Extraction of Building Footprints from Satellite Imagery

Elliott Chartock

elboy@stanford.edu

Whitney LaRow
Stanford University

Vijay Singh

vpsingh@stanford.edu

wlarow@stanford.edu

Abstract

We use a Fully Convolutional Neural Network to extract
bounding polygons for building footprints. Our network
takes in 11-band satellite image data and produces signed
distance labels, denoting which pixels are inside and out-
side of building footprints. Finally, we post-process the data
to produce bounding polygons. When a similar dataset was
first released as part of the first SpaceNet Challenge, the
winning implementation produced an F1 score of 0.25 and
used no deep learning; our approach outperforms this with
an F1 score of 0.34.

1. Introduction

This project aims to extract structured information (i.e.
bounding polygons) for building footprints from high-
resolution satellite imagery. We believe this problem is in-
teresting because it is fundamental to the larger problem
of creating automated maps from satellite imagery. These
maps are useful for tasks like disaster response and locating
eligible rooftops for solar panels.

Because of its applicability, this problem has been
widely explored in the past. Recently, it has become even
more accessible through Topcoder’s SpaceNet Challenge,
which provides a high-quality labeled dataset and specific
evaluation tools for contestants to submit their solutions for
building footprint finding.

In the past, this specific problem has usually been ap-
proached as a segmentation problem with two classes -
“building” and “not building”. We decided to explore an
alternate route, instead using signed distance labels (where
pixel values indicate the distance to the closest building
wall, with pixels inside buildings having positive values and
pixels outside buildings having negative values). This cre-
ates a regression segmentation problem - instead of classify-
ing pixels, we assign them real valued scores. Our pipeline
consists of image pre-processing to create features and la-
bels, a Fully Convolutional Neural Network to label pixels,
and then post-processing to decide on the final polygons.

Last year, the winning implementation of TopCoder’s
SpaceNet Challenge produced an F1 score of 0.25 and did
not utilize any Neural Networks (see Section 2.3 for fur-
ther detail). With our approach, we hope to exceed this
score given the recent success Convolutional Neural Net-
works have seen in image segmentation.

2. Related Work
2.1. FCN Semantic Segmentation

Object classification of satellite imagery has largely been
approached as a semantic segmentation problem. In [6],
the authors apply two segmentation techniques to the IS-
PRS Vaihingen 2D datset to classify the pixels of the im-
age into five classes of interest: road, building, car, vegeta-
tion, tree. The first approach is patch-based, which trains a
CNN on small image patches, and then predicts each pixel
as the center pixel of an enclosed region. The second ap-
proach is a pixel-to-pixel Fully Convolutional Neural Net-
work (FCNN). The architecture uses four sets of layered
3x3 convolutions, with each set followed by a 2x2 max
pooling layer that down-samples the input to lower spatial
resolution. Each convolution is separated by a ReLU non-
linearity and Batch normalization. A transpose convolution
is then applied to up-sample back to the original pixel input
size, and finally a softmax layer predicts the class for each
pixel.

The authors find that both models effectively extract
larger targets, such as buildings and roads, but the patch-
based model yielded low F1 on the car class due to a large
number of false positives (predicting cars that don’t exist)
and also mislabeled small patches of trees as vegetation.
They conclude that the pixel-to-pixel FCNN technique is
the superior architecture for segmentation of satellite im-
agery.

[2]] builds off the findings of [6] by applying the pixel-to-
pixel FCNN architecture to the SpaceNet dataset. Since the
SpaceNet Challenge is only concerned with building foot-
prints, [2] adapts the architecture to learn only two classes:
”building” and “non-building”. Post-processing then takes
the predicted binary image and creates polygonal borders.

This implementation yielded a Building Footprint Metric
Score of 0.168605, which took Sth place in the first itera-
tion of the SpaceNet Challenge.

2.2. Semantic Segmentation with SSD Polygon Pro-
posal

[9] also considers the SpaceNet Challenge as a semantic
segmentation problem, but adds an additional learning layer
to the pipeline to optimize the polygonization step. The ini-
tial FCNN architecture makes pixel-wise predictions as ei-
ther inside a building, outside a building, or within a small
threshold (four pixels) distance of a border. The segmen-
tation step produces a heatmap prediction where each pixel
takes on one of three values corresponding to the three tar-
get classes. This implementation then uses the Single Shot
MultiBox Detector (SSD) method proposed in [7] to learn
which bounding boxes are good polygon approximations of
building footprints.

The SSD approach discretizes the sample space of
bounding polygons and then learns which polygons produce
the best overlap with building footprints. In the work of
[9], each predicted heatmap is divided into a 50x50 grid.
Each grid region has a set of 16 default rectangular foot-
print proposals. The SSD algorithm uses a feed-forward
convolutional network to produce scores for a building be-
ing present in each proposal region. To adhere to the re-
quirements of the SpaceNet Challenge, [9] predicts whether
each rectangle has an IoU (discussed in Evaluation) above
0.5 with some building footprint.

By appending the FCNN with a polygonization learning
layer, [9] produced a Building Footprint Metric Score of
0.245420, which took second place in the first round of the
SpaceNet Challenge. Our emphasis on the heatmap post-
processing stage via clustering and marching squares builds
on the success of the SSD method to learn good polygon
predictions from the heatmap.

2.3. Random Decision Forests

While the nature of this problem lends itself to CNN-
based solutions, surprisingly, the SpaceNet Challenge win-
ning implementation does not use a convolutional net-
work. [13] produces a Building Footprint Metric Score of
0.255292 via a series of Random Decision Forests. In the
image classification step, this implementation builds two
random forests of binary classification trees, one of which
predicts building pixels and the other predicts border pix-
els. A third random forest then builds regression trees that
predicts pixel-wise signed distances to building borders. A
flood fill algorithm is applied to the distance heatmaps to
distinguish between neighboring buildings, and then a con-
vex hull procedure generates polygons from pixel groups.
Finally, a random forest of regression trees is used to pre-
dict which polygons will yield the highest IoU.

We draw our inspiration to approach this project as a re-
gression segmentation problem that predicts signed distance
heatmaps from the success of this Random Decision Forest
implementation. Our hope is that training an FCNN to pre-
dict signed distance heatmaps will yield significant boost in
footprint extraction performance.

3. Dataset

To train and test our model, we use the data provided
by Topcoder’s SpaceNet Challenge [10]. Our dataset con-
sists of 250 16-bit GeoTiff images collected by the Digi-
talGlobe Worldview-3 satellite. The images are all of Las
Vegas and each image is provided in 4 different formats:
grayscale, RGB, 8-band multi-channel (i.e. 8 different fre-
quency measurements), and higher-resolution 8-band multi-
channel. These images all cover a 200 meter x 200 meter
area on the ground. In addition to the images, all training
data is accompanied by ground truth labels, which takes the
form of a CSV file containing unique (polygon, building,
image) triplets.

Our dataset is broken up into 60% training, 20% valida-
tion, and 20% test.

3.1. Data Augmentation

For the task of training a CNN from scratch, 150 images
is relatively few. We conquer this limitation by applying ro-
tational and reflective transformations on the input images
to increase our training data eight-fold. We rotate the origi-
nal image by 0 degrees (identity mapping), 90 degrees, 180
degrees, and 270 degrees to create three new training im-
ages. We then apply a vertically aligned reflection on top
of each aforementioned rotation to produced four more new
training images. As discussed in Results, data augmenta-
tion facilitated CNN learning and improved the best model’s
ability to generalize to unseen satellite images.

Figure 1: Example image from data set with ground truth
building footprints overlain.

4. Evaluation

Our final output is a CSV file containing the polygon out-
line of each building we find, where a polygon is specified
by a list of points that define it, and which image the build-
ing is in. This matches the format of the labeled ground
truth data. This way, we can overlay our predicted poly-
gons over input images or ground truth polygons to help
visualize our model’s results and qualitatively evaluate our
precision and recall.

Quantitatively, we use IoU (Intersection over Union) to
evaluate our model’s results [4]:

|AN B

IoU(A, B) = AUB|
IoU presents a normalized, scale-invariant metric that fo-
cuses on the area of the regions. We say that an IoU score
above 0.5 indicates a detection. Finally, we evaluate our
model by combining precision (fraction of proposals that
are true positives) and recall (fraction of labeled objects that

are detected) into one overall F1 scoreﬂ

2 X precision X recall
=

precision + recall

We calculate one value for precision and one value for
recall for the entire test set of images (not per image) and
calculate one F1 score for all the buildings and images at
once. F1 score is between 0 and 1, with values closer to 1
indicating a better model.

S. Approach
5.1. Pre-Processing

The first step of our pipeline is image pre-processing.
The dataset contains 4 different image formats we can use as
input features. For simplicity, we began by using a concate-
nation of the high-resolution 8-band multi-channel images
and the 3-band RGB images. Both formats yield images
that are 650 x 650 pixels. This creates an input size of 650
x 650 x 11.

The next step is converting the CSV ground truth labels
into GeoJSON data and then raster data (i.e. a matrix of
pixels) that we can use to calculate loss while training our
model [11]. The GeoJSON data is formatted as a list of
points (lattitude, longitude) that form the bounding poly-
gon for each building in a given image. We first translate
these coordinates from geospatial values (latitude and lon-
gitude) to pixel values, using the GDAL (Geospatial Data
Abstraction) library. We then use signed distance transform
to assign a real value to each pixel equal to its distance from
the closest building boundary (with pixels inside buildings

having positive values and pixels outside buildings having
negative values) [11]. We then scale this real value to lie
between -1 and 1. Our results from implementing this tech-
nique on the image in Figure 1 can be seen in Figure 2.

One benefit to using signed distance labels over binary
class labels (where a pixel is 1 if it is inside a building foot-
print and O otherwise) is ease in the post-processing step
to distinguish multiple adjacent buildings from one large
building.

0

0 50 100 150

Figure 2: Signed distance transform results on the low-res
(163 x 163 pixel) image in Figure 1.

5.2. Model

The next step is to train a model that outputs good
heatmap predictions. We feed the input data and labels into
a Fully Convolutional Neural Network (FCNN) to train a
model that will predict signed distance pixel-wise values.
The choice to train an FCNN architecture was inspired by
the work in [§]], in which the authors use an FCNN to pro-
duce state-of-the-art results on semantic segmentation tasks.

At a high level, an FCNN stacks multiple convolutional
layers, with additional downsampling and upsampling lay-
ers inside the network. We now discuss our baseline and
best performing model architectures. For all models de-
scribed below, each convolution is followed by a ReLU non-
linearity and Batch normalization. We train using Adam op-
timizer with learning rate = 0.0001, weight decay = 0.1, 31
=0.999, and 2 = 0.9. All experiments in this paper are run
using the deep learning framework PyTorch. Our deep con-
volutional models are trained and tested using an NVIDIA
Tesla K80 GPU.

Note that the SpaceNet Challenge refers to the F1 score as Building Footprint Metric Score; the two can be used interchangeably. For the purposes of

this paper we will here on out refer to this score as F1.

Baseline Model As a first pass, we propose a simple
FCNN architecture, which can be seen in Figure 3. We stack
two convolutional blocks, where each block down-samples
to lower spatial resolution with 2x2 max-pooling. In the
first block we do two convolutions of 16 filters and 32 fil-
ters, respectively, both with 3x3 kernels. The second block
does a convolution of 32 filters with 3x3 kernels and then
a transpose convolution of 1 filter with 3x3 kernels. With
two max-pooling layers that down-sample, and no upsam-
pling layers, we map the original 650x650x11 input images
to low-res 163x163 pixel heatmaps to match the dimensions
of our labels. Note that in this model, all convolutions pre-
serve dimension.

Input Size
650 X 650 x 11
Output size
163163

16 Filters 32 Filters

. Conv Layer D ReLU + Batch Norm D Max Pool . Transpose Conv . Output

Figure 3: Baseline FCNN architecture.

Final FCNN Architecture The CNN architecture of the
best performing FCNN model stacks layers of convolutions
and transpose convolutions, separated by two max-pooling
layers that each half the dimension, down-sampling from
the original 650x650 image dimension to low-res 163x163
signed distance predictions. The explicit architecture can be
seen in Figure 4.

In this model, we stack three convolutional blocks,
where between each block we down-sample to lower spa-
tial resolution with 2x2 max-pooling. The first block begins
like our baseline model, with two convolutions of 16 filters
and 32 filters, respectively, both with 3x3 kernels. The sec-
ond block contains a conv layer and a conv transpose, each
with 32 filters and 3x3 kernels. The final block has a con-
volution and a transpose convolution of 16 filters with 3x3
kernels each. Finally, there is a transpose convolution of 1
filter with a 3x3 kernel, that produces the desired 163x163
dimension heatmap prediction.

All convolutional layers except the final layer are fol-
lowed by a ReLU and Batch normalization. To deter over-
fitting, both max-pool layers are followed by dropout layers
with dropout probability 0.3.

Output size
163x163

Input Size
650X 650 x 11
2 Filt

G

16 Filte 32Filters

. Conv Layer D RelU + Batch Norm D Max Pool . Transpose Conv D Dropout
Figure 4: Final FCNN architecture.

5.3. Post-Processing

The last part of the pipeline is converting the FCNN pre-
dicted matrix of signed distance pixels into polygonal pre-
dictions represented as a list of points with the same format
as the ground truth labels.

Greedy Clustering One method for the polygonization
step is a greedy algorithm for forming clusters of pixels
which represent individual buildings. We then use GDAL to
convert the clusters into vectorized polygons represented by
a list of points [3]. The vanilla clustering algorithm, which
we call Greedy Clustering, works as follows:

1. Add all positive pixels to a candidate set, S of pixels.

2. Select the most positive pixel, p € S, and add it to
the current cluster, C'.

3. Iterate through S, adding pixels to C' if they are (a)
adjacent to some pixel, n;, in C and (b) have a signed
distance less than or equal to that of n;.

4. Stop when C stops growing.
5. Remove all pixels in C from S.

6. Repeat steps 2-5 until S is empty.

Early results indicated that the vanilla algorithm tends to
produce mixed results. We witness that it will occasionally
break a building up into multiple small clusters as seen in
Figure 5. Additionally, at then end of cluster generation,
there tends to be a few leftover pixels that get put into their
own small clusters, leading to the formation of small erro-
neous buildings.

To prevent these errors, we adjust the algorithm to cre-
ate an improved greedy clustering algorithm, which we call
Threshold Greedy Clustering. This new algorithm consists

of two main differences. First, to prevent building breakup,
we relaxed constraint (b) for adding a pixel to the current
cluster. Instead of requiring that the new pixel have a signed
distance less than or equal to that of n;, we allow it to have
a signed distance less than or equal to that of n; + € for
some small value e. After trying a variety of different val-
ues for €, we found that 0.01 worked particularly well (see
section 7.3 below for further discussion). Second, to prevent
small cluster formation at the end, we add an early stopping
threshold A (when the set S gets to below A pixels, stop the
cluster generation). Again, after testing out differet values
on our validation set, we found that A\ = 50 worked partic-
ularly well (quantitative results in section 7.3 below).

Figure 5: Clusters produced by the vanilla greedy clus-
tering algorithm (left) and the improved greedy clustering
algorithm (center) compared to the ground truth polygons

(right). Distinct colors represent distinct clusters, but
coloring is otherwise arbitrary and has no significance.

Marching Squares The second algorithm we implement
for post-processing is a commonly known algorithm for
contour-finding called Marching Squares [[12]]. This algo-
rithm produces smooth outlines based on the signed dis-
tance pixel values. We convert these outlines into a mask of
building clusters and then use GDAL as before to convert
these clusters into vectorized polygons represented by a list
of points. We found that marching squares was a more effi-
cient algorithm than greedy clustering, but it tended to per-
form worse as seen in Figure 6 because the building outlines
tended to be less sharp and adjacent buildings frequently got
combined into one.

Figure 6: Contours produced by the marching squares
algorithm (left) and their associated clusters (center)
compared to the ground truth polygons (right). Distinct
colors represent distinct clusters, but coloring is otherwise
arbitrary and has no significance.

6. Experiments

We run several experiments to test different tasks within
the pipeline independently. First, we experiment on de-
cisions within the convolutional architecture that predicts
heatmaps. Then, we experiment on the polygonization post-
processing step to compare Threshold Greedy Clustering
and Marching Squares. The authors believe that producing
two separate local optimal solutions for heatmap creation
and polygonization, respectively, will lead to a globally op-
timal solution. Formally, for network architectures A and B
and post-processors X and Y, if A produces better heatmap
predictions than B, and X converts heatmaps to polygonal
building boundaries better than Y, we operate under the as-
sumption that stacking A-X will yield higher F1 score than
any of A-Y, B-X, or B-Y.

6.1. FCNN Optimization

In this phase of experimentation we use Threshold
Greedy Clustering polygonization with € = 0.05 and A =
10 for all network experimentation, for consistency. In this
set of experiments, we look to optimize our loss function.
Specifically, we test Lo loss versus MSE loss. We then train
two models, one with no regularization, and another with
weight decay and dropout regularization.

6.2. Polygonization

In post-processing experimentation, we test Greedy
Clustering, Threshold Greedy Clustering, and Marching
Squares on the heatmaps produced by the FCNN in Figure
4. Within the Threshold Greedy Clustering experimenta-
tion, we tune the € and \ parameters on the same heatmaps,
which are produced from out best FCNN model from 6.1.

6.3. Input Bands

After completing the FCNN architecture experimenta-
tion, we test our optimized pipeline on different image in-
puts. We train the best FCNN architecture on RGB inputs,
8-band multi-channel inputs, and the 11-band concatena-
tion discussed in dataset above. We hypothesize that the
11-band concatenation contains redundancies that signifi-
cantly increase the duration of pre-processing and training,
but do not boost performance.

7. Results & Discussion

All results provided are on our test set of 50 images.

600000 Lo;s Over Iterat!ons

— FCNN
— Baseline

500000

400000

300000 -

MSE Loss

200000 -

100000 H

0

0 1‘0 Zb 3b 4‘0 50
Iterations (in hundreds)

Figure 7: Graph of loss over time for the baseline network

and the final FCNN.

7.1. Architectures

We first experimented with the architecture of the FCNN.
We created a baseline following a relatively shallow archi-
tecture with two layers, each consisting of a convolution
followed by a transpose convolution. Our baseline outper-
formed our expectations, producing an F1 score of 0.11.
Importantly though, the baseline was still far from our goal
of outperforming the previous winning implementation’s F1
score of 0.25.

To improve the model, we built a deeper model. First,
we tried utilizing aspects of of high-performing CNN-based
models entered in the first iteration of the SpaceNet Chal-
lenge. This consisted of adding more convolutional and
transpose convolutional layers, along with a linear layer at
the end of our model.

Surprisingly, though the model successfully overfit on
training data, it yielded dramatically worse test results, pro-
ducing an F1 score of nearly 0. Of note, adding the linear
layer at the end worsened our model, despite being utilized
in successful implementations such as [2]. We believe this
is due to past implementations discretely categorizing pix-
els into “building” and “not building” classes, whereas our
signed distance output is richer and needs to capture more
information, which may have been lost in the last linear
layer.

Additionally, adding more convolutional and tranpose
convolutional layers did not improve our results at first, ei-
ther. We realized we did not give proper thought to our hid-
den dimensions and had no pattern to how we were upsam-
pling and downsampling; once we added more structure to
these layers, our F1 score jumped up dramatically to above
0.2.

Of note, past implementations used Cross-Entropy Loss,
this worked well because they discretely classified pixels
into classes. With our use of signed distance labels, we

had to pick a different loss function well-suited to our ap-
proach. Initially, we used Mean Squared Error, as this loss
function is often used in regression problems. However,
we later switched to using Lo loss: we believed this made
more sense as our labels capture actual distances of pixels
to building borders, and Lo, loss is distance-preserving. As
shown in Table 1, this improved our results as well.

Model Comparison

Precision | Recall | F1 Score

Baseline with Lo Loss 0.11 0.18 0.11
FCNN with Ly Loss 0.37 0.23 0.28

FCNN with MSE Loss 0.35 0.15 0.21

Table 1: Comparing different loss functions to the baseline
model while holding post-processing to Threshold Greedy
Clustering with € = 0.05 and A = 10.

We also noticed that our model was performing significantly
better on training data than test data, so we decided to add
regularization in the form of two Dropout Layers and a
weight decay, improving our results as shown in Table 2.

Regularization Effects

Precision | Recall | F1 Score
With Reg. 0.37 0.23 0.28

Without Reg. 0.23 0.19 0.21

Table 2: Comparing the effects of regularization (dropout
and weight decay) while holding post-processing to Thresh-
old Greedy Clustering with € = 0.05 and A = 10.

7.2. Input Bands

180000 L05§ Over Iterat!ons

— 11 band
160000 | — 3band
— 8 band

140000

120000

100000

L2 Loss

80000
60000
40000 H|

20000

0

0 Zb 4‘0 Gb ﬂIO 100
Iterations (in hundreds)

Figure 8: Comparison of loss over time using 3-band, 8-

band, and 11-band inputs with our FCNN.

Our initial hypothesis was that creating an 11-band input
by concatenating the RGB inputs and 8-band multichan-
nel inputs created redundancies that would not boost per-
formance. While the matching loss curves above initially

seemed to corroborate this hypothesis, we ended up being
incorrect after computing the final F1 scores. As shown
in Table 3, the 11-band concatenation significantly outper-
formed the 8-band or 3-band alone, with §8-band outper-
forming 3-band. Clearly, each band does contain unique
information important in the task of image segmentation.

Input Band Comparison
Precision | Recall | F1 Score
RGB 0.15 0.19 0.17
8-band 0.19 0.32 0.24
11-band 0.36 0.28 0.30

Table 3: Comparing scores from using different input
bands.

7.3. Post-Processing

The final piece of our pipeline to experiment with was
our post-processing techniques. We first evaluated the
vanilla Greedy Clustering algorithm and saw that the poor
precision of the algorithm was mainly responsible for the
low F1 score (see Table 4).

We amended the algorithm to create Threshold Greedy
Clustering as described in section 5.3 above, which greatly
improved our precision and thus F1 score. After tuning e
(ranging from 0.005 to 0.05) and A (ranging from 10 to 60),
we found values that increased the final F1 score of our best
model to 0.34.

We also tried the Marching Squares algorithm described
in section 5.3, but found the results to be worse than Thresh-
old Greedy Clustering, due to its lack of flexibility in form-
ing building borders (i.e. no e parameter could be easily
introduced to allow the breakup of erroneously combined
larger buildings).

Post-Processing Comparison

Precision | Recall | F1 Score
Greedy Clustering 0.08 0.28 0.12
Threshold GC
e =0.05, A =10 0.37 0.23 0.28
Threshold GC
e =0.01, A =50 0.42 0.28 0.34
Marching Squares 0.25 0.21 0.23

Table 4: Comparing different post-processing techniques
and parameter values on our best FCNN model with L5 loss.

7.4. Final Model

After experimentation, we finalized our model using the
FCNN architecture outlined in Figure 4 with Lo loss. The
model includes regularization in the forms of dropout, batch
norm, and weight decay, which help it prevent overfitting. It
takes in 11-band input images and uses Threshold Greedy
Clustering with e = 0.01 and A = 50 to form the final
building polygons.

Final Model
Precision | Recall | F1 Score
0.42 0.28 0.34

Table 5: Performance of our final model, which outper-
forms all previous SpaceNet challenge winners.

8. Conclusion & Future Work

In this work, we experimented with different segmen-
tation and polygonization methods to further research in
geospatial computer vision algorithms. Ultimately, we have
created a pipeline that extracts building footprints from
satellite imagery with high accuracy. We trained a Fully
Convolutional Neural Network to perform pixel-to-pixel re-
gression segmentation. We then applied a post-processing
step - either Marching Squares or Greedy Clustering - to
convert the FCNN output into bounding polygons corre-
sponding to building footprint predictions. We concluded
that the signed distance heatmap predictions, combined
with Marching Squares polygonization provided the best
performance in terms of accurately overlapping predicted
footprints with ground truth footprints. Our best model had
an F1 score of 0.34 on test data, and we achieved our goal of
surpassing the previous winning implemenation’s F1 score
of 0.25.

In future work, inspired by the success of [1] using trans-
fer learning, we plan to train our FCNN on top of a pre-
trained CNN such as VGG. The hope is that the VGG model
has learned general features from a larger image corpus, and
then we can fine-tune the model to the task of satellite im-
age segmentation with our smaller SpaceNet dataset. We
also plan to approach building footprint extraction as an in-
stance segmentation problem. We can simplify the pipeline
by directly extracting bounding polygons using a Mask R-
CNN, rather than first predicting a heatmap and then ap-
plying Marching Squares [5]. Finally, dilated convolutions
have also seen success in semantic segmentation as they can
merge spatial information across inputs more aggressively;
experimenting with them in our model could be interesting.

References

(1]
(2]
(3]
(4]
(5]
(6]
(7]
(8]
(9]
[10]
(11]

[12]
[13]

H. Azizpour, A. S. Razavian, J. Sullivan, A. Maki, and S. Carlsson. Factors of transferability for a generic convnet representation.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(9):1790-1802, 2016.

Bic-User. Topcoder: bic-user’s implementation. https://github.com/SpaceNetChallenge/BuildingDetectors/
tree/master/bic-user, 2017. Github.

P. Hagerty. Object detection on spacenet. https://medium.com/the-downling/
object-detection—-on-spacenet—-5e691961d257, 2017. Medium.

P. Hagerty. The spacenet metric. https://medium.com/the-downling/the-spacenet-metric-612183cc2ddbl
2017. Medium.

K. He, G. Gkioxari, P. Dollér, and R. Girshick. Mask r-cnn. arXiv preprint arXiv:1703.06870, 2017.

M. Kampffmeyer, A.-B. Salberg, and R. Jenssen. Semantic segmentation of small objects and modeling of uncertainty in urban
remote sensing images using deep convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, pages 1-9, 2016.

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg. Ssd: Single shot multibox detector. In European
Conference on Computer Vision, pages 21-37. Springer, 2016.

J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2015.

C. Marek. Topcoder: marek.cygan’s implementation. https://github.com/SpaceNetChallenge/
BuildingDetectors/tree/master/marek.cygan, 2017.

Topcoder. Spacenet challenge problem statement. |https://community.topcoder.com/longcontest/?module=
ViewProblemStatement&rd=16892&pm=14551, 2017.

A. Van Etten. Getting started with spacenet data. https://medium.com/the-downling/
getting-started-with—-spacenet-data—827fd2ec9£53,2017. Medium.

Wikipedia. Marching squares. https://en.wikipedia.org/wiki/Marching_squares), 2017.

Wleite. Topcoder: wleite’s implementation. https://github.com/SpaceNetChallenge/BuildingDetectors/
tree/master/wleite, 2017.

https://github.com/SpaceNetChallenge/BuildingDetectors/tree/master/bic-user
https://github.com/SpaceNetChallenge/BuildingDetectors/tree/master/bic-user
https://medium.com/the-downlinq/object-detection-on-spacenet-5e691961d257
https://medium.com/the-downlinq/object-detection-on-spacenet-5e691961d257
https://medium.com/the-downlinq/the-spacenet-metric-612183cc2ddb
https://github.com/SpaceNetChallenge/BuildingDetectors/tree/master/marek.cygan
https://github.com/SpaceNetChallenge/BuildingDetectors/tree/master/marek.cygan
https://community.topcoder.com/longcontest/?module=ViewProblemStatement&rd=16892&pm=14551
https://community.topcoder.com/longcontest/?module=ViewProblemStatement&rd=16892&pm=14551
https://medium.com/the-downlinq/getting-started-with-spacenet-data-827fd2ec9f53
https://medium.com/the-downlinq/getting-started-with-spacenet-data-827fd2ec9f53
https://en.wikipedia.org/wiki/Marching_squares
https://github.com/SpaceNetChallenge/BuildingDetectors/tree/master/wleite
https://github.com/SpaceNetChallenge/BuildingDetectors/tree/master/wleite

