Complex Preference Queries Supporting Spatial
Applications for User Groups

Florian Wenzel, Markus Endres, Stefan Mandl, Werner Kief3ling
Institute for Computer Science
University of Augsburg
86135 Augsburg, Germany

{wenzel, endres, mandl, kiessling}@informatik.uni-augsburg.de

ABSTRACT

Our demo application demonstrates a personalized location-
based web application using Preference SQL that allows sin-
gle users as well as groups of users to find accommodations
in Istanbul that satisfy both hard constraints and user pref-
erences. The application assists in defining spatial, numeri-
cal, and categorical base preferences and composes complex
preference statements in an intuitive fashion. Unlike exist-
ing location-based services, the application considers spatial
queries as soft instead of hard constraints to determine the
best matches which are finally presented on a map. The un-
derlying Preference SQL framework is implemented on top
of a database, therefore enabling a seamless application in-
tegration with standard SQL back-end systems as well as
efficient and extensible preference query processing.

1. INTRODUCTION

Spatial applications such as location-based services aim
to provide new services to users based on the knowledge of
their current or future locations. The search for a suitable
accommodation in Istanbul during the VLDB conference is
a typical scenario. In this case, users want to find the ”best”
accommodation according to their current preferences and
projected location. However, existing location-based query
applications are reducing the meaning of ”best” to ”clos-
est” in terms of distances. If desired, preferences are only
applied as postfilter to the returned location-based result.
Additionally, location-based applications often allow a spa-
tial window search, to avoid the ”shortest distance” prob-
lem. However, existing applications treat this restriction as
a hard constraint. Thus, if no accommodation fulfills the
users preferences the empty result effect occurs.

Preference query processing mitigates the described draw-
backs and has become an important concept in areas such as
multi-criteria decision-making, computational social choice
theory, operations research, artificial intelligence, and per-
sonalized databases (see [6] for an overview). Focusing on
databases, conventional search queries via SQL only support

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 38th International Conference on Very Large Data Bases,
August 27th - 31st 2012, Istanbul, Turkey.

Proceedings of the VLDB Endowment, Vol. 5, No. 12

Copyright 2012 VLDB Endowment 2150-8097/12/08... $ 10.00.

1946

hard constraints with an exact-match semantics. However,
people also include preferences in their decisions. These
preferences are like soft constraints, requiring a match-making
process instead: If my favorite choice is available in the
database, I will take it. Otherwise, instead of getting noth-
ing, I am open to alternatives, but show me only the best
ones available in the database. Therefore, improving SQL-
based search capabilities asks for extending SQL query tech-
nology towards a preference model, which of course should
be powerful, flexible and intuitive for the user, but simulta-
neously performance restrictions must be met.

In recent years, many preference handling approaches have
been proposed and implemented in a different manner, e.g.
the recently published FlexPref/CareDB framework [3]. It
enables extensible preference query processing based on pref-
erences which must be integrated into the PostgreSQL data-
base system using a kind of plugin function. CareDB pro-
vides a personalized location-based service to users based on
their preferences and current surrounding context. However,
CareDB lacks the means for specifying distinguished spatial
preferences, i.e. ”best” still means ”closest” regarding lo-
cation. Even with the possibility to define user preferences
inside of FlexPref/CareDB and the support of a large va-
riety of preference queries, FlexPref doesn’t implement the
full SQL standard which is necessary for convenient query
specification. Furthermore, FlexPref does not provide some
of the most intuitive preferences, e.g., it is not possible to
say that one preference is more important than another.

In this demo paper we demonstrate how to use Prefer-
ence SQL for a location-based search of accommodations
in the city of Istanbul. Our demo application allows single
users as well as groups of users to specify complex spatial
preference queries. We support the full SQL 92 standard,
e.g., joins, group by, subqueries, etc. Preference SQL pro-
vides many intuitive and inductive constructors to specify
numerical, categorical, and spatial preferences which can be
combined with equal importantance (Pareto) or ordered im-
portance (Prioritization). Furthermore, preferences can be
ranked using pre-defined and self-defined utility functions,
or reversed, cp. [2]. Moreover, Preference SQL supports
context-aware preference queries, too [4].

The rest of the paper is organized as follows: Section 2
provides an overview of the Preference SQL framework, the
query language and the demo architecture. Section 3 cov-
ers our demonstration and provides some uses cases which
demonstrate how to use Preference SQL for a preference
location-based real-life application scenario.

2. PREFERENCE SQL OVERVIEW

Preference SQL is a declarative extension of standard SQL
by strict partial order preferences, behaving like soft con-
straints under the Best-Matches-Only (BMO) query model.
The result of a preference query consequently contains all tu-
ples of the database which are not dominated by any other
tuple concerning the users preferences, cp. [1]. Preference
queries can be formulated intuitively following an induc-
tive constructor-based approach using an extension of SQL,
cp. [2] and http://www.trial. PreferenceSQL.com.

2.1 The Preference SQL Language

Syntactically, Preference SQL [2] extends the SELECT
statement of SQL by an optional PREFERRING clause
leading to the following schematic design:

SELECT <selection>

FROM <table_reference>

WHERE <hard_conditions>
PREFERRING <soft_conditions>
GROUPING <attribute_list>
BUT ONLY <but_only_condition>
TOP <number>

GROUP BY <attribute_list>

HAVING <hard_conditions>

ORDER BY <attribute_list>

LIMIT <number>

Figure 1: Preference SQL query block

The keywords SELECT, FROM, WHERE, GROUP BY,
HAVING, and ORDER BY are treated as standard SQL
keywords. The PREFERRING clause specifies a preference
by means of the preference constructors given in [2]. For ex-
ample, the wish for an accommodation which has between
50 and 100 bedrooms can be specified by ’'number_rooms
BETWEEN 50, 100, if number_rooms is the attribute of a
database relation. The ’room_rate LESS THAN 150° pref-
erence expresses the wish for a rate less than 150 Euros
(analogously MORE THAN). CONTAINS is useful for a
preference based full text search, e.g., amenities CONTAINS
"Swimming Pool AND Internet’. The DUAL preference con-
structor reverses the order of the preference. Furthermore,
the Pareto preference (combined by the AND keyword in
the PREFERRING clause) treats two or more preferences as
equally important, whereas for Prioritization (PRIOR TO)
one preference is more important than another. Further key-
words such as GROUPING are provided to modify prefer-
ence evaluation, BUT ONLY for the definition of postfilters,
and TOP and LIMIT to regulate the number of results.

After specifying a preference it is evaluated on the result of
the hard conditions stated in the WHERE clause, returning
the BMO-set. Empty results can only occur if the WHERE
clause returns an empty result.

2.2 The Preference SQL Demo Architecture

Preference SQL is a Java 1.6-based on top of the database
approach, cp. Figure 2. This approach is convenient to im-
plement, as it exists in a separate code based outside the
database. For a seamless application integration we have ex-
tended standard JDBC technology towards Preference SQL
JDBC. This enables the client application to submit Pref-
erence queries through familiar SQL clients. This approach
has proven its flexibility and efficiency in various prototype
applications, e.g. [4].

1947

Spatial Preference Query

BMO
PreferenceJDBC Result
= X

3

E‘, Query Parser §
2@

L] o
8 &
2 &
S Query Optimizer £
8 PostgreSQL
o Database
o

System

Execution Engine
Preference Algorithms

J

e

Figure 2: Architecture of our demo application

Our demo application works as follows: The user specifies
preferences and hard constraints in a web-based applica-
tion to find the best accommodations in Istanbul. In a next
step, the demo application generates a Preference SQL query
which is sent to the Preference SQL system. The query gets
parsed and transformed into an initial operator tree. After-
wards, we apply heuristics for preference algebraic operator
tree optimization (see [2] for details). Likewise guided by
a cost-based model, the Preference query optimizer deter-
mines suitable sub-trees of the final optimized operator tree
for offloading them to the back-end SQL system. Those
sub-trees are retranslated into SQL and sent via JDBC to
the attached database. For evaluation of the preferences,
several efficient algorithms have been implemented in our
Preference Execution Engine, cp. [2].

2.3 Spatial Preferences in Detail

To demonstrate the extensibility of Preference SQL to-
wards new application domains, the showcase application
highlights a new category of spatial preference constructors
as nowvel research contribution of this paper. Spatial con-
structors let users define geometries towards which they have
some kind of preference. For preferences concerning geome-
tries of type point, the longitude and latitude are provided
to the constructor. For all other types of geometries, spa-
tial constructors are accepting a KML string as argument
defining the geometry in question. For geometries of type
polygon, KML provides the notation

'<Polygon><outerBoundaryIs><LinearRing>
<coordinates>...</coordinates>
</LinearRing></outerBoundaryIs></Polygon>'

and for linestrings accordingly. The use of KML as a widely
accepted standard for the definition and presentation of spa-
tial data enhances the interoperability with leading spatial
web applications, APIs and virtual globes.

Wercome To IsTaNBUL! A Prevsmance SQL Suowcass ror VLDB 2012
|Search Help

Show details Settings... Display all accommodat

Results

Figure 3: Application screenshot

We provide the following spatial preference constructors:

> NEARBY defines a preference for geometries that are
close to a user specified point. In combination with the
DUAL constructor, a preference for geometries that are
farthest away from a specified point can be expressed.

WITHIN defines a preference for geometries that are
within or close to a user specified polygon. In combina-
tion with DUAL, geometries farthest away from a speci-
fied polygon can be expressed.

ONROUTE defines a preference for geometries that are
on or close to a defined linestring. In combination with
DUAL, geometries that are farthest away from a specified
linestring can be expressed.

BUFFER defines a preference for geometries that are
not within but close to a defined polygon.

Spatial preferences are evaluated on top of a spatially ex-
tended database, e.g. PostgreSQL with PostGIS, using im-
plemented distance functions as defined by the SQL/MM
Spatial Standard such as ST_Distance to determine the pref-
erence order.

3. SHOWCASE APPLICATION

Our demonstration scenario showcases a web application
based on Preference SQL that allows single users as well
as groups of users to find accommodations in Istanbul that
satisfy user preferences in the best way possible. The appli-
cation assists in defining spatial, numerical, and categorical
base preferences in an intuitive fashion and composes com-
plex preference statements according to a predefined query
composition. The generated Preference SQL statement is
evaluated using a database of accommodations in Istanbul
to determine best matches which are finally presented on a
map. Data for the application scenario has been generated
from an OpenStreetMap dump of the Istanbul area including
administrative boundaries augmented by information from
tourist websites such as tripadvisor.com and booking.com.

1948

3.1 Application Details

The user interface (cp. Figure 3) consists of two main ar-
eas: The left-hand side serves as input for numerical and
categorical preferences as well as hard constraints concern-
ing the type of accommodation. Furthermore, a drop-down
menu allows the selection of preferred districts of the Is-
tanbul region. The search process can be augmented from
a single-user to a multi-user scenario by adding search tabs
via the “add user” button. The right-hand side of the screen
holds a map of Istanbul per user on which spatial prefer-
ences mentioned in Subsection 2.3 can be individually de-
fined by clicking the corresponding preference symbol and
drawing the preferred geometry onto the map (cp. Figure
4). By switching search tabs on the left-hand side, the map
adapts accordingly and only displays the personal spatial
preferences of the selected user. Preferred districts are also
visualized in these maps. The generated Preference SQL
statement can be investigated by using the detailed view.

3.2 Use Case Scenarios

To highlight the functionality of Preference SQL in the
spatial domain we are introducing two use cases. The first
one illustrates the process of retrieving suitable accommoda-
tions for a single user while the second one describes a search
scenario for a group of users. Explicit KML is stripped from
Preference SQL queries to increase readability.

use case 1: single user scenario
Bob is looking for a small accommodation in Istanbul during
his attendence of the VLDB conference. He prefers a cus-
tomer rating of at least three stars and a location close to
the Archeological Museum.

Bob’s base preferences are collected by the application
and combined via complex preference constructors. In case
all preferences are of equal importance, they are translated
into the following Preference SQL statement:

SELECT * FROM accommodation

PREFERRING number_rooms BETWEEN 1,50 AND
customer_rating MORE THAN 3 AND
location NEARBY 28.98162, 41.01102

N
ce
& 4 Eﬂo
E laks|im

L Frermammara I

= Ay
An, Yy

o+
Q, B

Taksim Eﬂ o Taksim Eﬂ

r

=7

8 o =] aksim m a : . OC" 2 0
im E:I 2, = oo & ! akslm) Taksim m &

B E Taksim Gl l-;1.'-._rm. L O B
aksim i . i
e hie Marmara

Figure 4: Input of NEARBY, WITHIN, ONROUTE with DUAL preferences, and BUFFER

In this case only Pareto is used as complex constructor and
NEARBY is the only spatial preference. The query thus
defines a modified Location-Dependent Skyline Query as
formulated by [7] with a runtime of 50 ms in our appli-
cation. However, other complex constructors such as Prior-
itization are available for query composition. Additionally,
Bob might prefer to stay in the 'Fatih’ district of Istanbul
leading to preferences on complex spatial objects. If he is
also interested in ’bike rentals’ during his stay then textual
preferences are added to the search. These changes to the
first query are included into the following statement:

SELECT * FROM accommodation
PREFERRING

(location WITHIN 'KML' AND

location NEARBY 28.98167, 41.01111)
PRIOR TO

(number_rooms BETWEEN 1, 50 AND

customer_rating MORE THAN 3 AND
amenities CONTAINS 'bike rentals')

The generated query with a runtime of 42 ms now contains
a WITHIN preference for a polygon defining the adminis-
trative boundary of the 'Fatih’ district as retrieved from
the integrated OpenStreetMap data. The textual preference
constructor CONTAINS is applied to a string attribute.

In a second use case we describe what happens if Bob’s
boss Paul decides to join him on the journey to Istanbul.
Now both are looking for a common accommodation that
satisfies each user’s preferences in the best way possible.

use case 2: group scenario
Paul only accepts hotels as suitable form of accommodation.
He likes to stay nearby the Bosphorus Bridge but also close
to the conference venue. The hotel should not be directly
located in the Taksim Square area but close to it. The room
rate should be less than 95 Furos including breakfast.

Before constructing the group search query, Paul’s indi-
vidual preferences are investigated, leading to the following
Preference SQL query with a runtime of 31 ms:

SELECT * FROM accommodation
WHERE type IN ('hotel')

PREFERRING

(location ONROUTE 'KML' AND
location NEARBY 28.98845, 41.04435 AND
location BUFFER 'KML')

PRIOR TO

(room_rate LESS THAN 95.0 AND
breakfast IN ('included'))

The type of accommodation is a hard constraint and thus
appears in the WHERE clause. Spatial preferences are ex-
pressed by a ONROUTE preference containing the coordi-
nates of points on the Bosphorus Bridge, a NEARBY pref-
erence with the coordinates of the conference venue and a
BUFFER preference with a polygon around Taksim Square.

1949

These preferences have to be joined with Bob’s final pref-
erences of use case 1. In order to form a common group
preference term, single user preferences are combined via
complex constructors. By choice of Pareto for equal im-
portance of users or Prioritization for ordered importance,
group hierarchies can be induced. Since Paul checked the
“high priority user” option, his preferences are prioritized to
Bob’s preferences. The final Preference SQL query for Paul
and Bob with a runtime of /& ms is defined as follows:

SELECT * FROM accommodation
WHERE type IN ('hotel')

PREFERRING

((location ONROUTE 'KML' AND

location NEARBY 28.98845, 41.04435 AND
location BUFFER 'KML')

PRIOR TO

(room_rate LESS THAN 95.0 AND

breakfast IN ('included')))
PRIOR TO
((location WITHIN

'"KML' AND

location NEARBY 28.98173, 41.01112)
PRIOR TO
(number_rooms BETWEEN 1, 50 AND

customer_rating MORE THAN 3 AND
amenities CONTAINS 'bike rentals'))

If location-dependent skyline queries are combined via Pareto
constructors, the resulting statement defines an extended
Spatial Skyline Query (SSQ) as formulated by [5]. Prefer-
ence SQL augments this concept by allowing all kinds of
complex preference constructors as well as preferences on
complex spatial objects. Therefore, Preference SQL is a
comprehensive framework for preference query processing
supporting numerical, categorical, and spatial preferences.

4. REFERENCES

[1] W. KieBling. Foundations of Preferences in Database
Systems. In VLDB, pages 311-322, 2002.

[2] W. KieBling, M. Endres, and F. Wenzel. The Preference

SQL System - An Overview. DEB, 34(2):11-18, 2011.

J. J. Levandoski, M. E. Khalefa, and M. F. Mokbel. An

Overview of the CareDB Context and Preference-Aware

Database System. DEB, 34(2):41-46, 2011.

P. Roocks, M. Endres, S. Mandl, and W. Kieflling.

Composition and Efficient Evaluation of Context-Aware

Preference Queries. In DASFAA, pages 81-95, 2012.

M. Sharifzadeh and C. Shahabi. The Spatial Skyline

Queries. In VLDB, pages 751-762, 2006.

K. Stefanidis, G. Koutrika, and E. Pitoura. A Survey

on Representation, Composition and Application of

Preferences in Database Systems. ACM TODS,

36(3): article 19, 2011.

B. Zheng, K. C. K. Lee, and W.-C. Lee.

Location-Dependent Skyline Query. In MDM, pages

148-155, 2008.

