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ABSTRACT

We present “Hum-a-song”, a system built for music retrieval, and

particularly for the Query-By-Humming (QBH) application. Ac-

cording to QBH, the user is able to hum a part of a song that she

recalls and would like to learn what this song is, or find other songs

similar to it in a large music repository. We present a simple yet ef-

ficient approach that maps the problem to time series subsequence

matching. The query and the database songs are represented as 2-

dimensional time series conveying information about the pitch and

the duration of the notes. Then, since the query is a short sequence

and we want to find its best match that may start and end anywhere

in the database, subsequence matching methods are suitable for this

task. In this demo, we present a system that employs and exposes to

the user a variety of state-of-the-art dynamic programming meth-

ods, including a newly proposed efficient method named SMBGT

that is robust to noise and considers all intrinsic problems in QBH;

it allows variable tolerance levels when matching elements, where

tolerances are defined as functions of the compared sequences, gaps

in both the query and target sequences, and bounds the matching

length and (optionally) the minimum number of matched elements.

Our system is intended to become open source, which is to the best

of our knowledge the first non-commercial effort trying to solve

QBH with a variety of methods, and that also approaches the prob-

lem from the time series perspective.

1. INTRODUCTION
During the last decades the problem of subsequence matching

is of particular interest and has been studied by the database and

data mining communities. Subsequence matching is the problem

of finding the subsequence of a long sequences’ database with ar-

bitrary start and end best matching a much smaller query sequence.

.

Although several distance or similarity based measures have been

proposed in the literature for solving the subsequence matching

problem in application domains such as time series, categorical se-

quences and multimedia data (Dynamic Programming (DP) meth-

ods are quite common [1]), in the music retrieval domain do not

perform well or, much worse, cannot be applied or achieve very

low retrieval accuracy. This is because music retrieval has many

intrinsic characteristics that should be considered by a similarity or

distance based measure. More specifically, the problem we are in-

terested in is: assume that you would like to find in a large music

repository a song you hear (or songs similar to it), because you can-

not recall its name. One obvious way to do so, is to hum the part of

the melody that you remember and then perform a similarity search

over the database by using a time series representation. This way,

the problem of Query-By-Humming (QBH) becomes a subsequence

matching problem in the time series domain. We call our demo sys-

tem “Hum-a-song”, which given a hummed query song by a user

searches a large music database to identify the top-K most similar

songs to the sung melody, by allowing the user to select among a

variety of subsequence matching methods.

Next, we provide some basic and important music terms, which

will help in understanding how time series subsequence match-

ing can be applied to QBH. The pattern of allowed intervals that

a song’s sequence of notes should comply with is called key, and

the speed of every music piece is characterized by the tempo. In

addition, each note in a music piece is defined by its pitch and dura-

tion, and the difference in frequency of two adjacent notes is called

pitch interval. Moreover, semitone is the smallest pitch interval,

and an octave is defined by 12 consecutive semitones. Transposi-

tion, which is significant when representing music pieces as time

series, is defined as shifting a melody from one key to another.

As shown in [9], both pitch and duration should be used for rep-

resenting musical pieces, as there may be the case where many

songs have quite similar pitch values but their notes’ durations dif-

fer. To avoid the possibility of erroneously matching songs, dura-

tion information is also taken into account in our system; melodies

are represented by 2-dimensional time series of notes of arbitrary

length, where the first dimension corresponds to pitch and the sec-

ond one to duration (Figure 1).

Our first contribution is the “Hum-a-song” QBH system, that al-

lows the user to record a melody that she recalls and get the top-K
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(a) Part of the music score.
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(b) Representation using pitch intervals and IOIR.

Figure 1: Example of the music score and its 2-dimensional time series

representation. IOIR is the duration ratio of two consecutive notes.

Figure 2: SMBGT: error-tolerant matching is denoted as ǫ-match.

most similar to this melody songs. The system gives the opportu-

nity to the user to select among various similarity or distance based

methods to assess the similarity between the query and the database

songs. Secondly, since QBH is a very noisy domain, we are in-

terested in performing robust and efficient subsequence matching.

Consequently, apart from the fact that the user is given the op-

portunity to test and compare several methods, a newly proposed

method is also implemented and included in our system, named

SMBGT [5]. SMBGT is an error-tolerant subsequence matching

method that finds the subsequence of the target sequence X that

best matches the query song Q (where |Q| << |X|) and is ca-

pable of handling a variety of errors when the user hums a song,

such as instant or temporary key or tempo loss. This is achieved by

the features that it encompasses. To begin with, it allows variable

tolerance levels in the matching (where tolerances are defined as

functions of the query and target 2-dimensional elements). Also,

it allows skipping a bounded number of consecutive elements on

both the query and target time series, as defined by β and α, re-

spectively. What is more, the maximum match length in X is con-

strained by r, and optionally imposes an additional constraint δ to

the number of elements matching in the query and target sequences,

based on the singing skills of the user. An example of SMBGT is

shown in Figure 2. Furthermore, our system is not a commercial

product (such as Shazam1, Midomi2 and Soundhound3) and is in-

tended to become open source, so that it can be extended to include,

for example, more similarity/distance measures for comparison and

benchmarking purposes. Last but not least, since we approach the

QBH problem by mapping it to the time series domain, the system

can be easily extended for other time series application domains in

which subsequence matching would be of interest, such as finding

specific patterns in sensor, financial, weather data among others.

1http://www.shazam.com/music/web/home.html
2http://www.midomi.com/
3http://www.soundhound.com/

2. PROBLEM SETTING

2.1 Encoding Pitch and Duration
Regarding pitch, there are two well-known ways of expressing

it, the absolute pitch, and the pitch interval. In absolute pitch the

frequency of the note is used, and this value in MIDI is an integer

in [1, 127] (0 corresponds to pause), while in pitch interval the first

dimension is the difference in frequencies between two subsequent

notes. Referring to the second dimension, duration, it can be en-

coded in three different ways [6], Inter-Onset-Interval (IOI) which

is the difference in time onsets/clicks of two consecutive notes, IOI

Ratio (IOIR), that is the ratio of the IOIs of two subsequent notes

(the IOIR of the last note is 1), and Log IOI Ratio (LogIOIR), de-

fined as the logarithm of the IOIR.

2.2 Variable Tolerances
Let X = {x1, . . . , xn} be a time series of length |X| that corre-

sponds to a melody, where xj = 〈xp
j , x

r
j 〉 ∈ X is a pair such that

xp
j maps to pitch and xr

j to duration information. A set of N such

time series constitutes a music database DB = {X1, . . . , XN}.

A subsequence of X , X[ts : te] = {xts, . . . , xte}, is comprised

by a set of 2D points, the indices of which appear in the same or-

der as in X and are not necessarily continuous. Also, let query

Q = {q1, . . . , qm} be a 2D time series. Since in QBH it is quite

usual for users to make instant humming errors [7], error-tolerant

matches should be allowed. We say that qi ∈ Q and xj ∈ X
match with variable ǫ-tolerance, qi ≈f

ǫ xj , if, we either use ab-

solute or relative tolerance, and for ǫf = {ǫfp , ǫ
f
r}, it holds that

ǫfp(i) = fp(q
p
i ) and ǫfr (i, j) = fr(q

r
i , x

r
j ), where fp is a function

of qpi and fr a set of constraints on qri , xr
j . It should be mentioned

that ǫfp , ǫ
f
r can be constant as well, depending on the application

domain or the user of our system.

For our QBH system, ǫfp can be defined as

ǫfp(i) = ⌈qpi ∗ t⌉, t ≥ 0 (1)

and can be used with both absolute and relative tolerances [5].

Referring to ǫfr (i, j), for IOIR representation the scheme used is

ǫfr (i, j) = {xr
j ≤ 2 ∗ qri , x

r
j − qri ≥ −0.5} (2)

and for LogIOIR

ǫfr (i, j) =

{

{0 ≤ log2(x
r
j/q

r
i ) ≤ 1}, log2x

r
j ≥ 0

{|log2(x
r
j/q

r
i )| ≤ 1}, log2x

r
j < 0

(3)

2.3 Problem Formulation
The problem formulation follows [5]. Given a database DB, a

query Q, and positive integers δ and r, it identifies the set S =
{Xi[ts : te]|Xi ∈ DB} of the top-K subsequences for which

|SMBGT (Q,Xi[ts : te])| ≥ δ. SMBGT (Q,X) is the longest

common bounded gapped subsequence of Q and X . In other words,

it is the pair {Q[ts1:te1], X[ts2:te2]}, where the subsequences are

of the same length that is the maximum possible one, each ele-

ment of Q[ts1:te1] matches with variable ǫ-tolerance with one ele-

ment of X[ts2:te2] in order, consecutive indices of the elements of

Q[ts1:te1] and X[ts2:te2] should not differ by more than α and β,

respectively, and it also holds that te2 − ts2 ≤ r.

3. HUM­A­SONG ­ DEMO

3.1 Recording Queries
The user of the system is first asked to record the part of the

song she recalls and is interested in finding in the database. For this
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Table 1: Code numbers for 2D representations

Code number Representation

1 〈mod12, IOIR〉
2 〈mod12, LogIOIR〉
3 〈mod12, LogIOIR in [−2, 2]〉)
4 〈mod12, LogIOIR quantized to closest integer〉
5 〈pitch interval, IOIR〉
6 〈pitch interval, LogIOIR〉
7 〈pitch interval, LogIOIR in [−2, 2]〉)
8 〈pitch interval, IOIR quantized to closest integer〉

purpose, the Akoff music composer-version 2.0 4, a tool commonly

used for evaluating QBH systems is used [11]. The user is asked to

hum the part of song close to a microphone, and to avoid singing

with lyrics. Then, the melody sang is converted to MIDI through

Akoff. Finally, in order to get a 2D time series from the melody,

the pitch at every time click is extracted, and tuples 〈pitch, click〉
are converted to representation 5 of Table 1. It is noted that the user

can also perform an experiment on a pre-recorded hummed query.

3.2 Representation
After recording a query song, the user is able to select among a

variety of 2D time series representations. For the purposes of our

demo, and since we are interested in note transitions, so as not to

check all possible transpositions of a melody nor to scale in time

when comparing time series, we consider the following encoding

schemes: 〈pitch interval, IOIR〉 and 〈pitch interval, LogIOIR〉. In

Figure 1(b) we can see an example of the 〈pitch interval, IOIR〉
representation of the part of “Happy Birthday” song shown in Fig-

ure 1(a). Except for these schemes, the user is allowed to choose

among some other options. First, by applying modulo 12 to the

pitch intervals they are transformed/quantized to [−11, 11] [9]. Map-

ping the pitch intervals into two octaves is a very reasonable quan-

tization, as the human singing range rarely goes beyond this range.

Second, the LogIOIR encoding of time can be quantized to the clos-

est integer or the closest value in [−2, 2] [6]. The transposition and

time invariant representations are shown in Table 1.

3.3 Method Selection
Since we are interested in evaluating a QBH system, apart from

the SMBGT and SMGT methods [5], the user is allowed to choose

among a variety of methods that can be applied to music retrieval.

These methods, performing DP-based subsequence matching, are

SPRING [8], a version of Edit distance suitable for music retrieval

[10], and two DTW-based [3, 4] (denoted DTWs and DTWc).

We note that Edit has been modified to account for LogIOIR and

quantizations (Table 1), and SPRING allows for varying r [5].

3.4 Tuning Parameters
Having selected the query, the representation, and the method,

the user has to provide the appropriate parameters for the requested

method. For SMBGT, a novel method for subsequence matching

[5], the number of consecutive gaps allowed in both X and Q has

to be given, which are identified by the α and β positive integers,

respectively. The intuition for the existence of these two constraints

is that there may be serious humming errors if there is temporary

key/temp loss or significant instant note loss that cannot be treated

by the accepted tolerance. Also, parameter r is used to eliminate

large matches, e.g., r = 1.2 ∗ |Q|, δ to bound the minimum num-

ber of matching elements, e.g., 0.5 ∗ |Q|, and variable tolerance

can be specified combined with either absolute or relative tolerance

4http://www.akoff.com/music-composer.html

scheme. If the user selects SMGT then the input parameters are

the same, except that no constraint is imposed on the lengths of the

allowed gaps. With regard to SPRING, since it has been modified

not to account for infinite matching lengths, the user has to pro-

vide r, as happens with SMBGT and SMGT. Finally, DTWs and

DTWc require the initialization parameter c, while the version of

Edit distance used [5] does not require any input parameter.

3.5 Evaluation
Below, we present the final steps for getting the final result set

for the hummed query. However, for completeness and demo pur-

poses, our system has some pre-inserted synthetic and hummed

query sets (that the user may use to compare accuracies between

different methods), instead of humming a query.

3.5.1 Database

The music database on which we test our system consists of 5640

MIDI5 files freely available on the web. It covers several music

genres such as classical, blues, jazz, rock, rock ’n’ roll, pop, and

also themes from tv and movies series. To obtain the 2D time series

representation, for each of the (at most) 16 channels that every song

is comprised, the highest pitch at every time click was extracted-all-

channels extraction [9]. Then, each channel’s tuples 〈pitch, click〉
were converted to representation 5 of Table 1. This step generated

40891 2D time series loaded in memory at runtime.

3.5.2 Hummed Query

The user also has to insert the number of top-K songs she wishes

to be returned in the result set for the melody sung. The top-K re-

sults appear in the final screen of our system, along with the 2D

time series plot of the given melody with the top candidate and the

time for returning the results. What is more, the user can select

and listen to a song appearing in the list of results, listen to the

query, see more details regarding the selected song, i.e., similar-

ity/distance score, channel giving that score, start and end points

of the matching, and also the 2D plot of the song’s channel giv-

ing the best score. The performance of the system depends on the

hummed query, the method, and the parameters given. For details

about the methods’ evaluation please refer to [5]. The whole proce-

dure can be certainly repeated by recording another melody (Main

Menu button). An example of setting an experiment for our system

along with the experimental results is shown in Figure 3.

3.5.3 Testbeds

Another possibility offered by the proposed system is the testbeds,

comprising five synthetic query sets and one hummed.

Each of the five synthetic query sets includes 100 queries of

lengths ranging in [13, 137], and are denoted as Q.10, Q.20, Q.30,

Q.40, and Q.50. Sets Q.10 −Q.50 were created by modifying ran-

domly the 10, 20, 30, 40, and 50% of the 2D points of exact seg-

ments of the database. The pitch interval of the selected points was

changed by ±k ∈ [3, 8], which is a reasonable value, so that the

error inserted by a user when humming and also the noise that may

be added by any audio processing tool is well simulated. Regarding

IOIR, for each of the picked points, it was changed by ±k ∈ [2, 4],
so that different duration ratios could exist and in addition not be

biased against SMBGT and SMGT as shown by Equation 2. More-

over, at most 3 adjacent elements in all query sets were modified,

since by having more consecutive errors would increase false posi-

tives. The hummed query set consists of 100 hummed melodies of

lengths 14 to 76 covering various music genres, such as classical

(“Für Elise”), blues (“Hideaway”), jazz (“Strangers in the Night”),

5Musical Instrument Digital Interface
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(a) Setting the Query.

(b) Query results.

Figure 3: “Hum-a-song”: Screenshots of setting the experiment and

getting the results for SMBGT, where |Q| = 31, the database has 4000

sequences, and the target “Yesterday” song is the Top-1. For the target

sequence, Score = 20, Startpoint = 28, Endpoint = 56.

rock ’n’ roll (“Rock Around the Clock”), rock (“Fly Away”), coun-

try (“Hey Good Lookin”), and romantic songs (“What a Wonderful

World”). These queries were hummed using a microphone and then

converted to MIDI using Akoff.

When choosing a testbed, in the final screen, apart from the time

required for the results to be returned, the user is presented with

three evaluation measures for the method and representation se-

lected: recall, which is the % of queries that have their correct an-

swer in the top-K results, mean reciprocal rank (MRR) [2], which

is the mean inverse rank of all queries in their top-K results, and

the average rank (AR) of all queries in the selected query set. It has

to be mentioned that all measures are of particular importance for

evaluating a QBH method, since recall indicates if the method iden-

tifies the correct answer in the top-K results, and MRR along with

average rank show if recall can be improved by decreasing K. The

representation, number of top-K results used, and the parameters

of the selected method giving the best recall are also shown.

Our demo system is implemented using Matlab and currently

runs in Windows Operating System. It can be downloaded from

http://vlm1.uta.edu/∼akotsif/hum-a-song/.

4. CONCLUSIONS
Motivated by the QBH application, we developed a demo system

named “Hum-a-song” that allows the user to hum a part of a song

that she recalls and find the most similar to this songs. This is done

by transforming this problem to the time series domain, where the

query and the songs of the music database are mapped to 2D time

series and then applying a subsequence matching method to get the

subsequence of the database that best matches the query. Several

such methods have been implemented and given as an option to the

user, including the robust and efficient SMBGT method. Finally,

our system can be easily extended to other time series application

domains, basically due to the fact that the queries and the target

sequences are represented as time series and the methods employed

perform on top of such representation.
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