
ASTERIX: An Open Source System for
“Big Data” Management and Analysis (Demo)

Sattam Alsubaiee, Yasser Altowim, Hotham Altwaijry, Alexander Behm, Vinayak
Borkar, Yingyi Bu, Michael Carey, Raman Grover, Zachary Heilbron, Young­Seok Kim,

Chen Li, Nicola Onose∗, Pouria Pirzadeh, Rares Vernica†, Jian Wen‡

Information Systems Group, University of California, Irvine

mjcarey@ics.uci.edu§

ABSTRACT

At UC Irvine, we are building a next generation parallel database

system, called ASTERIX, as our approach to addressing today’s

“Big Data” management challenges. ASTERIX aims to combine

time-tested principles from parallel database systems with those of

the Web-scale computing community, such as fault tolerance for

long running jobs. In this demo, we present a whirlwind tour of AS-

TERIX, highlighting a few of its key features. We will demonstrate

examples of our data definition language to model semi-structured

data, and examples of interesting queries using our declarative query

language. In particular, we will show the capabilities of ASTERIX

for answering geo-spatial queries and fuzzy queries, as well as AS-

TERIX’ data feed construct for continuously ingesting data.

1. INTRODUCTION
We started the ASTERIX project [1, 3] at UC Irvine approxi-

mately two and a half years ago. Our goal at the outset was to de-

sign and implement a highly scalable platform for information stor-

age, search, and analytics. By combining and extending ideas from

semistructured data management, parallel database systems, and

first-generation data-intensive computing platforms (MapReduce

and Hadoop), ASTERIX was envisioned to be a parallel, semistruc-

tured information management system with the ability to ingest,

store, index, query, analyze, and publish very large quantities of

semistructured data. ASTERIX is well-suited to handle use cases

ranging all the way from rigid, relation-like data collections, whose

types are well understood and invariant, to flexible and more com-

plex data, where little is known a priori and the instances in data

collections are highly variant and self-describing.

While ASTERIX began with the objective of creating a paral-

lel, semistructured information management system, three reusable

software layers have resulted from our work. The bottommost layer

of the ASTERIX stack is a data-intensive runtime called Hyracks [4].

∗now at Google
†now at HP Labs
‡at University of California, Riverside
§primary contact

Other HLL
Compilers

Algebricks
Algebra Layer

Hyracks Data-parallel Platform

HiveQL Piglet ...

Hadoop M/R
Job

Hadoop M/R
Compatibility

Hyracks Job

AsterixQL

Asterix
Data

Mgmt.
System

Figure 1: ASTERIX layers and entry points

Hyracks sits at roughly the same level of the architecture that MapRe-

duce (Hadoop) does in implementations of higher-level data anal-

ysis languages such as Pig [8], Hive [2] or Jaql [5]. The topmost

layer of the ASTERIX stack is a parallel DBMS, with a full, flexi-

ble data model (ADM) and a query language (AQL) for describing,

querying, and analyzing data. AQL is comparable to languages

such as Pig, Hive, or Jaql, but ADM and AQL support both native

storage and indexing of data as well as access to external data resid-

ing in a distributed file system (e.g., HDFS). In between these lay-

ers sits Algebricks, a model-agnostic, algebraic “virtual machine”

for parallel query processing and optimization. Algebricks is the

target for AQL query compilation, but it can also be the target for

other declarative data languages. Figure 1 summarizes the layers.

Sections 2, 3 and 4 briefly explain how each layer does its job, and

what its potential value is as a software resource for the “Big Data”

analytics and management community. We will start at the bottom

of the stack and work our way up to ASTERIX proper (i.e., to the

complete end-user system).

2. THE HYRACKS RUNTIME
The Hyracks layer of ASTERIX is the bottom-most layer of the

stack. Hyracks is the runtime layer (a.k.a. executor) whose job is

to accept and manage data-parallel computations requested either

by direct end users of Hyracks or (more likely) by layers above it

in the ASTERIX software stack.

Jobs are submitted to Hyracks in the form of directed acyclic

graphs that are made up of “Operators” and “Connectors”. To illus-

trate the key ideas in Hyracks, Figure 2 shows an example Hyracks

job representing a TPCH-like query that performs a join between

a partitioned file containing Customer records and another parti-

1898

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 38th International Conference on Very Large Data Bases,
August 27th - 31st 2012, Istanbul, Turkey.
Proceedings of the VLDB Endowment, Vol. 5, No. 12
Copyright 2012 VLDB Endowment 2150-8097/12/08... $ 10.00.

Scanner
(CUSTOMER)

HashGroupby
C_MKTSEGMENT

Agg: count(O_ORDKEY)
HashJoin

C_CUSTKEY
 = O_CUSTKEY

Writer

{NC1: cust1.dat}
{NC2: cust2.dat}

E4[1:1]

Scanner
(ORDERS) E2[hash(O_CUSTKEY)]

E3
 [hash

 (C_MKTSEGMENT)]

E1[hash(C_CUSTKEY)]

{NC3: ord1.dat, NC2: ord1.dat}
{NC1: ord2.dat, NC5: ord2.dat}

Figure 2: Example Hyracks job specification

tioned file containing Order records. The result of the join is aggre-

gated to count the popularities of orders by market segment. Nodes

in the figure represent Operators, and edges represent Connectors.

In Hyracks, Operators are responsible for consuming partitions of

their inputs and producing output partitions. Connectors perform

redistribution of data between different partitions of the same logi-

cal dataset. For example, in Figure 2, the file scanners that scan the

Customer and Order files are each connected to the Join Operator

by means of an M:N Hash Partitioning Connector. This Connector

ensures that all Customer (Order) records reaching the Join Oper-

ator partitions agree on the hash-value of the Customer’s (Order’s)

CID attribute, thereby enabling each partition of the Join Opera-

tor to peform a local join to produce output partitions. In order

to perform aggregation on the MKT SEGMENT attribute, the Join

Operator’s output partitions are redistributed to the partitions of the

GroupBy Operator using another M:N Hash Partitioning Connec-

tor; this one hashes on the MKT SEGMENT attribute to ensure that

all records that match on the grouping attribute are directed to the

same grouping partition. Finally, the GroupBy Operator’s output is

written to a file by the FileWriter Operator. The use of a 1:1 Con-

nector between the GroupBy Operator and the FileWriter Operator

results in the creation of as many result partition files as GroupBy

Operator partitions.

Hadoop has quickly become the gold standard in the industry for

a highly scalable data-intensive MapReduce platform. Any system

that hopes to displace it must provide a low-cost migration path for

existing Hadoop artifacts. To that end, we have built an adapter

on top of Hyracks that accepts and executes Hadoop MapReduce

jobs without requiring code changes from the user. More details

about Hyracks’ computational model, its implementation and per-

ormance as well as the Hadoop compatibility layer are available

in [4].

3. THE ALGEBRICKS ALGEBRA LAYER
Algebricks is a model-agnostic, algebraic layer for parallel query

processing and optimization. This layer’s origin was as the cen-

ter of the AQL compiler and optimizer of the ASTERIX system.

To be useful for implementing arbitrary languages, Algebricks has

been carefully designed to be agnostic of the model of its processed

data. Logically, operators work on collections of tuples containing

data values. The data values carried inside a tuple are not speci-

fied by the Algebricks toolkit; the language implementor is free to

define any value types as abstract data types. For example, a user

implementing a SQL compiler on top of Algebricks would define

SQL’s scalar data types to be the data model and would implement

interfaces to perform operations such as comparison and hashing.

ASTERIX has a richer set of data types, and these have been im-

plemented on top of the Algebricks API as well.

Algebricks consists of the following parts:

1. A set of logical operators,

2. A set of physical operators,

3. A rewrite rule framework,

4. A set of generally applicable rewrite rules,

5. A metadata provider API that exposes metadata (catalog) in-

formation to Algebricks, and,

6. A mapping of physical operators to the runtime operators in

Hyracks.

A typical declarative language compiler parses a user’s query and

then translates it into an algebraic form. When using Algebricks,

the compiler uses the provided set of logical operators as nodes in

a directed acyclic graph to form the algebraic representation of the

query. This DAG is handed to the Algebricks layer to be optimized,

parallelized, and code-generated into runnable Hyracks operators.

Algebricks provides all of the traditional relational operators [9]

such as select, project, and join. In addition, Algebricks enables

the expression of correlated queries through the use of a subplan

operator. The groupby operator in Algebricks allows complete

nested plans to be applied to each group.

We are on a path to demonstrating the general applicability of

Algebricks by using it to build multiple languages ourselves as well

as interacting with outside groups with similar desires. The top

layer of ASTERIX, based on ADM and AQL, is a data management

system that is built on top of Algebricks. In addition, as a strong

proof of concept, we have ported the Hive compiler from Facebook,

converting it to generate an Algebricks DAG that is then optimized

and executed on Hyracks.

4. THE ASTERIX PARALLEL INFORMA­

TION SYSTEM
At the top layer of the ASTERIX software stack sits the original

goal, the ASTERIX parallel information management system itself

(or simply ASTERIX, for short). Figure 3 provides an overview of

how the various software components of ASTERIX map to nodes

in a shared-nothing cluster and indicates how Hyracks serves as

the runtime executor for query execution and storage management

operations in ASTERIX.

Data in ASTERIX is based on a semistructured data model. As a

result, ASTERIX is well-suited to handling use cases ranging from

rigid, relation-like data collections, whose types are well under-

stood and invariant, to flexible and potentially more complex data

Local Disks

Asterix Client Interface

AQL
Compiler

Metadata
Manager

Hyracks Dataflow Layer

Dataset / Feed Storage

LSM Tree Manager

Local Disks

Asterix Client Interface

AQL
Compiler

Metadata
Manager

Hyracks Dataflow Layer

Dataset / Feed Storage

LSM Tree Manager

Local Disks

Asterix Client Interface

AQL
Compiler

Metadata
Manager

Hyracks Dataflow Layer

Dataset / Feed Storage

LSM Tree Manager

High Speed Network

Data loads and
feeds from

external sources
(JSON, XML,...)

AQL queries
and

results

Data publishing
to external
sources and
applications

ASTERIX Cluster

Figure 3: ASTERIX system schematic

1899

create type TweetMessageType as open {
tweet_id: string,
user:{

screen-name: string,
lang: string,
friends_count: int32,
statuses_count: int32,
name: string,
folllowers_count: int32

} ,
sender-location:_point ?
send-time: datetime,
referred_topics: {{string}}
message-text: string

};

create dataset TweetMessges(TweetMessageType)
partitioned by key tweet_id;

(a) ADM type and dataset for tweets

for $tweet in dataset(’TweetMessages’)

where some $topic in $tweet.referred-topics
sat i s f i e s contains ($topic,’verizon’)

for $topic in $tweet.referred-topics
group by $topic with $tweet

return {
"topic": $topic,
"count": count($tweet)

}

(b) An example query over Tweet messages to filter

and aggregate tweets

[

{ "topic": "verizon", "count": 3 } ,
{ "topic": "commercials", "count": 1 } ,
{ "topic": "att", "count": 1 } ,
{ "topic": "at&t", "count": 1 }

]

(c) Result of example query on example data.

{{ {
"tweetid": "1023",
"user": {

"screen-name": "dflynn24",
"lang": "en",
"friends_count": 46,
"statuses_count": 987,
"name": "danielle flynn",
"followers_count": 47

} ,
"sender-location": "40.904177,-72.958996",
"send-time": "2010-02-21T11:56:02-05:00",
"referred-topics": {{ "verizon" }} ,
"message-text": "i need a #verizon phone :("

} ,
{
"tweetid": "1024",
"user": {

"screen-name": "miriamorous",
"lang": "en",
"friends_count": 69,
"statuses_count": 1068,
"name": "Miriam Songco",
"followers_count": 78

} ,
"send-time": "2010-02-21T11:11:43-08:00",
"referred-topics": {{ "commercials", "verizon", "att" }} ,
"message-text": "#verizon & #att #commercials,

so competitive"

} ,
{
"tweetid": "1025",
"user": {

"screen-name": "dj33",
"lang": "en",
"friends_count": 96,
"statuses_count": 1696,
"name": "Don Jango",
"followers_count": 22

} ,
"send-time": "2010-02-21T12:38:44-05:00",
"referred-topics": {{ "verizon", "at&t", "iphone" }} ,
"message-text": "I think I may switch from

#verizon to #at&t"
} }}

(d) Example tweet data

for $tweet1 in dataset(’TweetMessages’)

for $tweet2 in dataset(’TweetMessages’)

where $tweet1.tweetid != $tweet2.tweetid
and $tweet1.message-text∼=$tweet2.message-text

return {
"tweet1-text": $tweet1.message-text,
"tweet2-text": $tweet2.message-text

}

(e) An example fuzzy query over Tweet messages to find similar tweets

Figure 4: Example AQL schemas, queries, and results

where little is known a priori and the instances in data collections

are highly variant and self-describing. The ASTERIX data model

(ADM) is based on borrowing the data concepts from JSON [6]

and adding additional primitive types as well as type constructors

borrowed from object databases [7]. Figure 4(a) illustrates ADM

by showing how it could be used to define a record type for model-

ing Twitter messages. The record type shown there is an open type,

meaning that the instances of this type will conform to its specifica-

tion but are allowed to contain arbitrary additional fields that vary

from one instance to the next. The example also illustrates how

ADM includes features such as optional fields with known types

(sender-location), nested collections of primitive values (referred-

topics), and nested records (user). More information about ADM

can be found in [3].

Figure 4(d) shows an example of a set of TweetMessageType

instances. Data storage in ASTERIX is based on the concept of a

1900

“dataset”, a declared collection of instances of a given type. AS-

TERIX supports both system-managed datasets (such as the

TweetMessages dataset declared at the bottom of Figure 4(a)),

which are stored and managed by ASTERIX as partitioned LSM-

based B+ trees with optional secondary indexes, and external

datasets, where the data can reside in existing HDFS files or col-

lections of files in the cluster nodes’ local file systems.

ASTERIX queries are written in AQL (the ASTERIX Query

Language), a declarative language that is designed by taking the

essence of XQuery [11], most importantly its FLWOR expression

constructs and its composability, and simplifying and adapting it

to query the types and data modeling constructs of ADM. Fig-

ure 4(b) illustrates AQL by example. This query runs over the

TweetMessages dataset, which contains TweetMessageType

instances, to compute, for those tweets that refer to “verizon”, the

number of tweets that refer to each topic that appears in those

tweets.

Figure 4(c) shows what this query’s results would look like when

run against the sample data of Figure 4(d). To process queries like

this one, ASTERIX compiles an AQL query into an Algebricks pro-

gram. This program is then optimized via algebraic rewrite rules

that reorder the Algebricks operators as well as introducing parti-

tioned parallelism for scalable execution, after which code genera-

tion translates the resulting physical query plan into a correspond-

ing Hyracks job that uses the operators and connectors of Hyracks

to compute the desired query result.

5. DEMONSTRATION DETAILS
We will demonstrate the following features of ASTERIX.

1. Asterix Data Model (ADM): We will demonstrate how ADM

is well-suited to handling use cases ranging from rigid,

relation-like data collections, whose types are well under-

stood and invariant, to flexible and potentially more complex

data where little is known a priori and the instances in data

collections are highly variant and self-describing.

2. Asterix Query Language (AQL): We will demonstrate the ca-

pabilities and expressive power of AQL by running different

kinds of queries against a running instance of the ASTERIX

system. For each of the queries, we plan to give a walk-

through tour of the system, describing how a logical plan for

a query if formed, translated and optimized into an efficient

parallel physical plan by the underlying language-neutral Al-

gebrics layer and eventually executed as a DAG by the As-

terix runtime - Hyracks.

3. Geo-spatial queries: Spatial data types (point, line, polygon,

etc.) are treated as first-class citizens in ASTERIX, providing

built-in support for geo-spatial (i.e., location-based) data. We

will demonstrate, via a very simple Web-based user interface

example (Figure 5), how ASTERIX might be used for spatial

analysis of social data (from Twitter) to derive knowledge

useful to society.

4. Fuzzy queries: An important use case for ASTERIX is query-

ing, and analysis of semistructured data drawn from Web

sources (e.g., Twitter, social networking sites, event calendar

sites, and so on), so it is a given that some of the incoming

data will be dirty. Fuzzy matching is thus a key feature of

ASTERIX that we plan to demonstrate. An example fuzzy

matching query is shown in Figure 4(e). This example query

is executed in parallel based on principles that we developed

while studying how to perform fuzzy joins in the context of

Hadoop [10].

5. Data Feeds: ASTERIX supports continuous data ingestion

via data feeds and can can be used to amass data from ser-

vices such as Twitter or RSS feed-based services such as

CNN news. We will demonstrate how ASTERIX can serve

as an effective platform for archiving, tracking and analyzing

social media activity.

Figure 5: A visualization of the results of a spatial aggregation

query. The color of each cell indicates the tweet count.

6. STATUS OF ASTERIX
Currently, the ADM/AQL layer of ASTERIX is able to run par-

allel queries including lookups, large scans, parallel joins (regular

and fuzzy), and parallel aggregates for data stored in partitioned

LSM B+ trees and indexed via secondary indexes such as LSM-

based R-trees. The system’s external data access and data feed

features are also operational. We plan to offer a first open-source

release of ASTERIX during the latter part of 2012, and we are now

seeking early partners who would like to try ASTERIX on their fa-

vorite “Big Data” problems. Our ongoing work includes hardening

and documenting the ASTERIX code base for initial public release,

adding indexing support for fuzzy selection queries, improving the

performance of spatial aggregation, adding support for continuous

queries, extending AQL with windowing features, and starting to

work with a few early users and use cases to learn by experience

where we should go next.

Acknowledgements: This project is supported by NSF IIS awards

0910989, 0910859, 0910820, and 0844574, a grant from the UC

Discovery program, and a matching donation from eBay.

7. REFERENCES
[1] ASTERIX Website. http://asterix.ics.uci.edu/.

[2] Apache Hive, http://hadoop.apache.org/hive.

[3] A. Behm, V. R. Borkar, M. J. Carey, R. Grover, C. Li, N. Onose,
R. Vernica, A. Deutsch, Y. Papakonstantinou, and V. J. Tsotras.
Asterix: Towards a Scalable, Semistructured Data Platform for
Evolving-World Models. Distributed and Parallel Databases,
29(3):185–216, 2011.

[4] V. R. Borkar, M. J. Carey, R. Grover, N. Onose, and R. Vernica.
Hyracks: A flexible and extensible foundation for data-intensive
computing. In ICDE, pages 1151–1162, 2011.

[5] Jaql, http://www.jaql.org.

[6] JSON. http://www.json.org/.

[7] Object database management systems.
http://www.odbms.org/odmg/.

[8] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig
Latin: a Not-so-Foreign Language for Data Processing. In SIGMOD,
pages 1099–1110, 2008.

[9] R. Ramakrishnan and J. Gehrke. Database Management Systems.
WCB/McGraw-Hill, 2002.

[10] R. Vernica, M. J. Carey, and C. Li. Efficient parallel set-similarity
joins using MapReduce. In SIGMOD, pages 495–506, 2010.

[11] XQuery 1.0: An XML query language.
http://www.w3.org/TR/xquery/.

1901

