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ABSTRACT

As data collections become larger and larger, users are faced with

increasing bottlenecks in their data analysis. More data means more

time to prepare the data, to load the data into the database and to

execute the desired queries. Many applications already avoid using

traditional database systems, e.g., scientific data analysis and social

networks, due to their complexity and the increased data-to-query

time, i.e. the time between getting the data and retrieving its first

useful results. For many applications data collections keep growing

fast, even on a daily basis, and this data deluge will only increase in

the future, where it is expected to have much more data than what

we can move or store, let alone analyze.

In this demonstration, we will showcase a new philosophy for de-

signing database systems called NoDB. NoDB aims at minimizing

the data-to-query time, most prominently by removing the need to

load data before launching queries. We will present our prototype

implementation, PostgresRaw, built on top of PostgreSQL, which

allows for efficient query execution over raw data files with zero

initialization overhead. We will visually demonstrate how Post-

gresRaw incrementally and adaptively touches, parses, caches and

indexes raw data files autonomously and exclusively as a side-effect

of user queries.

1. INTRODUCTION
We are in the era of data deluge, where the amount of avail-

able data outgrows the capabilities of query processing technol-

ogy. Many emerging applications, from social networks to scien-

tific experiments, are representative examples of this deluge, where

the rate at which new data is produced exceeds any past experi-

ence. Scientific analysis such as astronomy is soon expected to

collect multiple Terabytes of data even on a daily basis. Similarly,

web-based businesses such as social networks or web log analysis

are already confronted with a growing stream of large data inputs.

Therefore, there is a clear need for efficient big data processing to

enable the evolution of businesses and sciences to the new era of

data deluge.

A growing part of the database community recognizes the need

for significant and fundamental changes to database design, ranging

.

from low-level architectural redesigns to changes in the way users

interact with database systems [1, 4, 5, 7, 8, 9, 10].

The NoDB Philosophy. We recognize a new need, which is a

direct consequence of the data deluge: the need to minimize or

eliminate the data-to-query time. The data-to-query time is of crit-

ical importance as it defines the moment when a database system

becomes usable, and thus useful. Modern database architectures,

however, are based on fundamental principles that represent a ma-

jor bottleneck for data-to-query time, most notably, the need to load

data before submitting queries.

The NoDB design philosophy argues for creating new database

kernel designs that minimize the data-to-query time, while also

making database systems more friendly and accessible to end-users.

This philosophy changes the way a user interacts with a database

system, primarily by eliminating one of the most important bot-

tlenecks, i.e., data loading. We advocate in situ querying as the

principal way to manage data in a database and propose extending

traditional query processing architectures to work in situ.

The overall NoDB vision was initially presented at CIDR 2011

[5], while the first feasibility study and experimental system, Post-

gresRaw, was presented at SIGMOD 2012 [2].

Contributions and Demo. We demonstrate PostgresRaw, a full

NoDB system based on PostgreSQL. Our demonstration of Post-

gresRaw aims at a) introducing the NoDB philosophy through a

system implementation and b) demonstrating the extent at which

NoDB can be adopted by a traditional database system without al-

tering the internals of the query engine. We visually demonstrate

the behavior of its core components in a range of scenarios, giving

the audience members a complete visual insight into the behavior

of PostgresRaw and the trade-offs that come with in situ query pro-

cessing. In addition, we present a comparison between Postgres-

Raw and other widely-used DBMS in an interactive way with the

audience by organizing a “friendly” race between the systems.

Innovation. PostgresRaw immediately starts processing queries

without any data preparation or loading steps. As more queries are

processed, response times improve due to the adaptive properties

of PostgresRaw. We visually demonstrate these effects by observ-

ing internal components, such as the indexes and caches on raw

data files, which allow PostgresRaw to adaptively and continuously

improve its performance. Audience members will see how the in-

dexing and caching structures of the system evolve as additional

queries arrive, or when the workload changes.

Visual Experience. The audience has the ability to interact with

the system through a graphical interface that allows them to change

the input characteristics of the workload. Properties such as the

number of attributes and the width of the attributes may signifi-

cantly change the behavior of a NoDB system. Additionally, the

graphical interface provides access to PostgresRaw specific execu-
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tion configuration parameters. For instance, the user can enable

or disable the NoDB components of PostgresRaw and specify the

amount of storage space which is devoted to internal indexes and

caches. Users will be able to change these parameters and observe

the impact on performance.

2. RELATED WORK
The NoDB philosophy draws inspiration from several decades

of research on database technology and is related to a plethora of

research topics. We briefly discuss related work in this section.

External Files. Querying directly raw files, i.e., without load-

ing, has long been a feature of database systems. For instance,

Oracle calls this feature external tables. External files, however,

can only access raw data with no support for advanced database

features such as DML operations, indexes or statistics. Therefore,

external files require every query to access the entire raw data file,

as if no other query did so in the past. In fact, this functionality

is provided mainly to facilitate data loading tasks and not for regu-

lar querying. Instead, we propose to redesign the query processing

layers of database systems to incrementally and adaptively query

raw data files directly, while automatically creating and refining

auxiliary structures to speed up future queries.

Physical Design. Work on auto tuning tools [3] for automating

the physical design process and work on adaptive indexing [6] to in-

crementally refine indexes is highly relevant; both these directions

aim at making the process of initializing a database system much

easier. The first one by eliminating the need for hard workload

analysis, and the second via introducing incremental and adaptive

indexes. Still though the data needs to be loaded. NoDB goes a step

further by studying the data-to-query time problem at its very root,

i.e., before data is even loaded. As such, it is rather an orthogo-

nal and complementary approach to auto-tuning tools and adaptive

indexing.

3. POSTGRESRAW ARCHITECTURE
In this section, we discuss the design of our NoDB prototype,

called PostgresRaw, implemented by modifying PostgreSQL 9.0.

The main bottleneck of in situ query processing is the access to

raw data. The design of PostgresRaw is geared towards improving

access on raw data (a) by speeding up the steps required via raw

data indexing and (b) by eliminating the need to access hot raw

data via caching.

In the remaining of this section we assume that raw data is stored

in comma-separated value (CSV) files. CSV files are challenging

for an in situ engine, considering the high conversion cost and the

fact that fields may be variable length. Nonetheless, being a com-

mon data source, they present an ideal use case for PostgresRaw.

Query plans in PostgresRaw. When a query submitted to Post-

gresRaw references relational tables that are not yet loaded, Post-

gresRaw needs to access the respective raw file(s). PostgresRaw

overrides the scan operator with the ability to access raw data files

directly, while the rest of the query plan, generated by the op-

timizer, works without any changes compared to a conventional

DBMS.

Parsing and Tokenizing Raw Data. Every time a query needs

to access raw data, PostgresRaw has to perform parsing and tok-

enization of the raw data. Having the binary values at hand, Post-

gresRaw feeds those values in a typical DBMS query plan.

Selective Tokenizing. PostgresRaw reduces the tokenizing costs

by opportunistically aborting tokenizing tuples as soon as the re-

quired attributes for a query have been found. This occurs at a

per tuple basis. Given that CSV files are organized in a row-by-row

basis, selective tokenizing does not bring any I/O benefits; nonethe-

less, it significantly reduces the CPU processing costs.

Selective Parsing. In addition to selective tokenizing, Postgres-

Raw also employs selective parsing to further reduce raw file access

costs. PostgresRaw needs only to transform to binary the values re-

quired for the remaining query plan.

Selective Tuple Formation. To fully capitalize on selective pars-

ing and tokenizing, PostgresRaw also applies selective tuple forma-

tion. Tuples are not fully composed but only contain the attributes

needed for a given query. In PostgresRaw, tuples are only created

after the select operator, i.e. after knowing which tuples qualify.

3.1 Indexing
Adaptive Positional Map. The adaptive positional map further

reduces parsing and tokenizing costs. It maintains low level meta-

data information on the structure of the flat file, which is used to

navigate and retrieve raw data faster. This metadata information

refers to positions of attributes in the raw file. For example, if a

query needs an attribute X that is not loaded, then PostgresRaw can

exploit this metadata information that describes the position of X in

the raw file and jump directly to the correct position without having

to perform expensive tokenizing steps to find X .

Map Population. The positional map is created on-the-fly dur-

ing query processing, continuously adapting to queries. Initially,

the positional map is empty. As queries arrive, PostgresRaw adap-

tively and continuously augments the positional map. The map is

populated during the tokenizing phase, i.e., while tokenizing the

raw file for the current query, PostgresRaw adds information to the

map. PostgresRaw learns as much information as possible during

each query. For instance, it does not keep maps only for the at-

tributes requested in the query, but also for attributes tokenized

along the way; e.g. if a query requires attributes in positions 10

and 15, all positions from 1 to 15 may be kept.

Exploiting the Positional Map. The information contained in

the positional map can be used to jump to the exact position of the

file or as close as possible. PostgresRaw opts to determine first

all required positions instead of interleaving parsing with search

and computation. Pre-fetching and pre-computing all relevant po-

sitional information allows a query to optimize its accesses on the

map.

Adaptive Behavior. The positional map is an adaptive data

structure that continuously indexes positions based on the most re-

cent queries. This includes requested attributes as well as patterns,

or combinations, in which those attributes are used. As the work-

load evolves, some attributes may no longer be relevant and are

dropped by the LRU policy. Similarly, combinations of attributes

used in the same query, which are stored together in chunks, may

be dropped to give space for storing new combinations. Populat-

ing the map with new combinations is decided during pre-fetching,

depending on where the requested attributes are located on the cur-

rent map. The distance that triggers indexing of a new attribute

combination is a PostgresRaw parameter. In our prototype, the de-

fault setting is that if all requested attributes for a query belong in

different chunks, then the new combination is indexed.

3.2 Caching
PostgresRaw also contains a cache that temporarily holds previ-

ously accessed data, e.g., a previously accessed attribute or even

parts of an attribute. If the attribute is requested by future queries,

PostgresRaw will read it directly from the cache.

The cache holds binary data and is populated on-the-fly during

query processing. Once a disk block of the raw file has been parsed

during a scan, PostgresRaw caches the binary data immediately. To
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Figure 1: Demonstration Walkthrough

minimize the parsing costs and to maintain the adaptive behavior of

PostgresRaw, caching does not force additional data to be parsed,

i.e., only the requested attributes for the current query are trans-

formed to binary. The cache follows the format of the positional

map such that it is easy to integrate it in the PostgresRaw query

flow, allowing queries to seamlessly exploit both the cache and the

positional map in the same query plan.

The size of the cache is a parameter than can be tuned depending

on the resources. PostgresRaw follows the LRU policy to drop and

populate the cache. Overall, the PostgresRaw cache can be seen as

the place holder for adaptively loaded data.

3.3 Statistics
Optimizers rely on statistics to create good query plans. Most

important plan choices depend on the selectivity estimation that

helps ordering operators such as joins and selections. Creating

statistics in modern databases, however, is only possible after data

is loaded.

We extend the PostgresRaw scan operator to create statistics on-

the-fly. We carefully invoke the native statistics routines of the

DBMS, providing it with a sample of the data. Statistics are then

stored and are exploited in the same way as in conventional DBMS.

In order to minimize the overhead of creating statistics during query

processing, PostgresRaw creates statistics only on requested at-

tributes, i.e., only on attributes that PostgresRaw needs to read and

which are required by at least the current query. As with other fea-

tures in PostgresRaw, statistics are generated in an adaptive way;

as queries request more attributes of a raw file, statistics are incre-

mentally augmented to represent bigger subsets of the data.

4. DEMONSTRATION
The demonstration will be executed in three parts. The first part

introduces the audience to the NoDB philosophy and the motiva-

tion behind minimizing the data-to-query time. The second part

presents the NoDB philosophy in action, particularly its tradeoffs,

giving a detailed insight into the system. The third part provides a

direct comparison between our implementation, PostgresRaw, and

other conventional DBMS. This third part is executed as a “friendly

race” between systems, followed with a strong visual component

and audience participation. Figure 1 summarizes the three parts.

4.1 Part I: Introduction to NoDB
In this part of the demonstration, we use a poster to introduce the

audience to the NoDB philosophy and explain how in situ query

processing can be used to minimize data-to-query time. Further-

more, we show the design of our NoDB prototype and we explain

how PostgresRaw accesses the raw data files adaptively and incre-

mentally without any previous data loading. Finally, we illustrate

how the positional map and the flexible caching structure are used

to enhance performance of future queries.
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4.2 Part II: Describing NoDB Systems
The second part of the demo illustrates the trade-offs with in situ

query processing. For this, we show how the adaptive indexing

mechanism maintains positional information over a variety of dif-

ferent datasets. Similarly, we show how the dynamic caches cope

with different raw data and queries.

User Interface. The demonstration uses an interactive graph-

ical user interface to expose run-time statistics of internal system

components during query execution. In particular, we monitor the

storage space occupied by the positional map and the caching struc-

tures and we visualize which parts of the raw data files are known

to the positional map, caches or both. We allow the user to vary

the available space for indexing and caching in order to examine

the impact of these parameters on the performance. In addition,

we provide usage statistics regarding the accessed attributes of the

raw data file. Finally, the interface allows users to enable or disable

some system components, e.g. the caches. An example screenshot

of the user interface is shown in Figure 2.

The structure and the data type of the input raw data files are cru-

cial for any database system, drastically affecting its performance.

Therefore, our demonstration allows users to change the type of

raw data files. For instance, tuples with fewer attributes or smaller

attributes limit the effectiveness of the positional map. At the same

time, caching should give priority to attributes that are more ex-

pensive to parse and cheaper to maintain in memory e.g. integer

attributes. Therefore, we allow the user to directly generate their

own input comma-separated value (CSV) files and choose param-

eters such as the number of attributes and the number of tuples in

the file, the width of attributes, as well as the type of the input data.

Query Execution Breakdown. To highlight the difference be-

tween in situ and conventional database query execution, we moni-

tor the query execution in PostgresRaw and PostgreSQL. Then, we

present a time execution breakdown (shown in Figure 3). We show

two variations of PostgresRaw. The first variation (PostgresRaw

PM+C) combines positional map and caching while the second one

(Baseline) does not use any of the aforementioned techniques and

constitutes the naive way of accessing external files. This compo-
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nent allows the user to examine how the positional map and the

caching structure reduce in situ query processing overheads. Both

systems share the same query execution engine. Therefore, the di-

rect comparison between the two systems will help us understand

the impact of in situ querying.

Query Adaptation. To demonstrate how PostgresRaw progres-

sively adapts to changes in the workload, we vary queries such as to

trigger changes both in the positional map and in the cache. In this

scenario, we use simple Select-Project queries that are organized

into epochs. The queries within each epoch refer to a specific part

of the input data file, representing their exploratory behavior. As

the workload evolves, new access patterns are observed, new com-

binations of attributes are indexed or cached and old information

may no longer be relevant and will be evicted from our structures.

We will show how PostgresRaw adapts to these changes during

query execution and how the contents of the positional map and the

cache evolve. We will visually illustrate this behavior using our

graphical interface by properly shading the area of the input file

that is queried in each epoch.

Updates. In this scenario, we allow the users to perform updates

directly on the raw data files without using PostgresRaw. The user

can either directly update one of the raw data files in an append-

like scenario using a text editor or simply give a pointer to a new

data file. In both cases, PostgresRaw is responsible for detecting

the changes and update the auxiliary NoDB data structures. The

user will be immediately able to query the new or the updated file

and observe the changes in the results of the next queries.

4.3 Part III: Friendly Race between Postgres-
Raw and Other DBMS

In this part of the demonstration, we compare the behavior of

PostgresRaw against conventional DBMS using as a metric the

data-to-query time and how it is reflected in user experience. We

use MySQL, DBMS X (a commercial system) and PostgreSQL

against PostgresRaw with positional maps and caching enabled.

For the purpose of this part, we consider the interaction with the au-

dience highly important. Thus, we propose a friendly race among

the available database systems focusing on user experience.

Each of the contestants will be responsible for one of the DBMS.

All DBMS execute the same sequence of input queries and take as

input the same raw data files and the same schema. The data is not

loaded in advance into any system. As a result, for conventional

DBMS, the contestant will have to load the data before executing

the queries.1 The contestant is free to tune the configuration param-

eters of the systems and/or build additional auxiliary data structures

such as indices or materialized views. After the “starting shot”, all

contestants try to get the query results as soon as possible. Finally,

each of the contestants will report the total execution time for the

workload and the time spent to initialize each of the systems.

The experiment above will highlight a representative use case

scenario and a major motivation for NoDB systems. PostgresRaw

needs only a pointer to the raw data files and it starts executing

queries immediately. On the other hand, the conventional DBMS

have to go through a time consuming initialization phase (data load-

ing and tuning). In the end, a few individual queries may take

longer to respond in comparison with a traditional system; how-

ever, the data-to-query time is reduced and continuously improves

over time. Therefore, PostgresRaw has already answered a number

of queries while the traditional DBMS have not yet started pro-

1MySQL and DBMS X offer “external files” functionality, which
enables direct querying over raw files as if they were database ta-
bles. The users can choose to execute the queries using this feature
as well.

cessing the first query. The aforementioned behavior is particularly

attractive for scenarios where the user wants to quickly examine

new data in search of certain properties, or quickly skim through a

few data attributes relevant to a given task. Our user interface will

also provide an automatic demonstration of the above “race”. In

this case, we use pre-defined scenarios with reasonable choices for

data loading and building indices before running the queries. In the

end, we report the data-to-query time for each of the systems.

5. CONCLUSIONS
Very large data processing is increasingly becoming a necessity

for modern applications in businesses and in sciences. For state-

of-the-art database systems, the incoming data deluge is a prob-

lem. With NoDB, we introduce a database design philosophy that

turns the data deluge into a tremendous opportunity for database

systems. It requires drastic changes to existing query processing

technology but eliminates one of the most fundamental bottlenecks

present in classical database systems for the past forty years, i.e.,

the data loading overhead. Until now, it has not been possible to ex-

ploit database technology until data is fully loaded. NoDB systems

permanently remove this restriction by enabling in situ querying.

This demo showcases PostgresRaw, the first mature NoDB sys-

tem. Through a graphical user interface the demo allows the user

to see the adaptive behavior of PostgresRaw that results in efficient

execution over raw data. The system monitors the state of its main

components, i.e., indexing and caching, and shows how raw data is

touched on demand as more and more queries arrive. By providing

an interactive interface, users can set their own scenarios regarding

the data input and the various systems knobs, observing the effect

of different parameters on the system performance.
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