
Myriad: Scalable and Expressive Data Generation

Alexander Alexandrov∗ Kostas Tzoumas∗ Volker Markl∗

Technische Universität Berlin, Germany
∗firstname.lastname@tu­berlin.de

ABSTRACT

The current research focus on Big Data systems calls for a rethink-

ing of data generation methods. The traditional sequential data gen-

eration approach is not well suited to large-scale systems as gener-

ating a terabyte of data may require days or even weeks depending

on the number of constraints imposed on the generated model. We

demonstrate Myriad, a new data generation toolkit that enables the

specification of semantically rich data generator programs that can

scale out linearly in a shared-nothing environment. Data generation

programs built on top of Myriad implement an efficient parallel ex-

ecution strategy leveraged by the extensive use of pseudo-random

number generators with random access support.

1. INTRODUCTION
The vast penetration of online social media and next generation

mobile technologies in large areas of our life have, among other

factors, caused dramatic growth in the amount of produced digi-

tal data in recent years. A recent McKinsey report on Big Data

suggests that “the amount of data in the world has been expanding

rapidly and will continue to grow exponentially for the foreseeable

future” [8]. Since classic database architectures can scale only up

to a few hundreds of nodes, a large part of the current industrial

and academic research is exploring alternative computational mod-

els and architectures that can scale out beyond thousands of nodes

a massively parallel environment.

A thorough evaluation of these new large-scale data management

concepts entails a substantial amount of performance testing. To

this purpose, the use of realistic datasets is of critical importance

for the credibility of the test results. Unfortunately, gaining access

to real-world datasets can be difficult for various reasons, e.g. pri-

vacy protection or data transfer costs. Therefore, many test and

benchmarking suites rely on the use of synthetically generated data

modeled with realistic statistical characteristics and integrity con-

straints.

While standard benchmarks like TPC-H and TPC-C [3] provide

data generators that have been widely adopted for proof-of-concept

experimentation by the database community, analyzing unexpected

behavior of production systems often calls for the use of tailor-

made test data. In recent years, a number of tools that can generate

synthetic data based on a formal input specification have been pro-

posed [5, 6].

Unfortunately, the design of most data generation tools entails

a trade-off between the expressiveness of the modeling language

(i.e. the ability to synthesize data using various inter-dependant

sampling processes) and the efficient scale-out of the data genera-

tion process. Obviously, such a trade-off is undesired in the context

of Big Data, as it imposes either extremely long generation times

(sophisticated data models have to be synthesized on a single ma-

chine) or too restrictive data modeling language (e.g. models with-

out cross-table dependencies).

In an attempt to solve this problem we developed Myriad – a

new data generation toolkit that enables the specification of seman-

tically rich data generator programs that can scale out linearly in

a shared-nothing environment. The parallel execution scheme im-

plemented by Myriad relies on a subclass of pseudo-random num-

ber generators (PRNGs) that support random access of the pro-

duced pseudo-random number sequence. The use of these special

PRNGs allows distribution of the generation process across arbi-

trarily many nodes and ensures that they can run completely inde-

pendent from each other, without imposing any restrictions on the

data modeling language.

In the remainder of the paper we provide a brief overview of the

core features and architecture of Myriad (Section 2) and outline a

demonstration proposal that shows how Myriad can be used for the

definition and generation of both relational and non-relational data

(Section 3).

2. MYRIAD: BACKGROUND
This section provides a brief overview of the Myriad parallel data

generation toolkit. For a more detailed introduction, please refer to

our recent paper [4] or visit the toolkit website [2].

2.1 Pseudo­Random Number Generators
Reproducible random sampling methods are based on uniform

samples drawn from an underlying pseudo-random number gen-

erator (PRNG). From a mathematical point of view, a PRNG is a

random walk over the elements of a finite algebraic structure R (a

field or a ring), typically defined recursively by a transition function

si = f(si−1) and an initial seed s0
1. In practice, the si values often

are normalized to the [0, 1) interval by dividing each number by the

modulus of the algebraic structure Mf , i.e. ri = si/Mf ∈ [0, 1).
Although the definition of most PRNG algorithms suggests only

sequential access of the generated random sequence through re-

peated application of the transition function f , some algorithms

1Observe that in these cases obviously si = f i(s0).

1890

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 38th International Conference on Very Large Data Bases,
August 27th - 31st 2012, Istanbul, Turkey.
Proceedings of the VLDB Endowment, Vol. 5, No. 12
Copyright 2012 VLDB Endowment 2150-8097/12/08... $ 10.00.

allow skips of arbitrary length (SeedSkips) in constant time, e.g. if

f i can be computed directly or if the sequence is defined directly as

a function of the element position si = f̃(i). If sequential and ran-

dom steps take the same time, we say that the PRNG is symmetric,

otherwise we say that the PRNG is asymmetric. We explain how to

exploit PRNGs with SeedSkip support when generating sequences

of random domain types in Section 2.3.

2.2 Pseudo­Random Data Generators
Pseudo-random number generators can be extended into pseudo-

random sequences of arbitrary domain types.

In Myriad, a domain type T is a record consisting of lT base type

fields. We support common simple types (integer, double, date,

string) as well as lists over simple types and references to other

domain types.

For a domain type T with output cardinality CT and an associ-

ated PRNG sequence (si) i∈N, we define the pseudo-random do-

main type sequence for T , denoted PRDGT , as the finite sequence

of T -values (ti) 0≤i<CT
constructed by mapping consecutive fix-

length chunks of (si) to the random values of the corresponding t
records.

Let newT denote the operator that creates a new T -record and

hT,i a family of value setter functions. The mapping function hT

can be defined as a chain of k value setters:

hT,i : T ×R → T ×R, (t, s) 7→ hT,i(t, s)

hT : R → T, s 7→ hT,k−1 ◦ . . . ◦ hT,0(newT , s)

Conceptually, a value setter function hT receives a partially gen-

erated record t and the current state of the underlying PRNG s,

draws a fixed number of elements from the PRNG and based on the

values of these, it synthesizes the values of one or more fields of t.
The function returns the partially overridden t record and the new

PRNG state s′.
Obviously, if the underlying PRNGT supports random access

(i.e. arbitrary seed skips), this property propagates to the PRDGT

sequence as we can compute the offset o(i) of the i-th PRNG

chunk in constant time and apply the setter chain to obtain ti =
hT (newT , so(i)).

2.3 Execution Model
Having formalized the required theoretical foundations we now

explain how they can be applied in a scalable and efficient data gen-

eration process. Random access PRNG and PRDGs are fundamen-

tal for shared-nothing execution as they allow us to (a) partition the

PRDG sequences horizontally, and (b) decouple the synthesis of

two sequences PRDGA and PRDGB , even if type A has to sam-

ple and access referenced records of type B. These two properties

are critical for scalability as they ensure that we can generate arbi-

trary referenced sequences in a massively parallel environment in a

single pass and without communication between the data generator

nodes.

Let (Tj) 0≤j<m denote the family of domain types in the speci-

fied domain model. We partition a single underlying PRNG stream

(si) into j non-overlapping and sufficiently large substreams (sj,i)
and use them to instantiate the associated family of pseudo-random

domain type generators (PRDGTj
) 0≤j<m.

Our execution model is based on the independent execution of N
generator nodes. In order to start a generator node the user needs to

provide values for the following arguments: (1) the total number of

nodes N involved in the parallel generation process, (2) the index

of the current node i, 0 ≤ i < N , and (3), the scaling factor s

used to determine the actual cardinality of the generated PRDGTj

sequences.

Based on the parameter values we first compute the actual cardi-

nality CTj
of each sequence PRDGTj

and then split each PRDGTj

horizontally into N equally large subsequences of length CTj
/N .

The sequences are then distributed across the N generator nodes,

with node i responsible for the generation of the i-th subsequence

of PRDGTj
for all Tj . Depending on the generator configuration

the PRDGTj
subsequences inside a single node can be generated

simultaneously (using one thread per subsequence), or in a staged

manner.

Figure 1 illustrates the described partitioning scheme for a do-

main model consisting of two types A (circles) and B (triangles)

and an execution environment consisting of three nodes (purple,

green and yellow).

PRDG Sequence »A«

PRDG Sequence »B«

Key

Node #3
Node #2
Node #1

PRNG chunk
PRDG records

Figure 1: Myriad sequence partitioning example

The presented parallelization model is similar to the one pro-

posed by Rabl et al. in [9]. The main difference is in the orga-

nization of the PRNG substreams. In [9], a separate substream is

maintained per column, which enforces one SeedSkip operation per

generated column value. In contrast, our model allocates fix-length

chunks from a single PRNG to each record. These are then shared

between all setters in the value setter chain, which reduces the to-

tal number of SeedSkip operations per record and is more robust

against use of PRNGs with asymmetric SeedSkip.

References in the domain model can cause problems if the syn-

thesis of local record fields depends on the field values of the refer-

enced record (e.g. referential integrity constraints on foreign keys).

To solve these problems data generators typically fall back to nested

generation schemes (i.e. generate all children together with their

parent) or multi-pass methods (sample an index from the referenced

sequence and join the corresponding record in a second pass). Both

solutions have serious disadvantages – nested sampling introduces

unwanted artifacts in the generated PRDG sequences (e.g. clus-

tering on the parent key) and can handle only a single parent per

child, while multi-pass methods can hamper the data generation ef-

ficiency in a large scale parallel setting because of the data-intensive

shuffle steps required for the join pass.

In Myriad, sampling of referenced records is not restricted by

the above partitioning scheme in any way because all PRDGTj
se-

quences support random access. In general, sampling of referenced

records is performed in two steps: (1) sample an index of an ele-

ment from the referenced PRDG sequence, and (2) recompute the

referenced record on the local node. The random access property

of the referenced PRDG sequence ensures that all interesting fields

of the referenced record can be recomputed on demand on the local

node at a constant cost.

Figure 2 illustrates the reference sampling process implemented

by Myriad. Assume we want to implement the constraint a.x = b.y
for a right-unique relation A ✶ B. To implement this constraint,

1891

chunk
#23

a b

chunk
#1027

1. My b partner is
located at PRNG
chunk #1027

2. Lookup chunk
#1027 with a
SeedSkip

3. Recompute the b record
at chunk #1027 on the
local (purple) node

4. Set the reference and
synthesize the a fields
that depend on b

Figure 2: Myriad reference sampling example

for each each record ai ∈ PRDGA we first sample the position

j of the related record bj ∈ PRDGB (Step 1 in the figure). The

bj must not belong to the PRDGB-subsequence generated on the

same (purple) node as the ai. We merely adjust the underlying

PRNG to the corresponding offset o(j) (Step 2) and compute a

consistent clone b̃j = bj = hB(newB , o(j)) locally (Step 3) be-

fore we can finally set a.x := b̃j .y (Step 4). This way, we can

generate correlated values for a.x and b.y in different nodes with-

out transferring data between them.

2.4 Usage Scenario
Figure 3 outlines the standard usage scenario for the Myriad

toolkit. The user provides a declarative specification of the data

generation model using a predefined XML syntax. The core of the

XML specification contains the definitions of the generated domain

types and the associated value setter chains, i.e. all the information

that is required to specify the PRDG sequences described in the

previous section. Based on this description the Myriad compiler

creates a set of C++ classes extending the Myriad runtime library.

Each PRDG type induces the generation of of corresponding record

class, setter chain and record generator extensions. The generated

C++ extensions are linked against the core library to produce the fi-

nal generator executable which represents a single data generation

node.

+

C++ Record Classes

C++ Value Setter Chains

C++ Record Generators

XML
Model

Specification

XML
Myriad

Runtime

XML
Generator

Node

Figure 3: Myriad usage scenario

While Myriad aims to provide a set of built-in value setters that

is expressive enough for most use cases, some generation models

might require special value synthesis logic. For these cases, the

toolkit provides means to implement this logic directly at the code

level by extending the generated record classes and value setter

chains.

2.5 Performance
We illustrate the scalability of our parallel execution model with

a small experiment using a naive graph generator. In this exper-

iment, we benchmarked the runtime of two alternative PRNG al-

gorithms with random access support against an increasing degree

of parallelism on a single machine with 8 CPU cores. Figure 4

shows the results and compares them against a baseline sequential

implementation that uses the C++ stdlib rand function. The results

show linear scale-out for both PRNGs (the sub-linear factor is due

to increased I/O congestion and increased node setup over execu-

tion time factor for higher N). For PRNG#2 the payoff against

the reference implementation comes for N > 4, while PRNG#1

is faster even for N = 1. The reason for this is that PRNG#2

has a 192 bit cycle and requires more complex computations than

PRNG#1, which performs only elementary bit-wise operations but

is constrained by a 64 bit state.

 0

 300

 600

 900

 1200

 0 2 4 6 8

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

N (# Nodes)

C++ rand
PRNG#1
PRNG#2

Figure 4: Scale-out for a simple graph model

3. DEMONSTRATION
To showcase the benefits of the described scalable data gener-

ation approach we propose a demonstration of the core features

provided by the Myriad toolkit. As a running example, we use a

toy model that combines relational and graph data. First, we show

how to specify a generator prototype for a given domain schema

and a set of informal model constraints. Upon that, we explain how

the generated sources can be extended with user-defined code, e.g.

for complex generation semantics that cannot be expressed with

the prototype specification language. Finally, we demonstrate how

the compiled program can be executed in a shared-nothing envi-

ronment in two different ways – as a stand-alone application or-

chestrated by a lightweight coordination service or as a UDF code

called by the map tasks in a massively-parallel execution platform

like Hadoop [1].

3.1 Generator Model Specification
Figure 5 depicts the toy domain model for our running exam-

ple. The domain represents a subset of a classical OLAP-style star

schema with two fact tables (Order and Lineitem) and two dimen-

sion tables (Customer and Product). In addition to these relations,

the model also incorporates a non-relational extension – a social

graph between customers stored in an adjacency matrix format.

Assume that the domain model from Figure 5 imposes the fol-

lowing constraints on the generated data2:

1. Both C.name and C.surname are sampled from fixed name

lists according to a predefined discrete probability distribu-

tion functions. P [C.name] is conditioned on C.gender.

2. C.age has an active domain [18 : 88] and is sampled accord-

ing to a predefined probability distribution P [C.age].

2For all other attributes, assume uniform sampling from a
known finite active domain.

1892

Figure 5: Example schema

3. The references from Order to Lineitem and Customer are

sampled independently according to the parametric distribu-

tions P [L ✶ O] (Pareto) and P [O ✶ C] (normal). The

reference from Lineitem to Product is sampled according to

a highly skewed (Pareto or Zipf) distribution P [L ✶ P].

4. L.discount is zero, ten, twenty five or fifty percent of the ref-

erenced P.retailPrice sampled according to P [L.discount].

5. L.price is computed as (1+L.tax)∗(P.retailPrice−L.discount).

6. O.totalPrice is computed as the sum of all referenced L.price

values.

7. O.orderDate is a random date from 1 Jan to 31 June 2012

sampled from P [O.orderDate].

8. L.shipDate is has a random offset between 1 and 14 days

from the associated O.orderDate.

9. The Customer adjacency matrix produces a graph with re-

alistic features (e.g. small diameter, long tail vertex degree

distribution).

During the first part of the demonstration, we show how to trans-

late constraints C1-C8 into a formal Myriad specification.

simple random setter

field:
prob:

C.surname
P[C_surname]

simple random setter

field:
prob:

C.gender
P[C_gender]

conditional random setter

field:
cond:
prob:

C.name
C.gender
P[C_name|C_gender]

simple random setter

field:
prob:

C.age
Uniform[18, 88]

functional setter

field:
func:

L.shipDate
L.order.orderDate +
L.shipDateOffset

Customer Lineitem

simple random setter

field:
prob:

L.shipDateOffset
Uniform[1,14]

permutated sequence setter

field:
prob:

L.orderIndex
Zipf[O.cardinality]

reference inspector

field:
index:

L.order
L.orderIndex

Figure 6: Value setter chains for the Customer and Lineitem

domain types (excerpt)

We first explain how our specification language decouples ran-

dom from functional value synthesis and show how to overcome

this restriction with additional domain variables, e.g. L.discountRate

for C5 or L.shipDateOffset for C8. Upon that, we provide a brief

overview of the available value setter primitives and show how

these can be used to define the value setter chains for the differ-

ent domain types in line with the specified model constraints (Fig-

ure 6). The final artifact of this part of the demonstration is the

XML specification provided to the Myriad compiler.

3.2 Code­Level Extensions
Upon creation of the generator source files from our prototype

specification, we show the prototype logic can be extended using

method overriding at the source code level. To demonstrate this,

we show how to augment the record synthesis logic in order to

implement the Kronecker graph generation method proposed in [7]

in order to fulfill the graph requirements stated in C9.

3.3 Running the Data Generator
We conclude the demonstration by running the data generation

program on a small cluster. We use multiple runs with different

degrees of parallelism to show the linear scale-out of the produced

data generator.

4. CONCLUSION
We demonstrate Myriad – a toolkit for expressive data genera-

tor programs that can be executed in a massively parallel manner.

The demonstration covers the specification, refinement, compila-

tion, and parallel execution of a small OLAP model. We showcase

the usage of the toolkit step-by-step and use visualization tools to

provide insight into the artifacts produced after each step as well

as to show the linear speed-up caused by increasing the degree of

parallelism.

5. ACKNOWLEDGMENTS
We thank the IBM Centers for Advanced Studies for supporting

this work as part of an ongoing collaboration between TU Berlin

and IBM CAS Canada.

6. REFERENCES
[1] Apache Hadoop. http://hadoop.apache.org.

[2] Myriad Toolkit. http://www.myriad-toolkit.com.

[3] Transaction Processing Performance Council.

http://www.tpc.org.

[4] A. Alexandrov, B. Schiefer, J. Poelman, S. Ewen, T. Bodner,

and V. Markl. Myriad – Parallel Data Generation on

Shared-Nothing Architectures. In Architectures and Systems

for Big Data (ASBD), 2011.

[5] J. E. Hoag and C. W. Thompson. A Parallel General-Purpose

Synthetic Data Generator. SIGMOD Rec., 36(1):19–24, 2007.

[6] K. Houkjær, K. Torp, and R. Wind. Simple and Realistic Data

Generation. In VLDB, pages 1243–1246, 2006.

[7] J. Leskovec, D. Chakrabarti, J. M. Kleinberg, and

C. Faloutsos. Realistic, Mathematically Tractable Graph

Generation and Evolution, Using Kronecker Multiplication. In

PKDD, pages 133–145, 2005.

[8] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs,

C. Roxburgh, and A. H. Byers. Big Data: The Next Frontier

for Innovation, Competition, and Productivity.

http://www.mckinsey.com/insights/mgi/

research/technology_and_innovation/big_

data_the_next_frontier_for_innovation, May

2011.

[9] T. Rabl, M. Frank, H. M. Sergieh, and H. Kosch. A Data

Generator for Cloud-Scale Benchmarking. In TPCTC, pages

41–56, 2010.

1893

http://hadoop.apache.org
http://www.myriad-toolkit.com
http://www.tpc.org
http://www.mckinsey.com/insights/mgi/research/technology_and_innovation/big_data_the_next_frontier_for_innovation
http://www.mckinsey.com/insights/mgi/research/technology_and_innovation/big_data_the_next_frontier_for_innovation
http://www.mckinsey.com/insights/mgi/research/technology_and_innovation/big_data_the_next_frontier_for_innovation

	Introduction
	Myriad: Background
	Pseudo-Random Number Generators
	Pseudo-Random Data Generators
	Execution Model
	Usage Scenario
	Performance

	Demonstration
	Generator Model Specification
	Code-Level Extensions
	Running the Data Generator

	Conclusion
	Acknowledgments
	References

