Interactive Analytical Processing in Big Data Systems:
A Cross-Industry Study of MapReduce Workloads

Yanpei Chen, Sara Alspaugh, Randy Katz
University of California, Berkeley

{ychen2, alspaugh, randy}@eecs.berkeley.edu

ABSTRACT

Within the past few years, organizations in diverse indus-
tries have adopted MapReduce-based systems for large-scale
data processing. Along with these new users, important new
workloads have emerged which feature many small, short,
and increasingly interactive jobs in addition to the large,
long-running batch jobs for which MapReduce was origi-
nally designed. As interactive, large-scale query processing
is a strength of the RDBMS community, it is important that
lessons from that field be carried over and applied where
possible in this new domain. However, these new workloads
have not yet been described in the literature. We fill this
gap with an empirical analysis of MapReduce traces from six
separate business-critical deployments inside Facebook and
at Cloudera customers in e-commerce, telecommunications,
media, and retail. Our key contribution is a characteriza-
tion of new MapReduce workloads which are driven in part
by interactive analysis, and which make heavy use of query-
like programming frameworks on top of MapReduce. These
workloads display diverse behaviors which invalidate prior
assumptions about MapReduce such as uniform data ac-
cess, regular diurnal patterns, and prevalence of large jobs.
A secondary contribution is a first step towards creating a
TPC-like data processing benchmark for MapReduce.

1. INTRODUCTION

Many organizations depend on MapReduce to handle their
large-scale data processing needs. As companies across di-
verse industries adopt MapReduce alongside parallel data-
bases [5], new MapReduce workloads have emerged that fea-
ture many small, short, and increasingly interactive jobs.
These workloads depart from the original MapReduce use
case targeting purely batch computations, and shares se-
mantic similarities with large-scale interactive query pro-
cessing, an area of expertise of the RDBMS community.
Consequently, recent studies on query-like programming ex-
tensions for MapReduce [14,27,49] and applying query opti-
mization techniques to MapReduce [16,23,26,31, 34, 43] are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 38th International Conference on Very Large Data Bases,
August 27th - 31st 2012, Istanbul, Turkey.

Proceedings of the VLDB Endowment, Vol. 5, No. 12

Copyright 2012 VLDB Endowment 2150-8097/12/08... $ 10.00.

1802

likely to bring considerable benefit. However, integrating
these ideas into business-critical systems requires configu-
ration tuning and performance benchmarking against real-
life production MapReduce workloads. Knowledge of such
workloads is currently limited to a handful of technology
companies [8,11,17,38,41,48]. A cross-workload comparison
is thus far absent, and use cases beyond the technology in-
dustry have not been described. The increasing diversity of
MapReduce operators create a pressing need to characterize
industrial MapReduce workloads across multiple companies
and industries.

Arguably, each commercial company is rightly advocat-
ing for their particular use cases, or the particular problems
that their products address. Therefore, it falls to neutral
researchers in academia to facilitate cross-company collabo-
ration, and mediate the release of cross-industries data.

In this paper, we present an empirical analysis of seven
industrial MapReduce workload traces over long-durations.
They come from production clusters at Facebook, an early
adopter of the Hadoop implementation of MapReduce, and
at e-commerce, telecommunications, media, and retail cus-
tomers of Cloudera, a leading enterprise Hadoop vendor.
Cumulatively, these traces comprise over a year’s worth of
data, covering over two million jobs that moved approxi-
mately 1.6 exabytes spread over 5000 machines (Table 1).
Combined, the traces offer an opportunity to survey emerg-
ing Hadoop use cases across several industries (Cloudera
customers), and track the growth over time of a leading
Hadoop deployment (Facebook). We believe this paper is
the first study that looks at MapReduce use cases beyond
the technology industry, and the first comparison of multiple
large-scale industrial MapReduce workloads.

Our methodology extends [17-19], and breaks down each
MapReduce workload into three conceptual components: da-
ta, temporal, and compute patterns. The key findings of our
analysis are as follows:

e There is a new class of MapReduce workloads for interac-
tive, semi-streaming analysis that notably differs from the
original use case targeting purely batch computations.
There is a wide range of behavior within this workload
class, such that we must exercise caution in regarding any
aspect of workload dynamics as “typical”.

Query-like programatic frameworks on top of MapReduce
such as Hive and Pig make up a considerable fraction of
activity in all workloads we analyzed.

Some prior assumptions about MapReduce such as uni-
form data access, regular diurnal patterns, and prevalence
of large jobs no longer hold.



Subsets of these observations have emerged in several studies
that each looks at only one MapReduce workload [11,14,
18,19,27,49]. Identifying these characteristics across a rich
and diverse set of workloads shows that the observations are
applicable to a range of use cases.

We view this class of MapReduce workloads for interac-
tive, semi-streaming analysis as a natural extension of in-
teractive query processing. Their prominence arises from
the ubiquitous ability to generate, collect, and archive data
about both technology and physical systems [24], as well
as the growing statistical literacy across many industries to
interactively explore these datasets and derive timely in-
sights [5,14,33,39]. The semantic proximity of this MapRe-
duce workload to interactive query processing suggests that
optimization techniques for one likely translate to the other,
at least in principle. However, the diversity of behavior even
within this same MapReduce workload class complicates ef-
forts to develop generally applicable improvements. Conse-
quently, ongoing MapReduce studies that draw on database
management insights would benefit from checking workload
assumptions against empirical measurements.

The broad spectrum of workloads analyzed allows us to
identify the challenges associated with constructing a TPC-
style big data processing benchmark for MapReduce. Top
concerns include the complexity of generating representative
data and processing characteristics, the lack of understand-
ing about how to scale down a production workload, the
difficulty of modeling workload characteristics that do not
fit well-known statistical distributions, and the need to cover
a diverse range of workload behavior.

The rest of the paper is organized as follows. We re-
view prior work on workload-related studies (§ 2) and de-
velop hypotheses about MapReduce behavior using existing
mental models. We then describe the MapReduce work-
load traces (§ 3). The next few sections present empirical
evidence that describe properties of MapReduce workloads
for interactive, semi-streaming analysis, which depart from
prior assumptions about MapReduce as a mostly batch pro-
cessing paradigm. We discuss data access patterns (§ 4),
workload arrival patterns (§ 5), and compute patterns (§ 6).
We detail the challenges these workloads create for building
a TPC-style benchmark for MapReduce (§ 7), and close the
paper by summarizing the findings, reflecting on the broader
implications of our study, and highlighting future work (§ 8).

2. PRIOR WORK

The desire for thorough system measurement predates the
rise of MapReduce. Workload characterization studies have
been invaluable in helping designers identify problems, ana-
lyze causes, and evaluate solutions.

Workload characterization for database systems culmi-
nated in the TPC-* series of benchmarks [51], which built
on industrial consensus on representative behavior for trans-
actional processing workloads. Industry experience also re-
vealed specific properties of such workloads, such as Zipf
distribution of data accesses [28], and bimodal distribution
of query sizes [35]. Later in the paper, we see that some of
these properties also apply to the MapReduce workloads we
analyzed.

The lack of comparable insights for MapReduce has hin-
dered the development of a TPC-like MapReduce bench-
mark suite that has a similar level of industrial consen-
sus and representativeness. As a stopgap alternative, some

1803

MapReduce microbenchmarks aim to faciliate performance
comparison for a small number of large-scale, stand-alone
jobs [4,6,45], an approach adopted by a series of stud-
ies [23,31,34,36]. These microbenchmarks of stand-alone
jobs remain different from the perspective of TPC-* bench-
marks, which views a workload as a complex superposition
of many jobs of various types and sizes [50].

The workload perspective for MapReduce is slowly emerg-
ing, albeit in point studies that focus on technology industry
use cases one at a time [8,11,12,38,41,48]. The stand-
alone nature of these studies forms a part of an interest-
ing historical trend for workload-based studies in general.
Studies in the late 1980s and early 1990s capture system
behavior for only one setting [37,44], possibly due to the
nascent nature of measurement tools at the time. Stud-
ies in the 1990s and early 2000s achieve greater general-
ity [13,15,25,40,42,46], likely due to a combination of im-
proved measurement tools, wide adoption of certain systems,
and better appreciation of what good system measurement
enables. Stand-alone studies have become common again in
recent years [8,11,17,38,41,48], likely the result of only a
few organizations being able to afford large-scale systems.

The above considerations create the pressing need to gen-
eralize beyond the initial point studies for MapReduce work-
loads. As MapReduce use cases diversify and (mis)engineer-
ing opportunities proliferate, system designers need to op-
timize for common behavior, in addition to improving the
particulars of individual use cases.

Some studies amplified their breadth by working with
ISPs [25,46] or enterprise storage vendors [13], i.e., interme-
diaries who interact with a large number of end customers.
The emergence of enterprise MapReduce vendors present
us with similar opportunities to look beyond single-point
MapReduce workloads.

2.1 Hypotheses on Workload Behavior

One can develop hypotheses about workload behavior bas-
ed on prior work. Below are some key questions to ask about
any MapReduce workload.

1. For optimizing the underlying storage system:

— How uniform or skewed are the data accesses?

— How much temporal locality exists?

For workload-level provisioning and load shaping:

— How regular or unpredictable is the cluster load?
— How large are the bursts in the workload?

For job-level scheduling and execution planning;:

— What are the common job types?
— What are the size, shape, and duration of these jobs?
— How frequently does each job type appear?

For optimizing query-like programming frameworks:

— What % of cluster load comes from these frame-
works?
— What are the common uses of each framework?

For performance comparison between systems:

— How much variation exists between workloads?
— Can we distill features of a representative workload?



Using the original MapReduce use case of data indexing in
support of web search [22] and the workload assumptions be-
hind common microbenchmarks of stand-alone, large-scale
jobs [4,6,45], one would expect answers to the above to be:
(1). Some data access skew and temporal locality exists,
but there is no information to speculate on how much. (2).
The load is sculpted to fill a predictable web search diur-
nal with batch computations; bursts are not a concern since
new load would be admitted conditioned on spare cluster
capacity. (3). The workload is dominated by large-scale
jobs with fixed computation patterns that are repeatedly
and regularly run. (4). We lack information to speculate
how and how much query-like programming frameworks are
used. (5). We expect small variation between different use
cases, and the representative features are already captured
in publications on the web indexing use case and existing
microbenchmarks.

Several recent studies offered single use case counter-points
to the above mental model [11,14,18,19,27,49]. The data
in this paper allow us to look across use cases from several
industries to identify an alternate workload class. What sur-
prised us the most is (1). the tremendous diversity within
this workload class, which precludes an easy characterization
of representative behavior, and (2). that some aspects of
workload behavior are polar opposites of the original large-
scale data indexing use case, which warrants efforts to revisit
some MapReduce design assumptions.

3. WORKLOAD TRACES OVERVIEW

We analyze seven workloads from various Hadoop deploy-
ments. All seven come from clusters that support business-
critical processes. Five are workloads from Cloudera’s en-
terprise customers in e-commerce, telecommunications, me-
dia, and retail. Two others are Facebook workloads on the
same cluster across two different time periods. These work-
loads offer an opportunity to survey Hadoop use cases across
several technology and traditional industries (Cloudera cus-
tomers), and track the growth of a leading Hadoop deploy-
ment (Facebook).

Table 1 provides details about these workloads. The trace
lengths are limited by the logistical feasibility of shipping
the trace data for offsite analysis. The Cloudera customer
workloads have raw logs approaching 100GB, requiring us
to set up specialized file transfer tools. Transferring raw
logs is infeasible for the Facebook workloads, requiring us
to query Facebook’s internal monitoring tools. Combined,
the workloads contain over a year’s worth of trace data,
covering a significant amount of jobs and bytes processed
by the clusters.

The data comes from standard logging tools in Hadoop;
no additional tools were necessary. The workload traces
contain per-job summaries for job ID (numerical key), job
name (string), input/shuffle/output data sizes (bytes), du-
ration, submit time, map/reduce task time (slot-seconds),

map/reduce task counts, and input/output file paths (string).

We call each of the numerical characteristic a dimension of
a job. Some traces have some data dimensions unavailable.

We obtained the Cloudera traces by doing a time-range
selection of per-job Hadoop history logs based on the file
timestamp. The Facebook traces come from a similar query
on Facebook’s internal log database. The traces reflect no
logging interruptions, except for the cluster in CC-d, which
was taken offline several times due to operational reasons.

Trace Machines Length Date Jobs Bytes
moved

CC-a <100 1 month 2011 5759 80 TB
CC-b 300 9 days 2011 22974 600 TB
CC-c 700 1 month 2011 21030 18 PB
cCc-d 400-500 2+ months 2011 13283 8 PB
CC-e 100 9 days 2011 10790 590 TB
FB-2009 600 6 months 2009 1129193 9.4 PB
FB-2010 3000 1.5 months 2010 1169184 1.5 EB
Total >5000 ~ 1 year - 2372213 1.6 EB

Table 1: Summary of traces. CC is short for “Cloudera
Customer”. FB is short for “Facebook”. Bytes moved
is computed by sum of input, shuffle, and output data
sizes for all jobs.

m——CC-a === CC-b
=== (CC-¢c === CC-d
CC-e
§ 1
;‘g 0.8
c 06
kel
g 0.4
& 0.2 -
0 0 - T T T T 0 - T T T r
1 KB MB GB TB 1 KB MB GB TB 1 KB MB GB TB
Per-job input size Per-job shuffle size Per-job output size
FB-2009
=== FB-2010
@
Qo
S
k]
c
8
S
o
w

T — 0
1 KB MB GB TB 1 KB MB GB TB
Per-job shuffle size Per-job output size

0 - T T T T
1 KB MB GB TB
Per-job input size

Figure 1: Data size for each workload. Showing input,
shuffle, and output size per job.

There are some inaccuracies at trace start and termina-
tion, due to partial information for jobs straddling the trace
boundaries. The length of our traces far exceeds the typical
job length on these systems, leading to negligible errors. To
capture weekly behavior for CC-b and CC-e, we intentionally
queried for 9 days of data to allow for inaccuracies at trace
boundaries.

4. DATA ACCESS PATTERNS

Data manipulation is a key function of any data manage-
ment system, so understanding data access patterns is cru-
cial. Query size, data skew, and access temporal locality are
key concerns that impact performance for RDBMS systems.
The mirror considerations exist for MapReduce. Specifi-
cally, this section answers the following questions:

— How uniformly or skewed are the data accesses?

— How much temporal locality exists?

We begin by looking at per job data sizes, the equivalent
of query size (§ 4.1), skew in access frequencies (§ 4.2), and
temporal locality in data accesses (§ 4.3).

4.1 Per-job Data Sizes

Figure 1 shows the distribution of per-job input, shuffle,
and output data sizes for each workload. Across the work-
loads, the median per-job input, shuffle, and output sizes
differ by 6, 8, and 4 orders of magnitude, respectively. Most

1804



-==CCb

100,000
By e CC-C
§ 10,000 === CC-d
g 1,000 CC-e
£ S e FB-2010
g 100 .“\_\
Q -
8 10 il TN
@ S =,
2 14 =m ‘
& 1 100 10,000 1,000,000
Input file rank by descending access frequency
===CC-b
> 100,000 CCec
$ 10,000 === CC-d
=) -
§ 1,000 cC-e
2 100
Q
3
S 10
o
ic 1 —T
1 100 10,000 1,000,000

Output file rank by descending access frequency

Figure 2: Log-log file access frequency vs. rank. Show-
ing Zipf distribution of same shape (slope) for all work-
loads.

jobs have input, shuffle, and output sizes in the MB to GB
range. Thus, benchmarks of TB and above [4,6,45] captures
only a narrow set of input, shuffle, and output patterns.

From 2009 to 2010, the Facebook workloads’ per-job input
and shuffle size distributions shift right (become larger) by
several orders of magnitude, while the per-job output size
distribution shifts left (becomes smaller). Raw and inter-
mediate data sets have grown while the final computation
results have become smaller. One possible explanation is
that Facebook’s customer base (raw data) has grown, while
the final metrics (output) to drive business decisions have
remained the same.

4.2 Skews in Access Frequency

This section analyzes HDF'S file access frequency and in-
tervals based on hashed file path names. The FB-2009 and
CC-a traces do not contain path names, and the FB-2010
trace contains path names for input only.

Figure 2 shows the distribution of HDFS file access fre-
quency, sorted by rank according to non-decreasing frequency.
Note that the distributions are graphed on log-log axes, and
form approximately straight lines. This indicates that the
file accesses follow a Zipf-like distribution, i.e., a few files
account for a very high number of accesses. This obser-
vation challenges the design assumption in HDFS that all
data sets should be treated equally, i.e., stored on the same
medium, with the same data replication policies. Highly
skewed data access frequencies suggest a tiered storage ar-
chitecture should be explored [12], and any data caching
policy that includes the frequently accessed files will bring
considerable benefit. Further, the slope parameters of the
distributions are all approximately 5/6 across workloads and
for both inputs and outputs. Thus, file access patterns are
Zipf-like distributions of the same shape. Figure 2 suggests
the existence of common computation needs that lead to the
same file access behavior across different industries.

The above observations indicate only that caching helps.

1805

===CC-b
e CC-C
=== CC-d
CC-e
e FB-2010

Fraction of jobs

===CC-b
e CC-C
=== CC-d
CC-e
e FB-2010

Fraction of bytes stored

0.0 T T " T
KB MB GB

Input files size

Figure 3: Access patterns vs. input file size. Showing
cummulative fraction of jobs with input files of a certain
size (top) and cummulative fraction of all stored bytes
from input files of a certain size (bottom).

-==CC-b
é 0.8
K=} e CC-C
5 06
.5 0.4 - == CC-d
g
£ 02 | CC-e

0 -

1

E 1 - ==CC-b
o
3 08 e
2 06
z ~-==cCd
5 04
S 02 CC-e
g o0 pa
= 1

MB GB
Output file size

KB

Figure 4: Access patterns vs. output file size. Showing
cummulative fraction of jobs with output files of a certain
size (top) and cummulative fraction of all stored bytes
from output files of a certain size (bottom).

If there is no correlation between file sizes and access fre-
quencies, maintaining cache hit rates would require caching
a fixed fraction of bytes stored. This design is not sustain-
able, since caches intentionally trade capacity for perfor-
mance, and cache capacity grows slower than full data ca-
pacity. Fortunately, further analysis suggests more viable
caching policies.

Figures 3 and 4 show data access patterns plotted against
input and output file sizes. The distributions for fraction of
jobs versus file size vary widely (top graphs), but converge
in the upper right corner. In particular, 90% of jobs ac-
cesses files of less than a few GBs (note the log-scale axis).
These files account for up to only 16% of bytes stored (bot-



o -==CCb
o g ——CC-c
(s}
58 === CC-d
©
i . CC-e
0 - T : - e—FB-2010
1sec 1 min 1hr 60 hrs
Input-input re-access interval
) 1 -————
2 0.8 g / ===CC-b
5 3 .
58 o6 G-
28 : === CC-d
S® 04
E 0.2 CC-e
’ e FB-2010
0 - ; : :
1sec 1 min 1hr 60 hrs

Output-input re-access interval

Figure 5: Data re-accesses intervals. Showing interval
between when an input file is re-read (top), and when an
output is re-used as the input for another job (bottom).

08 | m jobs whose input
2 : re-access pre-
o, existing output
w5 0.6
c
o
T 04 mjobs whose input
2 re-access pre-

02 existing input

0

FR-2010 CC-h CC-c CC-d CC-e

Figure 6: Fraction of jobs that reads pre-existing input
path. Note that output path information is missing from
FB-2010.

tom graphs). Thus, a viable cache policy is to cache files
whose size is less than a threshold. This policy allows cache
capacity growth rates to be detached from the growth rate
in data.

Prior work has also observed Zipf-like distributed data
access patterns for RDBMS workloads, culminating in the
formulation of the 80-20 rule, i.e., 80% of the data access
go to 20% of the data [28]. For MapReduce, the rule is
more complicated. We need to consider both the input and
output data sets, and the size of each data set. If we had
just considered a Zipf log-log slope of 5/6, we would have
arrived at a 80-40 rule. Figure 3 and 4 account for the size of
data sets also, and indicate that 80% of jobs (data accesses)
go to less than 10% of the stored bytes, for both input and
output data sets. Depending on the workload, the access
patterns range from an 80-1 rule to an 80-8 rule.

4.3 Access Temporal Locality

Further analysis also reveals temporal locality in the data
accesses. Figure 5 indicates the distribution of time intervals
between data re-accesses. 75% of the re-accesses take place
within 6 hours. Thus, a possible cache eviction policy is to
evict entire files that have not been accessed for longer than
a workload specific threshold duration. Any similar policy
to least-recently-used (LRU) would make sense.

Figure 6 further shows that up to 78% of jobs involve
data re-accesses (CC-c, CC-d, CC-e), while for other work-

loads, the fraction is lower. Thus, the same cache eviction
policy potentially translates to different benefits for different
workloads.

Combined, the observations in this section indicate that it
will be non-trivial to preserve for performance comparisons
the data size, skew in access frequency, and access temporal
locality of the data. The analysis also reveals the tremen-
dous diversity across workloads. Only one numerical feature
remains relatively fixed across workloads—the shape param-
eter of the Zipf-like distribution for data access frequencies.
Consequently, we should be cautious in considering any as-
pect of workload behavior as being “typical”.

S. WORKLOAD VARIATION OVER TIME

The temporal workload intensity variation has been an im-
portant concern for RDBMS systems, especially ones that
back consumer-facing systems subject to unexpected spikes
in behavior. The transactions or queries per second metric
quantifies the maximum stress that the system can handle.
The analogous metric for MapReduce is more complicated,
as each job or “query” in MapReduce potentially involves
different amounts of data, and different amounts of compu-
tation on the data. Actual system occupancy depends on
the combination of these multiple time-varying dimensions,
with thus yet unknown correlation between the dimensions.

The empirical workload behavior over time has implica-
tions for provisioning and capacity planning, as well as the
ability to do load shaping or consolidate different workloads.
Specifically, this section tries to answer the following:

— How regular or unpredictable is the cluster load?
— How large are the bursts in the workload?

In the following, we look at workload variation over a
week (§ 5.1), quantify burstiness, a common feature for all
workloads (§ 5.2), and compute temporal correlations be-
tween different workload dimensions (§ 5.3). Our analysis
proceeds in four dimensions — the job submission counts,
the aggregate input, shuffle, and output data size involved,
the aggregate map and reduce task times, and the resulting
system occupany in the number of active task slots.

5.1 Weekly Time Series

Figure 7 depicts the time series of four dimensions of
workload behavior over a week. The first three columns
respectively represents the cumulative job counts, amount
of I/O (again counted from MapReduce API), and compu-
tation time of the jobs submitted in that hour. The last col-
umn shows cluster utilization, which reflects how the cluster
serviced the submitted workload described by the preceding
columns, and depends on the cluster hardware and execu-
tion environment.

Figure 7 shows all workloads contain a high amount of
noise in all dimensions. As neither the signal nor the noise
models are known, it is challenging to apply standard signal
processing methods to quantify the signal to noise ratio of
these time series. Further, even though the number of jobs
submitted is known, it is challenging to predict how much
I/O and computation will result.

Some workloads exhibit daily diurnal patterns, revealed
by Fourier analysis, and for some cases, are visually identifi-
able (e.g., jobs submission for FB-2010, utilization for CC-e).
In Section 7, we combine this observation with several oth-
ers to speculate that there is an emerging class of interactive
and semi-streaming workloads.

1806



Submission

f 1/0 (TB/h Compute Utilization
rate (jobs/hr) ( N (task-hrs/hr) (slots)
200 4 20 1500 400
1000 -
100 - 1.0 4 200 CC a
500 -
0 M_AMMA_M#AMA, 0.0 - 0 .A_,_u.lM.,AA_,_A..rAm.,A_...,.L_, 0 . I‘Ud“ L b T A/,
Su M Tu W Th F Sa Su M Tu W Th F Sa Su M Tu W Th F Sa Su M Tu W Th F Sa
200 40 - 30000 4000 4
MA,,W”WW\/\M‘ 20000 CC-b
100 20 2000 - -
10000 H
0 : : : T 0 - 0 - 0 : 4
Tu W Th F Sa Su M Tu W Th F Sa Su M Tu W Th F Sa Su M Tu W Th F Sa Su M
200 300 4 30000
200 - 20000
100
MW/‘\AMMM >l Mﬂ\&. I T CC-c
0 g ' ¢ : ' " "0 0+
Su M Tu W Th F Sa Su M Tu W Th F Sa Su M Tu W Th F Sa
200 - 300 - 30000 -
200 - 20000 -
100 4 CC-d
NMMMM > 7?MMMM¢MQL“ - MWWMNM
0 : ! : r : 0 0 ? : ? 4 "
F Sa Su M Tu W Th F Sa Su M Tu W Th F Sa Su M Tu W Th
200 - 40 1500 400 CC-e
1000 -
100 - 20 200
500 -
0 T T T T T T 0 - 0 - 0
Tu W Th F Sa Su M Tu W Th F Sa Su M Tu W Th F Sa Su M Tu W Th F Sa Su M
3000 40 1500 -
2000 - 1000 -
20 | FB-2009
1000 - 500 -
o WW“MW 0 &MMA&M@M 0
Su M Tu W Th F 8Sa Su M Tu W Th F 8Sa Su M Tu W Th F Sa
3000 - 600 - 100000 40000 FB-2010
2000 - 400 -
50000 20000
1000 - 200 -
0 : : : : : : .0 . : r : . - ] 0 r - : : r : ) o
Su M Tu W Th F 8Sa Su M Tu W Th F 8Sa Su M Tu W Th F Sa Su M Tu W Th F Sa

Figure 7: Workload behavior over a week. From left to right: (1) Jobs submitted per hour.

(2) Aggregate I/0

(i.e., input + shuffle + output) size of jobs submitted. (3) Aggregate map and reduce task time in task-hours of jobs
submitted. (4) Cluster utilization in average active slots. From top row to bottom, showing CC-a, CC-b, CC-c, CC-d, CC-e,

FB-2009, and FB-2010 workloads.

Note that for CC-c, CC-d, and FB-2009, the utilization data is not available from the

traces. Also note that some time axes are misaligned due to short, week-long trace lengths (CC-b and CC-e), or gaps

from missing data in the trace (CC-d).

Figure 7 offers visual evidence to indicate the diversity
of MapReduce workloads. There is significant variation in
the shape of the graphs for both different dimensions of the
same workloads (rows) and for the same workload dimen-
sion across different workloads (columns). Consequently, for
cluster management problems that involve workload varia-
tion over time scales, such as load scheduling, load shifting,
resource allocation, or capacity planning, approaches de-
signed for one workload may be suboptimal or even counter-
productive for another. As MapReduce use cases diversify
and increase in scale, it becomes vital to develop workload
management techniques that can target each specific work-
load.

5.2 Burstiness

Figure 7 also reveals bursty submission patterns across
various dimensions. Burstiness is an often discussed prop-

1807

erty of time-varying signals, but it is often not precisely mea-
sured. One common way to attempt to measure it to use the
peak-to-average ratio. There are also domain-specific met-
rics, such as for bursty packet loss on wireless links [47].
Here, we extend the concept of peak-to-average ratio to
quantify burstiness.

We start defining burstiness first by using the median
rather than the arithmetic mean as the measure of “aver-
age”. Median is statistically robust against data outliers,
i.e., extreme but rare bursts [30]. For two given workloads
with the same median load, the one with higher peaks, that
is, a higher peak-to-median ratio, is more bursty. We then
observe that the peak-to-median ratio is the same as the
100""-percentile-to-median ratio. While the median is sta-
tistically robust to outliers, the 100t"-percentile is not. This
implies that the 99", 95" or 90'-percentile should also
be calculated. We extend this line of thought and compute



& 1 /_- _CC'a
308 //;/ -==CCb
K=
o 06 fo——

4
2 0 ---ccd
c 0.2 =70
o, ===~/ CC-e

0.01 0.1 1 10 100
Normalized task-seconds per hour

1
12
5 08 — B-2009
2 06 -==FB-2010
g 0.4 sine + 2
B 0.2 \ === sine + 20
Y
w 0+ ! T

0.01 0.1 1 10 100
Normalized task-seconds per hour

Figure 8: Workload burstiness. Showing cummulative
distribution of task-time (sum of map time and reduce
time) per hour. To allow comparison between workloads,
all values have been normalized by the median task-time
per hour for each workload. For comparison, we also
show burstiness for artificial sine submit patterns, scaled
with min-max range the same as mean (sine + 2) and
10% of mean (sine + 20).

the general n'"-percentile-to-median ratio for a workload.

th .
. . —percentile
We can graph this vector of values, with =P op
) median

the x-axis, versus n on the y-axis. The resultant graph can
be interpreted as a cumulative distribution of arrival rates
per time unit, normalized by the median arrival rate. This
graph is an indication of how bursty the time series is. A
more horizontal line corresponds to a more bursty workload;
a vertical line represents a workload with a constant arrival
rate.

Figure 8 graphs this metric for one of the dimensions
of our workloads. We also graph two different sinusoidal
signals to illustrate how common signals appear under this
burstiness metric. Figure 8 shows that for all workloads, the
highest and lowest submission rates are orders of magnitude
from the median rate. This indicates a level of burstiness
far above the workloads examined by prior work, which have
more regular diurnal patterns [38,48]. For the workloads
here, scheduling and task placement policies will be essen-
tial under high load. Conversely, mechanisms for conserving
energy will be beneficial during periods of low utilization.

For the Facebook workloads, over a year, the peak-to-
median-ratio dropped from 31:1 to 9:1, accompanied by more
internal organizations adopting MapReduce. This shows
that multiplexing many workloads (workloads from many
organizations) help decrease bustiness. However, the work-
load remains bursty.

5.3 Time Series Correlations

We also computed the correlation between the workload
submission time series in all three dimensions. Specifically,
we compute three correlation values: between the time-
varying vectors jobsSubmitted(t) and dataSize Bytes(t), be-
tween jobsSubmitted(t) and computeTimeT askSeconds(t),
and between dataSizeBytes(t) and computeT'imeT askSec-
onds(t), where t represents time in hourly granularity, and
ranges over the entire trace duration.

1 4 jobs - bytes

H jobs - task-
08 jobs - task-seconds

m bytes - task-seconds

Correlation

FB-2009 FB-2010 CC-a CC-b CC-c CC-d CC-e

Figure 9: Correlation between different submission pat-
tern time series. Showing pair-wise correlation between
jobs per hour, (input 4+ shuffle + output) bytes per hour,
and (map + reduce) task times per hour.

The results are in Figure 9. The average temporal correla-
tion between job submit and data size is 0.21; for job submit
and compute time it is 0.14; for data size and compute time
it is 0.62. The correlation between data size and compute
time is by far the strongest. We can visually verify this by
the 2% and 3" columns for CC-e in Figure 9. This indicates
that MapReduce workloads remain data-centric rather than
compute-centric. Also, schedulers and load balancers need
to consider dimensions beyond number of active jobs.

Combined, the observations in this section mean that max-
imum jobs per second is the wrong performance metric to
evaluate these systems. The nature of any workload bursts
depends on the complex aggregate of data and compute
needs of active jobs at the time, as well as the scheduling,
placement, and other workload management decisions that
determine how quickly jobs drain from the system. Any
efforts to develop a TPC-like benchmark for MapReduce
should consider a range of performance metrics, and stress-
ing the system under realistic, multi-dimensional variations
in workload intensity.

6. COMPUTATION PATTERNS

Previous sections looked at data and temporal patterns
in the workload. As computation is an equally important
aspect of MapReduce, this section identifies what are the
common computation patterns for each workload. Specifi-
cally, we answer questions related to optimizing query-like
programming frameworks:

— What % of cluster load come from these frameworks?

— What are the common uses of each framework?

We also answer questions with regard to job-level scheduling
and execution planning:

— What are the common job types?

— What are the size, shape, and duration of these jobs?

— How frequently does each job type appear?

In traditional RDBMS, one can quantify query types by
the operator (e.g. join, select), and the cardinality of the
data processed for a particular query. Each operator can
be characterized to consume a certain amount of resources
based on the cardinality of the data they process. The ana-
log to operators for MapReduce jobs are the map and reduce
steps, and the cardinality of the data is quantified in our
analysis by the number of bytes of data for the map input,
intermediate shuffle, and reduce output stages.

1808



We consider two complementary ways of grouping MapRe-
duce jobs: (1) By the job name strings submitted to MapRe-
duce, which gives us insights on the use of native MapRe-
duce versus query-like programatic frameworks on top of
MapReduce. For some frameworks, this analysis also reveals
the frequency of the particular query-like operators that are
used (§ 6.1). (2) By the multi-dimensional job description
according to per-job data sizes, duration, and task times,
which serve as a proxy to proprietary code, and indicate the
size, shape, and duration of each job type (§ 6.2).

6.1 By Job Names

Job names are user-supplied strings recorded by MapRe-
duce. Some computation frameworks built on top of MapRe-
duce, such as Hive [1], Pig [3], and Oozie [2] generate the job
names automatically. MapReduce does not currently impose
any structure on job names. To simplify analysis, we focus
on the first word of job names, ignoring any capitalization,
numbers, or other symbols.

Figure 10 shows the most frequent first words in job names
for each workload, weighted by number of jobs, the amount
of I/O, and task-time. The FB-2010 trace does not have this
information. The top figure shows that the top handful of
words account for a dominant majority of jobs. When these
names are weighted by I/0O, Hive queries such as insert
and other data-centric jobs such as data extractors domi-
nate; when weighted by task-time, the pattern is similar,
unsurprising given the correlation between 1/O and task-
time.

Figure 10 also implies that each workload consists of only
a small number of common computation types. The rea-
son is that job names are either automatically generated, or
assigned by human operators using informal but common
conventions. Thus, jobs with names that begin with the
same word likely perform similar computation. The small
number of computation types represent targets for static or
even manual optimization. This will greatly simplify work-
load management problems, such as predicting job duration
or resource use, and optimizing scheduling, placement, or
task granularity.

Each workload services only a small number of MapRe-
duce frameworks: Hive, Pig, Oozie, or similar layers on top
of MapReduce. Figure 10 shows that for all workloads, two
frameworks account for a dominant majority of jobs. There
is ongoing research to achieve well-behaved multiplexing be-
tween different frameworks [32]. The data here suggests that
multiplexing between two or three frameworks already cov-
ers the majority of jobs in all workloads here. We believe
this observation will remain valid in the future. As new
frameworks develop, enterprise MapReduce users are likely
to converge on an evolving but small set of mature frame-
works for business critical computations.

Figure 10 also shows that for Hive in particular, select
and insert form a large fraction of activity for several work-
loads. Only the FB-2009 workload contains a large fraction
of Hive queries beginning with from. Unfortunately, this
information is not available for Pig. Also, we see evidence
of some direct migration of established RDBMS use cases,
such as etl (Extract, Transform, Load) and edw (Enterprise
Data Warehouse).

This information gives us some idea with regard to good
targets for query optimization. However, more direct infor-
mation on query text at the Hive and Pig level will be even

1809

[others] [others] [others]
[others] TR insert [others] =5
others]
e [others] iteminquiry
0.8 4 seg_rch select select
i h .
select . fr importjob
’ select item edw
2 ajax edw snapshot queryresult
% 0.6 { from snapshot edwsequence
é insert twitch flow sywr
y
L 041 edwsequence
oozie
piglatin flow
ad piglatin
021 insert
piglatin
0.0 T
FB-2009 CC-a CC-b CC-c CC-d CC-e
1.0
[mhlers] [others] [others]
ltners]  %%°%  insert [others]
08 | hyperlocaldatae select
- hourly piglatin xtractor [others] [|de;|1(t)|\fﬂ|/er2]
” ad fidentifier] | distcp
3 parallel select
E‘ 0.6 § etl snapshot
5 cascade
< columnset metrodataextra _flow -
2 ctor = bmdailyjob | Piglatin
© ;
T 044 oot twitch
insert [identifier] " insert
piglatin
0.2 4 oozie
from tr o
bmdailyjob
snapshot
0.0 T T T
FB-2009 CC-a CC-b CC-c CC-d CC-e
1.0
[gz}:ﬁ] [otlhers]
[others] [others]  -distcp
[others] select
B th
038 listing [others] snapshot default
glati [identifier]
0 columnset | Plgiatin stage flow
T 067 et bmdailyjob bmdailyjob
2 semi twitch
= click
g st snapshot tr
7 047 select flow insert
o]
w [identifier]
insert
0.2 iglati
from i tr piglatin
oozie
piglatin
0.0 T
FB-2009 CC-a CC-b CC-c CC-d CC-e

[ ive | [ [[Garie! || others |

Figure 10: The first word of job names for each work-
load, weighted by the number of jobs beginning with each
word (top), total I/O in bytes (middle), and map/reduce
task-time (bottom). For example, 44% of jobs in the
FB-2009 workload have a name beginning with “ad”, a
further 12% begin with “insert”; 27% of all I/O and
34% of total task-time comes from jobs with names that
begin with “from” (middle and bottom). The FB-2010
trace did not contain job names.



more beneficial. For workflow management frameworks such
as Qozie, it will be benefitial to have UUIDs to identify jobs
belonging to the same workflow. For native MapReduce
jobs, it will be desirable for the job names to contain a uni-
form convention of pre- and postfixes such as dates, com-
putation types, steps in multi-stage processing, etc.. Ob-
taining information at that level will help translate insights
from multi-operator RDBMS query execution planning to
optimize multi-job MapReduce workflows.

6.2 By Multi-Dimensional Job Behavior

Another way to group jobs is by their multi-dimensional
behavior. Each job can be represented as a six-dimensional
vector described by input size, shuffle size, output size, job
duration, map task time, and reduce task time. One way to
group similarly behaving jobs is to find clusters of vectors
close to each other in the six-dimensional space. We use a
standard data clustering algorithm, k-means [9]. K-means
enables quick analysis of a large number of data points and
facilitates intuitive labeling and interpretation of cluster cen-
ters [17,18,41].

We use a standard technique to choose k, the number
of job type clusters for each workload: increment k until
there is diminishing return in the decrease of intra-cluster
variance, i.e., residual variance. Our previous work [17,18]
contains additional details of this methodology.

Table 2 summarizes our k-means analysis results. We
have assigned labels using common terminology to describe
the one or two data dimensions that separate job categories
within a workload. A system optimizer would use the full
numerical descriptions of cluster centroids.

We see that jobs touching <10GB of total data make up
>92% of all jobs. These jobs are capable of achieving in-
teractive latency for analysts, i.e., durations of less than a
minute. The dominance of these jobs counters prior assump-
tions that MapReduce workloads consist of only jobs at TB
scale and beyond. The observations validate research efforts
to improve the scheduling time and the interactive capability
of large-scale computation frameworks [14,33, 39].

The dichotomy between very small and very large job has
been identified previously for workload management of busi-
ness intelligence queries [35]. Drawing on the lessons learned
there, poor management of a single large job potentially im-
pacts performance for a large number of small jobs.

The small-big job dichotomy implies that the cluster should
be split into two tiers. There should be (1) a performance
tier, which handles the interactive and semi-streaming com-
putations and likely benefits from optimizations for interac-
tive RDBMS systems, and (2) a capacity tier, which nec-
essarily trades performance for efficiency in using storage
and computational capacity. The capacity tier likely as-
sumes batch-like semantics. One can view such a setup as
analogous to multiplexing OLTP (interactive transactional)
and OLAP (potentially batch analytical) workloads. It is
important to operate both parts of the cluster while simul-
taneously achieving performance and efficiency goals.

The dominance of small jobs complicates efforts to rein in
stragglers [10], tasks that execute significantly slower than
other tasks in a job and delay job completion. Compar-
ing the job duration and task time columns indicate that
small jobs contain only a handful of small tasks, sometimes
a single map task and a single reduce task. Having few
comparable tasks makes it difficult to detect stragglers, and

1810

also blurs the definition of a straggler. If the only task of
a job runs slowly, it becomes impossible to tell whether the
task is inherently slow, or abnormally slow. The importance
of stragglers as a problem also requires re-assessment. Any
stragglers will seriously hamper jobs that have a single wave
of tasks. However, if it is the case that stragglers occur ran-
domly with a fixed probability, fewer tasks per job means
only a few jobs would be affected. We do not yet know
whether stragglers occur randomly.

Interestingly, map functions in some jobs aggregate data,
reduce functions in other jobs expand data, and many jobs
contain data transformations in either stage. Such data ra-
tios reverse the original intuition behind map functions as
expansions, i.e., “maps”, and reduction functions as aggre-
gates, i.e., “reduces” [22].

Also, map-only jobs appear in all but two workloads.
They form 7% to 77% of all bytes, and 4% to 42% of all
task times in their respective workloads. Some are Oozie
launcher jobs and others are maintenance jobs that oper-
ate on very little data. Compared with other jobs, map-
only jobs benefit less from datacenter networks optimized
for shuffle patterns [7,8,20,29].

Further, FB-2010 and CC-c both contain jobs that handle
roughly the same amount of data as others, but take consid-
erably longer to complete versus jobs in the same workload
with comparable data sizes. FB-2010 contains a job type
that consumes only 10s of GB of data, but requires days to
complete (Map only transform, 3 days). These jobs have
inherently low levels of parallelism, and cannot take advan-
tage of parallelism on the cluster, even if spare capacity is
available.

Comparing the FB-2009 and FB-2010 workloads in Table 2
shows that job types at Facebook changed significantly over
one year. The small jobs remain, and several kinds of map-
only jobs remain. However, the job profiles changed in sev-
eral dimensions. Thus, for Facebook, any policy parameters
need to be periodically revisited.

Combined, the analysis once again reveals the diversity
across workloads. Even though small jobs dominate all seven
workloads, they are “small” in different ways for each work-
load. Further, the breadth of job shape, size, and durations
across workloads indicates that microbenchmarks of a hand-
ful of jobs capture only a small sliver of workload activity,
and a truly representative benchmark will need to involve a
much larger range of job types.

7. TOWARDS A BIG DATA BENCHMARK

In light of the broad spectrum of industrial data presented
in this paper, it is natural to ask what implications we
can draw with regard to building a TPC-style benchmark
for MapReduce and similar big data systems. The work-
loads here are sufficient to characterize an emerging class
of MapReduce workloads for interactive and semi-streaming
analysis. However, the diversity of behavior across the work-
loads we analyzed means we should be careful when deciding
which aspects of this behavior are representative enough to
include in a benchmark. Below, we discuss some challenges
associated with building a TPC-style benchmark for MapRe-
duce and other big data systems.

Data generation.

The range of data set sizes, skew in access frequency, and

temporal locality in data access all affect system perfor-



[ # Jobs [ Input Shuffle Output Duration Map time Reduce time [ Label
CC-a 5525 51 MB 0 3.9 MB 39 sec 33 0 | Small jobs
194 14 GB 12 GB 10 GB 35 min 65,100 15,410 | Transform
31 1.2 TB 0 27 GB 2 hrs 30 min 437,615 0 | Map only, huge
9 | 273 GB 185 GB 21 MB 4 hrs 30 min 191,351 831,181 | Transform and aggregate
CC-b 21210 4.6 KB 0 4.7 KB 23 sec 11 0 | Small jobs
1565 41 GB 10 GB 2.1 GB 4 min 15,837 12,392 | Transform, small
165 | 123 GB 43 GB 13 GB 6 min 36,265 31,389 | Transform, medium
31 4.7 TB 374 MB 24 MB 9 min 876,786 705 | Aggregate and transform
3 | 600 GB 1.6 GB 550 MB 6 hrs 45 min 3,092,977 230,976 | Aggregate
CC-c 19975 5.7 GB 3.0 GB 200 MB 4 min 10,933 6,586 | Small jobs
477 1.0 TB 4.2 TB 920 GB 47 min 1,927,432 462,070 | Transform, light reduce
246 | 887 GB 57 GB 22 MB 4 hrs 14 min 569,391 158,930 | Aggregate
197 1.1 TB 3.7 TB 3.7 TB 53 min 1,895,403 886,347 | Transform, heavy reduce
105 32 GB 37 GB 2.4 GB 2 hrs 11 min 14,865,972 36,9846 | Aggregate, large
23 3.7 TB 562 GB 37 GB 17 hrs 9,779,062 14,989,871 | Long jobs
7 | 220 TB 18 GB 2.8 GB 5 hrs 15 min 66,839,710 758,957 | Aggregate, huge
cC-d 12736 3.1 GB 753 MB 231 MB 67 sec 7,376 5,085 | Small jobs
214 | 633 GB 2.9 TB 332 GB 11 min 544,433 352,692 | Expand and aggregate
162 5.3 GB 6.1 TB 33 GB 23 min 2,011,911 910,673 | Transform and aggregate
128 1.0 TB 6.2 TB 6.7 TB 20 min 847,286 900,395 Expand and Transform
43 17 GB 4.0 GB 1.7 GB 36 min 6,259,747 7,067 | Aggregate
CC-e 10243 | 8.1 MB 0 970 KB 18 sec 15 0 | Small jobs
452 | 166 GB 180 GB 118 GB 31 min 35,606 38,194 | Transform, large
68 | 543 GB 502 GB 166 GB 2 hrs 115,077 108,745 | Transform, very large
20 3.0 TB 0 200 B 5 min 137,077 0 | Map only summary
7 6.7 TB 2.3 GB 6.7 TB 3 hrs 47 min 335,807 0 | Map only transform
FB-2009 | 1081918 21 KB 0 871 KB 32s 20 0 | Small jobs
37038 | 381 KB 0 1.9 GB 21 min 6,079 0 | Load data, fast
2070 10 KB 0 4.2 GB 1 hr 50 min 26,321 0 | Load data, slow
602 | 405 KB 0 447 GB 1 hr 10 min 66,657 0 | Load data, large
180 | 446 KB 0 1.1 TB 5 hrs 5 min 125,662 0 | Load data, huge
6035 | 230 GB 8.8 GB 491 MB 15 min 104,338 66,760 | Aggregate, fast
379 1.9 TB 502 MB 2.6 GB 30 min 348,942 76,736 | Aggregate and expand
159 | 418 GB 2.5 TB 45 GB 1 hr 25 min 1,076,089 974,395 | Expand and aggregate
793 | 2565 GB 788 GB 1.6 GB 35 min 384,562 338,050 | Data transform
19| 76 TB 51 GB 104 KB 55 min 4,843,452 853,911 | Data summary
FB-2010 1145663 6.9 MB 600 B 60 KB 1 min 48 34 Small jobs
7911 50 GB 0 61 GB 8 hrs 60,664 0 | Map only transform, 8 hrs
779 3.6 TB 0 4.4 TB 45 min 3,081,710 0 | Map only transform, 45 min
670 2.1 TB 0 2.7 GB 1 hr 20 min 9,457,592 0 | Map only aggregate
104 35 GB 0 3.5 GB 3 days 198,436 0 | Map only transform, 3 days
11491 | 1.5TB 30GB 2.2 GB 30 min 1,112,765 387,191 | Aggregate
1876 | 711 GB 2.6 TB 860 GB 2 hrs 1,618,792 2,056,439 | Transform, 2 hrs
454 9.0 TB 1.5 TB 1.2 TB 1 hr 1,795,682 818,344 | Aggregate and transform
169 2.7 TB 12 TB 260 GB 2 hrs 7 min 2,862,726 3,091,678 | Expand and aggregate
67 | 630 GB 1.2 TB 140 GB 18 hrs 1,545,220 18,144,174 | Transform, 18 hrs

Table 2: Job types in each workload as identified by k-means clustering, with cluster sizes, centers, and labels.

Map

and reduce time are in task-seconds, i.e., a job with 2 map tasks of 10 seconds each has map time of 20 task-seconds.

Note that the small jobs dominate all workloads.

mance. A good benchmark should stress the system with
realistic conditions in all these areas. Consequently, a bench-
mark needs to pre-generate data that accurately reflects the
complex data access patterns of real life workloads.

Processing generation.

The analysis in this paper reveals challenges in accurately
generating a processing stream that reflects real life work-
loads. Such a processing stream needs to capture the size,
shape, and sequence of jobs, as well as the aggregate clus-
ter load variation over time. It is non-trivial to tease out
the dependencies between various features of the processing
stream, and even harder to understand which ones we can
omit for a large range of performance comparison scenarios.

Mixing MapReduce and query-like frameworks.

The heavy use of query-like frameworks on top of MapRe-
duce indicates that future cluster management systems need
to efficiently multiplex jobs both written in the native MapRe-
duce API, and from query-like frameworks such as Hive, Pig,
and HBase. Thus, a representative benchmark also needs to

1811

include both types of processing, and multiplex them in re-
alistic mixes.

Scaled-down workloads.

The sheer data size involved in the workloads means that
it is economically challenging to reproduce workload behav-
ior at production scale. One can scale down workloads pro-
portional to cluster size. However, there are many ways to
describe both cluster and workload size. One could normal-
ize workload size parameters such as data size, number of
jobs, or the processing per data, against cluster size param-
eters such as number of nodes, CPU capacity, or available
memory. It is not clear yet what would be the best way to
scale down a workload.

Empirical models.

The workload behaviors we observed do not fit any well-
known statistical distributions (the single exception being
Zipf distribution in data access frequency). It is necessary
for a benchmark to assume an empirical model of workloads,
i.e., the workload traces are the model. This is a departure



from some existing TPC-* benchmarking approaches, where
the targeted workload are such that some simple models can
be used to generate data and the processing stream [51].

A true workload perspective.

The data in the paper indicate the shortcomings of mi-
crobenchmarks that execute a small number of jobs one at
a time. They are useful for diagnosing subcomponents of a
system subject to very specific processing needs. A big data
benchmark should assume the perspective already reflected
in TPC-* [50], and treat a workload as a steady process-
ing stream involving the superposition of many processing
types.

Workload suites.

The workloads we analyzed exhibit a wide range of be-
havior. If this diversity is preserved across more workloads,
we would be compelled to accpet that no single set of be-
haviors are representative. In that case, we would need to
identify as small suite of workload classes that cover a large
range of behavior. The benchmark would then consist not
of a single workload, but a workload suite. Systems could
trade optimized performance for one workload type against
more average performance for another.

A stopgap tool.

We have developed and deployed Statistical Workload In-
jector for MapReduce (https://github.com/SWIMProject-
UCB/SWIM/wiki). This is a set of New BSD Licensed work-
load replay tools that partially address the above challenges.
The tools can pre-populate HDFS using uniform synthetic
data, scaled to the number of nodes in the cluster, and replay
the workload using synthetic MapReduce jobs. The work-
load replay methodology is further discussed in [18]. The
SWIM repository already includes scaled-down versions of
the FB-2009 and FB-2010 workloads. Cloudera has allowed
us to contact the end customers directly and seek permission
to make public their traces. We hope the replay tools can
act as a stop-gap while we progress towards a more thorough
benchmark, and the workload repository can contribute to
a scientific approach to designing big data systems such as
MapReduce.

8. SUMMARY AND CONCLUSIONS

To summarize the analysis results, we directly answer the
questions raised in Section 2.1. The observed behavior spans
a wide range across workloads, as we detail below.

1. For optimizing the underlying storage system:

— Skew in data accesses frequencies range between an
80-1 and 80-8 rule.

— Temporal locality exists, and 80% of data re-accesses

occur on the range of minutes to hours.

2. For workload-level provisioning and load shaping;:
— The cluster load is bursty and unpredictable.
— Peak-to-median ratio in cluster load range from 9:1
to 260:1.

3. For job-level scheduling and execution planning:

— All workloads contain a range of job types, with the
most common being small jobs.

— These jobs are small in all dimensions compared
with other jobs in the same workload. They involve
10s of KB to GB of data, exhibit a range of data
patterns between the map and reduce stages, and
have durations of 10s of seconds to a few minutes.

1812

— The small jobs form over 90% of all jobs for all work-
loads. The other job types appear with a wide range
of frequencies.

4. For optimizing query-like programming frameworks:

— The cluster load that comes from these frameworks
is up to 80% and at least 20%.

The frameworks are generally used for interactive
data exploration and semi-streaming analysis. For
Hive, the most commonly used operators are insert
and select; from is frequently used in only one
workload. Additional tracing at the Hive/Pig/HBase
level is required.

5. For performance comparison between systems:
— A wide variation in behavior exists between work-
loads, as the above data indicates.
— There is sufficient diversity between workloads that
we should be cautious in claiming any behavior as
“typical”. Additional workload studies are required.

The analysis in this paper has several repercussions: (1).
MapReduce has evolved to the point where performance
claims should be qualified with the underlying workload
assumptions, e.g., by replaying a suite of workloads. (2).
System engineers should regularly re-assess design priorities
subject to evolving use cases. Prerequisites to these efforts
are workload replay tools and a public workload repository,
so that engineers can share insights across different enter-
prise MapReduce deployments.

Future work should seek to improve analysis and mon-
itoring tools. Enterprise MapReduce monitoring tools [21]
should perform workload analysis automatically, present gra-
phical results in a dashboard, and ship only the anonymized
and aggregated metrics for workload comparisons offsite.
Most importantly, tracing capabilities at the Hive, Pig, and
HBase level should be improved. An analysis of query text
at that level will reveal further insights, and expedite trans-
lating RDBMS knowledge to optimize MapReduce and solve
real life problems involving large-scale data.

Improved tools will facilitate the analysis of more work-
loads, over longer time periods, and for additional statistics.
This improves the quality and generality of the derived de-
sign insights, and contributes to the overall efforts to identify
common behavior. The data in this paper indicate that we
need to look at a broader range of use cases before we can
build a truly representative big data benchmark.

We invite cluster operators and the broader data manage-
ment community to share additional knowledge about their
MapReduce workloads. To contribute, retain the job history
logs generated by existing Hadoop tools, run the tools at
https://github.com/SWIMProjectUCB/SWIM/wiki/Analyz-
e-historical-cluster-traces-and-synthesize-represe-
ntative-workload, and share the results.

9. ACKNOWLEDGMENTS

The authors are grateful for the feedback from our col-
leagues at UC Berkeley AMP Lab, Cloudera, Facebook,
and other industrial partners. We especially appreciate the
inputs from Archana Ganapathi, Anthony Joseph, David
Zats, Matei Zaharia, Jolly Chen, Todd Lipcon, Aaron T.
Myers, John Wilkes, and Srikanth Kandula. This research
is supported in part by AMP Lab (https://amplab.cs.



berkeley.edu/sponsors/), and the DARPA- and SRC-fund-
ed MuSyC FCRP Multiscale Systems Center.

10.

(1]
2]

3]
(4]

(5]
[6]
[7]
(8]
[9]

(10]

(11]

(12]
(13]
14]

(15]

[16]

(17]
(18]
(19]
20]
(21]
(22]
(23]
[24]

(25]

[26]

27]

(28]

29]

REFERENCES

Apache Hive. http://hive.apache.org/.

Apache Oozie(TM) Workflow Scheduler for Hadoop.
http://incubator.apache.org/oozie/.

Apache Pig. http://pig.apache.org/.

Gridmix. HADOOP-HOME/mapred/src/benchmarks/gridmix in
Hadoop 0.21.0 onwards.

Hadoop World 2011 Speakers.
http://www.hadoopworld.com/speakers/.

Sort benchmark home page. http://sortbenchmark.org/.
M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable,
commodity data center network architecture. In
SIGCOMM, pages 63-74, 2008.

M. Alizadeh et al. Data Center TCP (DCTCP). In
SIGCOMM, pages 63-74, 2010.

E. Alpaydin. Introduction to Machine Learning. MIT
Press, 2004.

G. Ananthanarayanan et al. Reining in the outliers in
MapReduce clusters using Mantri. In OSDI, pages 1-16,
2010.

G. Ananthanarayanan et al. Scarlett: coping with skewed
content popularity in MapReduce clusters. In Eurosys,
pages 287-300, 2011.

G. Ananthanarayanan et al. PACMan: coordinated memory
caching for parallel jobs. In NSDI, pages 20-32, 2012.

L. Bairavasundaram et al. An analysis of data corruption in
the storage stack. In FAST, pages 8:1-8:28, 2008.

D. Borthakur et al. Apache Hadoop goes realtime at
Facebook. In SIGMOD, pages 1071-1080, 2011.

L. Breslau et al. Web caching and Zipf-like distributions:
evidence and implications. In INFOCOM, pages 126-134,
1999.

Y. Bu et al. HaLoop: efficient iterative data processing on
large clusters. In VLDB, pages 285296, 2010.

Y. Chen et al. Design implications for enterprise storage
systems via multi-dimensional trace analysis. In SOSP,
pages 43-56, 2011.

Y. Chen et al. The case for evaluating MapReduce
performance using workload suites. In MASCOTS, pages
390-399, 2011.

Y. Chen et al. Energy efficiency for large-scale MapReduce
workloads with significant interactive analysis. In FuroSys,
pages 43-56, 2012.

M. Chowdhury et al. Managing data transfers in computer
clusters with orchestra. In SIGCOMM, pages 98-109, 2011.
Cloudera, Inc. Cloudera Manager Datasheet.

J. Dean and S. Ghemawat. MapReduce: simplified data
processing on large clusters. In OSDI, pages 107-113, 2004.
J. Dittrich et al. Hadoop++: making a yellow elephant run
like a cheetah (without it even noticing). In VLDB, pages
515-529, 2010.

EMC and IDC iView. Digital Universe.
http://www.emc.com/leadership/programs/digital-
universe.htm.

N. Feamster and H. Balakrishnan. Detecting BGP
configuration faults with static analysis. In NSDI, pages
43-56, 2005.

A. Ganapathi et al. Statistics-driven workload modeling for
the cloud. In SMDB, pages 87-92, 2010.

A. F. Gates et al. Building a high-level dataflow system on
top of MapReduce: the Pig experience. In VLDB, pages
1414-1425, 2009.

J. Gray et al. Quickly generating billion-record synthetic
databases. In SIGMOD, pages 243-252, 1994.

A. Greenberg et al. VL2: a scalable and flexible data center
network. In SIGCOMM, pages 51-62, 2009.

1813

(30]

(31]

32]

33]
(34]

(35]

(36]
(37]
(38]
(39]
[40]

[41]

[42]
[43]
[44]
[45]
[46]
[47]

(48]

[49]

[50]

[51]

J. Hellerstein. Quantitative data cleaning for large
databases. Technical report, United Nations Economic
Commission for Europe, 2008.

H. Herodotou and S. Babu. Profiling, What-if analysis, and
cost-based optimization of MapReduce programs. In
VLDB, pages 1111-1122, 2011.

B. Hindman et al. Mesos: A platform for fine-grained
resource sharing in the data center. In NSDI, pages 2222,
2011.

M. Isard et al. Quincy: fair scheduling for distributed
computing clusters. In SOSP, pages 261-276, 2009.

E. Jahani et al. Automatic optimization for MapReduce
programs. In VLDB, pages 385-396, 2011.

S. Krompass et al. Dynamic workload management for very
large data warehouses: juggling feathers and bowling balls.
In VLDB, pages 1105-1115, 2007.

W. Lang and J. Patel. Energy Management for MapReduce
clusters. In VLDB, pages 129-139, 2010.

W. Leland et al. On the self-similar nature of Ethernet
traffic. In SIGCOMM, pages 1-15, 1993.

D. Meisner et al. Power management of online
data-intensive services. In ISCA, pages 319-330, 2011.

S. Melnik et al. Dremel: interactive analysis of web-scale
datasets. In VLDB, pages 330-339, 2010.

M. Mesnier et al. File classification in self-* storage
systems. In ICAC, pages 44-51, 2004.

A. Mishra et al. Towards characterizing cloud backend
workloads: insights from Google compute clusters.
SIGMETRICS, pages 34-41, 2010.

J. C. Mogul. The case for persistent-connection HTTP. In
SIGCOMM, pages 299-313, 1995.

K. Morton et al. ParaTimer: A progress indicator for
MapReduce DAGs. In SIGMOD, pages 507-518, 2010.

J. Ousterhout et al. A trace-driven analysis of the UNIX
4.2 BSD file system. In SOSP, pages 15-24, 1985.

A. Pavlo et al. A comparison of approaches to large-scale
data analysis. In SIGMOD, pages 165-178, 2009.

V. Paxson. End-to-end Internet packet dynamics. In
SIGCOMM, pages 139-152, 1997.

K. Srinivasan et al. The S-factor: measuring wireless link
burstiness. In SenSys, pages 29-42, 2008.

E. Thereska, A. Donnelly, and D. Narayanan. Sierra:
practical power-proportionality for data center storage. In
EuroSys, pages 169-182, 2011.

A. Thusoo et al. Hive: a warehousing solution over a
map-reduce framework. In VLDB, pages 1626-1629, 2009.
Transactional Processing Performance Council. The
TPC-W Benchmark.
http://www.tpc.org/tpcw/default.asp.

Transactional Processing Performance Council. TPC-*
Benchmarks. http://www.tpc.org/.



