame H is modeled by

_ /+ [ Pramle—y—0(t.0)H)dyar
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where P, is the camera PSF, ¢(z,x) describes the motion in the

video between frame F; and H, s denotes the period where the cam-

era shutter is open and

ti+s
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Here the time intervals [#;,; + s] correspond to the period where the
i-th frame was shot. Note that this model is very similar to (5) where
the LRFs and the H exchanged roles. Indeed, super-resolution tech-
niques and our resolution enhancement method have the opposite
goal. While we compute a set of LRFs from a high-resolution input
image, super-resolution techniques reconstruct a high-resolution
image from a set of LRFs. Upon discretization of the y coordinate,
Eqn. (9) can be written as

F =SH, (11)

where S is a matrix that contains as its column vectors the SPSFs
for every pixel x. The vector F = [F{, ..., ;)T is the column vector
containing the m low-resolution input frames, and H is the vector of
unknown high-resolution pixels. Ordinarily, the discretization res-
olution of H must not be higher than the total number of constraints



Algorithm 1 Constrained Iterative Gauss-Seidel Solver
Define A<+ SWandb <+ F
LO) « b/Diag(A)
Li  Lf = BAG (L ALy + L AL —
(1) L} if L} €[0,1] (clamping)

=y 0  ifLr <0
1 ifL; > 1

(initialization)
b;) (update)

in (9) which is equal to the total number of pixels in the m LRFs.
Finally, we compute the high-resolution frame H by minimizing

min (SH — F)”. (12)

To combine this model with our display resolution enhancement,
we use the approximation WL ~ H, which we optimize for in (7),
and plug it into (12). We obtain

min (SWL—F)*. (13)

This minimization allows us to compute an optimal set of LRFs
from a low-resolution input video, such that the perceived video
appears as higher resolution. Here as well, we solve Eqn. (13) for
each color channel independently. In our implementation, we either
generate n=2 or n=3 LRFs, Lf-‘, where k denotes the index of the
input video frame. To compute n=3 LRFs L = [LX 1% IX]T we use
m=3 input frames F = [F*~1 Fk FFUT  n general we always
use n=m and therefore for the case of n =2 only use the input
frames F = [F*~1, FX]. We compute the optical flow from frame k—
1 to frame k and from k+1 to k to estimate the eye tracking needed
for W and the offsets needed in the super-resolution component S.

The resolution of the input frames in F need to be greater or equal
to the number of unknowns in the LRFs L. If these numbers are
equal, i.e., the display and the input video have the same resolution,
the matrix SW becomes square and regular and the optimal solution
is given by SWL = F. This system is better conditioned than the
normal equation (SW)TSWL = (SW)7 F which results from (13)
upon differentiation (the latter consists of a matrix times itself and
thus its condition number raises to the power of two). Thus, if the
input frames’ dimension is close to the LRFs’, it may be beneficial
to reduce their resolution.

Constrained Linear Solver. The matrix SW, as well as W/'W
from Section 3, are highly sparse due to the limited overlap between
the SPSFs and can be efficiently solved via iterative linear solvers.
We use the Gauss-Seidel iteration with a small modification. Pixel
values are confined to a limited range [0, 1], because an LCD cannot
produce ‘negative’ light intensities and also has a maximal intensity
it can emit. Therefore, we clamp the LRFs pixel values, L;(x), after
every iteration by setting them to zero and one if they run below
or above these values respectively. This operation corresponds to a
projections onto convex sets scheme [Youla 1978] and is known to
converge to the optimal solution. We provide pseudo-code for this
procedure in Algorithm 1.

3.2 Matrix Conditioning and Normalization

The optical flow defines the SPSFs and hence equations (8) and (13)
(through W and S). The computed flow fields are often complex
and introduce several difficulties in our construction. Certain flow
vector magnitudes cause nearby kernels to overlap. This prevents

Normalized

Figure 3: Example LRFs generated with (top) and without (bottom)
matrix conditioning and normalization.

Not Normalized

resolution enhancement and super resolution and leads to degen-
erate linear systems. Such scenarios also happen due to spatial
changes in the flow field. For example, at interfaces between ker-
nels of a slowly and rapidly moving objects, the rapid kernels may
overlap the slower ones. Moreover, the spatial variability in the ar-
rangement and amount of stretching of the kernels leads to different
intensity values in the computed LRFs produced by the same target
high-resolution values. Since these cases can lead to visual artifacts
in the resulting video such as the ones shown in Figure 3(bottom),
it is crucial for our method to handle them and we describe our
approach in this section.

In the inset, we show the sam- f 1
ples that mark the centers of the k%ﬂ ”l ”]

SPSFs (in 1D) for various mo-
tion vectors ¢@. The sample colors

red, green and black correspond to 5_43.[ I I I '[ I I I
three LRFs and the arrows indicate
their offset along the motion vector -—
¢. If we denote by s the offsets be- S=1l
tween the grid in each LRF in units
equal to the grids’ spacing, we see =~ 3
that integer s lead to overlapping grids (bottom) and when s is an
integer plus 1/n then the n grids form a uniform grid with n times
higher resolution (middle). In the Appendix we provide an analysis
that estimates the effect s has on the condition number of W/'W
and SW. This analysis predicts that the condition number of (8)
and (13) have O((s — |s])~!) dependency on s. Large condition
numbers imply that these systems produce large magnitude solu-
tions despite the right-hand-side input data being bound. Such solu-
tions are not feasible in our system since we clamp the LRFs values
to [0, 1] in Algorithm 1, meaning we inherently cannot achieve reso-
lution enhancement for the systems with overlapping kernels (seen
in inset (bottom)). Therefore, we turn our enhancement mecha-
nisms ‘off” and modify the matrices to produce bounded solutions.
In the case of super resolution we display the same low-resolution
content in all the overlapping LRFs kernels and in the case of res-
olution enhancement we simply assign the same pixel values to the
overlapping kernels. In both cases, these degeneracies and their cor-
rection is found and fixed quite easily. We inspect the off-diagonal
elements of W/ W or SW, depending on the model used. These val-
ues equal to the dot-products between nearby kernels and therefore
highly overlapping kernels produce values close to one (assuming
the kernels are normalized in the /, sense). We map off-diagonal
values which are greater than 0.9 through f(x) = (1 —x)/2 which
maps them to be close to zero. This reduces the coupling between
variables in the linear system (making it closer to a diagonal matrix)
and improves its condition. Note that the overlapping inferred from
the off-diagonal elements is an indirect measure for the local oft-
sets 5. Expressing this correction step in terms of overlaps has the
advantage to also handle singularities due to discontinuous vector
fields.

Different flows produce different SPSFs with different arrange-



a) Target Frame

Display Resolution Enhancement

(c) Our Perceived Result
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Figure 4: (top) (a) Target frame at twice the display’s resolution, (b) the perceived image when viewed on a lower resolution display, (c) the
perceived frame using our method. (bottom) The perceived input frames at the display resolution and our perceived output frames. Image

Credits: (upper row) Michael Fisher.

ment. Therefore, there is no guarantee that constant right-hand-side
input image will produce constant LRFs, implying that different in-
tensity values can result from the same input value. Furthermore,
discontinuities in the flow may lead to more severe under- and over-
coverage of pixels by kernels. To prevent these artifacts, we add a
normalization step where we solve for a phantom constant input
image with pixel values set to 0.5, and use the true flow vectors
extracted from the video to construct the matrix (e.g. SW). We
then normalize the matrix by multiplying it from the right with a
diagonal matrix containing the values of L/0.5 in its diagonal. This
normalization ensures that constant input values will produce con-
stant LRFs (Figure 3(top)).

3.3 Implementation

We tested our model on a 120Hz Samsung SyncMaster 2233RZ
monitor. Here we describe various design choices and measure-
ments that we made for this work.

Number of LRFs. Since the amount of resolution enhancement
depends on the number of LRFs used, we would like n to be as
high as possible. However, the LRFs also need to be displayed
fast enough, so that the eye temporally integrates them into a single
image. If we display the LRFs too slowly, the viewer might per-
ceive flickering [Kalloniatis and Luu 2009]. Existing reports quote
40Hz as the safe frequency in terms of apparent flickering [Didyk
et al. 2010a], so we opted for using n=3 LRFs at 40Hz or n=2
at 60Hz with our 120Hz display. Our user study (Section 5) shows
that viewers still perceived very minor flickering at sharp edges.
Didyk et al. [2010a] developed a post-processing step that elimi-
nates flickering for n=4 LRFs at 30Hz, but similarly to using fewer
LRFs, this post-processing step would also undermine the amount
of resolution enhancement achieved.

PSF Acquisition. In order to obtain LRFs that are optimized for

the display we use, we carefully acquire the static display PSF (P;;s)
for each color channel by photographing the LCD panel as it dis-
plays a single red, green and blue pixel each time. We acquire these
functions at a very high resolution using a macro magnifying lens.
We then parametrize the PSF with gaussian kernels by searching
for the parameters (L, 62) that best approximate Py in /5 norm.
We generate the SPSFs, Sy ;, for each pixel x by stretching the
parametrized Py;; along the eye motion vector ¢(#,x). Specifically,
we parametrize Sy ; by

e,xT (RSRT)TZfl <RSRT )x (14)
where £~ ! is a diagonal matrix with 1 / o2 in its diagonal elements,
R is a rotation matrix that rotates the kernel in the direction of the
trajectory @(#,x), and S stretches the kernel along this direction and

is given by
1= ||(P(f7x)||c 0
= . 1
s ( e 0 (1s)

The amount of stretching is determined by Sy ; and is proportional
to the length of the motion vector ||@(r,x)||/n. We set ¢ =0.05
which best approximates kernel’s stretching along 1/n-th of the
trajectory. Figure 2 shows both the acquired static PSFs and the
computed SPSFs. Similarly to existing reports [Park et al. 2003],
we also approximate the camera PSFs, P, using a Gaussian ker-
nel and introduce motion blurring to the camera’s SPSFs, Scqp. i,
using (14) with ¢=0.02.

4 Results

To evaluate our model, we run our method on a collection of
30fps video clips of a total length of four minutes. Figure 1 and 4
show example results taken from these clips using n =3. The
results shown in Figure 4 (top), were produced by the display
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Figure 5: For the three types of videos, we compute the percentage of magnitude spectrum that our results achieve compared to the target
[frame when using our combined method (green) versus our display enhancement method only (blue).

resolution enhancement method described in Section 3 using
a high-resolution input video. In Figure 1 and 4 (bottom), we
show the results produced by combining our display resolution
enhancement method with super-resolution (Section 3.1), given
a low-resolution input video. The images shown here are the
perceived images (i.e., WL) which model how every part of the
frame looks on the display when the viewer tracks it. Our results
show more high-frequency detail than the low-resolution input
videos or the input frames that were naively downscaled to the
display resolution (i.e., filtering followed by subsampling) and
compare well to the target images. For example, the patterns in
the woman’s skirt or the stripes on the fishes are better resolved in
the frames computed with our approach. We perform additional
tests to better evaluate our proposed approach. On the project
website !, we include several result videos that the reader can
view on his/her own display as long as its refresh rate is set to 60Hz.

Spectral Analysis. To better quantify the enhancement we can
achieve using our combined approach and the resolution enhance-
ment approach only, we run both methods on the same set of high-
resolution videos and downscale the input videos for the combined
approach. We then compare the spectral content of our result-
ing perceived frames to that of the target frames by averaging it
over twenty randomly selected frames. We perform this test for
computer-generated videos that contain high frequency content and
aknown ideal flow field (as explained in 3.2), videos of professional
quality, and videos taken with a hand-held camera where some of
the high frequency content was smoothed out due to abrupt motions
in the video.

As shown in Figure 5, both methods can resolve content at twice
the frequency of a single LRF (each LRF contains frequencies up
to 7). As expected, the combined and display enhancement meth-
ods differ most for non-professional videos and are almost identical
for computer generated videos, since they contain ideal flow fields
and most high frequencies. Furthermore, the magnitude spectrum
of our results follows more closely the target frames’ spectrum in
the horizontal modes than in the vertical modes. We attribute this
difference to the fact that the SPSFs are more elongated in the ver-
tical axis (Figure 2), and therefore do not span the vertical high-
frequencies as well. Another factor may be that horizontal cam-
era/object movements are more common in videos. These tests only
show how much resolution enhancement can be achieved using our
model, but do not take into account other factors such as flickering
that might influence the perceived resolution. We thus complement
this analysis with a user study (Section 5).

Display PSFs Previous approaches either use box functions for
the display’s PSFs [Templin et al. 2011; Didyk et al. 2010a] or
model the display’s specific PSFs [Berthouzoz and Fattal 2012].
Our method falls into the second approach. To evaluate the gain
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Figure 6: (top) Example perceived frames for three scenarios. (bot-

tom) Percentage of the magnitude spectrum that our kernels (green)
achieve compared to gaussian (purple) and box (orange) kernels at
every frequency for the horizontal and vertical direction.

in modeling the display PSFs, we replace our acquired kernels by
box functions and by circular gaussian kernels when computing the
LRFs. We then compare the resulting displayed images (i.e., WL,
where now W contains the acquired display kernels). Figure 6 in-
dicates that using the aquired kernels we can reconstruct up 14%
more of the high frequency content. Thus, while modeling the dis-
play kernels requires computing different LRFs for each type of
display, it also leads to an increase in the enhancement.

Comparisons. We include comparison videos to Templin et
al [2011] in the supplemental material. Both approaches produce
comparable resolution enhancement. However, Templin et al’s
method as described in [Templin et al. 2011] requires 90 frames
per second input videos. Since our input videos are meant to be
played at 30 frames per second, Templin et al’s output videos play
three times as fast as ours. Note that the goal of our method is not to
surpass Templin et al’s method in terms of resolution enhancement.
Rather, our main focus is to achieve resolution enhancement for in-
put videos that are ar the display resolution by combining display
resolution enhancement and super-resolution methods.

Computation Time. Our not optimized C/C++ code runs on an
Intel i7 Core 2.8GHz. Our combined super-resolution and resolu-
tion enhancement method takes 6 seconds per input frame to gener-
ate LRFs of size 720 x 405. We observe a speedup by a factor 1.8
when using our combined approach versus each method separately.

5 User Study

We test the effectiveness of our resolution enhancement technique
in a user study. We evaluate our approach on eleven 10 to 18 sec-
onds long natural video clips showing scenes such as a man walking
down a path or a rotating machine. The input videos are at the dis-
play resolution and we thus apply our combined approach to all of
them. We generate our videos for n=2 and n=3 LRFs, such that
we can display them at 60Hz and 120Hz respectively. We compare
our videos to the input videos and to sharpened videos. We use an
unsharp-mask to generate the sharpened frames which are given by
F +0.08 V2F where F are the input frames. The sharpening filter
increases the contrast of the edges, but it cannot add fine detail that
increases the effective resolution of the video. We use the sharp-
ened videos as a baseline technique to compare our method to. We
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did not compare to Templin et al.’s [2011] approach in this study,
because their output videos would play three times as fast as our
videos for 30 frames per second input videos.

26 participants took part in our study. They were naive regarding
the goal of the experiment. In the first part of the study, subjects
compared our videos to the input and sharpened videos and had to
choose the video that contained most fine detail. The input, sharp-
ened and our video were played simultaneously and were placed in
random orders side-by-side. Users could replay them as many times
as they wanted. For each viewer, half of the video clips were played
at 60Hz and the remaining half at 120Hz. In the second part of the
study, users viewed the same set of videos again. They were asked
to mark all videos in which they perceived any flickering, aliasing
or other artifacts and had to describe what artifacts they saw. Fi-
nally, after the users had to point out the artifacts in the video, we
asked them to choose the video that they preferred between the in-
put, ours and the sharpened video. There are three notable findings
from our user-based evaluation:

1. Our videos perceived to have the highest resolution.

Figure 7 (top row) shows that users consistently perceived our
videos to have higher resolution than the input or sharpened video.
At 60Hz, for each clip, on average 71% (STD 11.6) of the users
chose our video as having the highest resolution. As expected,
this trend becomes stronger when the subjects viewed the videos
at 120Hz. At 120Hz, for each clip, on average 88% (STD 8.7) of
the users chose our video as the one with the highest resolution.

2. Some of our videos contain noticeable artifacts.

Figure 7 (middle row) shows that the subjects indeed saw some
artifacts in our videos. Most complaints about artifacts were re-
lated to flickering at sharp edges, others were described as ‘weird
motion effects’ and may be attributed to errors in the optical flow.
Only two people mentioned aliasing artifacts for two videos. Alias-
ing can occur when the LRFs are not fused into a high-resolution
frame. Our subjects mostly described the artifacts as minor and the
fact that they also hallucinated artifacts in the input and sharpened
videos, shows that they were scrutinizing the videos very carefully.
Only for 2 out of the 11 clips, the subjects consistently perceived
flickering/artifacts. To further remove flickering, we could use the
post-processing step developed by Didyk et al. [2010a], but at the
cost of losing some resolution enhancement.

3. Despite artifacts, users prefer our videos.

Even after subjects pointed out the artifacts in each video, they still
consistently preferred our videos (Figure 7 (bottom row)). For each
clip, on average 70% (STD 13.5) and 81% (STD 11.4) of the sub-
jects preferred our videos when viewing them at 60Hz and 120Hz
respectively.

6 Discussion

We presented a method that exploits properties of the eye for
increasing the apparent resolution of videos. Our contributions
and improvements over previous approaches [Templin et al. 2011;
Didyk et al. 2010a] include the combination of display resolution
enhancement with the super-resolution methodology, the derivation
of the perceived video model that accounts for general shapes of
the camera and display light elements, the treatment of degenerate
cases that occur in the optical flow of natural videos and the analysis
and treatment of non-uniform grid alignments.

Our approach strongly depends on the motion available in the video
and the ability to track it. Our method therefore does not increase
the perceived resolution of still or rapidly moving objects. Never-
theless, it does not introduce visual artifacts in such cases. Also,
even under ideal settings the resolution enhancement is restricted
to the direction of the motion. Despite these limitations, our study
shows that users consistently perceive our videos as having higher
resolution and prefer our videos to the input or sharpened videos.
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Appendix: Non-Uniform Grid Arrangement Ef-
fect on Matrix Conditioning

The following analysis estimates the effect that the offsets between
the LRFs have on the condition number of WTW and SW. It con-
siders non-uniform grids composed of several (n) uniform grids
with the same amount of grid points. Similarly to Section 3.2, the
sub-grids are offsetted by js where j = 1,2.. (and as we discussed
in the paper, s depends on the magnitude of the motion vector). We
perform this analysis in one-dimensional space and for the case of
n = 3. The same result applies for the case of n = 2.

In Fourier space equation WL = H becomes
SAdis(?) (L1(®) + La(0)e® + L3 ()@ = H(?) (16)

The @ and /3 result from the resolution difference between the
LRFs and the high-resolution image H. The LRFs (Sy;, ;) and the
high-resolution frame contain discrete samples and therefore the
functions above are 27-periodic. Thus, by evaluating it on @, ® +

27 and w + 47, we get the following three constraints at @

1 o108 21025 I;1 ((D) APIS(%)
1 etwseﬂﬂ:s el(l)25 iAms {42((0) _ I;IS( wJSZn) ,
1 eza)v i4ms za)2v sz L3(a)) Hs(w-§47r)

where Ay = H(®)/8,;(®). As we mentioned earlier, we do not
elaborate here on the implication of inverting the SPSFs and refer
the reader to Berthouzoz and Fattal [2012].

In order to investigate the condition number of the matrix in (17),
we consider the following normalized column vectors

7ei2(j71)m]T/\/§7

where j = 1,2,3 and define a 3-by-3 matrix, denoted by A, as the
one containing these vectors as its columns. The matrix A, differs
from the one in (17) by an overall factor of 1/ v/3 and the scalars,
€5 and €25, multiplying the second and third columns of (17).

The condition number of A can be defined as follows

V!: _ []7ei2(j71)77:s

max ||Asu||/ min||Asw]| s.t. |[u]|,||w] = 1.

Therefore, an overall multiplication by a scalar does not change
this ratio. Furthermore, a multiplication of the column vectors by
unit scalars does not change the magnitudes ||Asu|| and ||A;w].
Therefore, we can use the matrix Ay to model the one in (17) in
terms of their condition number, because both matrices share the
same condition number.

It is easy to see that s = n~! (plus any integer) makes A, the
DFT matrix operating in R3 which is a regular matrix with condi-
tion number of one - an ideal setting for solving any linear system.
However, as s becomes close to an integer, v2 and v3 converge to the
first column and therefore the matrix severely degenerates. Specifi-
cally, as s — O (or any other integer) both columns v2 and v equal
vl +0(s)?, which is dictated by the rate the terms isin(2(j — 1)7s)
converge to zero.

We estimate the condition number of A, when s approaches an
integer, by evaluating HASV}L,] H/||Asvi,, |

(or ||Asvrll,, ||/HASV2,1 I) which gives us a lower bound (we saw
above that the condition number is given by the maximal value of
this ratio).

(| =340(s) since v!_,
is all 1/4/3 and, as s is close to an integer, the components of the
matrix Ay are all 1/4/3+O(s). On the other hand, since vfl _; with
j =1,2,3 form an orthonormal basis, Parseval’s identity applies

Z\n

which results from v2 = Vl,l + O(s). This gives us that |(vy,v D2
3H2

The nominator in this case becomes ||A v

L=|vil* = = 140(7) + (v, vp )P+ (v v P,

and |(v2,v v ,)\2 are both O(s). The same decomposition to ||v;
gives us that | (v3, n,,>\2 and |(v3, n,|>|2 are also O(s). We get

AV = Z\ 2 V)P =0+20(s),

2

where the first term vanishes since v, _, and v! are orthogonal. The

same steps applied for v3 give ||As vn 12 = 0(s).

We finally conclude that the condition number of A; is greater than

AV, 1/ 1Asva-1 || = (14 0(5)/(0(s) = O(s ).

2The star sign * indicates that this relation holds for every value.



