
DISKs: A System for Distributed Spatial Group Keyword
Search on Road Networks

Siqiang Luo§ Yifeng Luo§ Shuigeng Zhou§ Gao Cong† Jihong Guan‡

§ School of Computer Science, Fudan University, China
† School of Computer Engineering, Nanyang Technological University, Singapore

‡ Department of Computer Science & Technology, Tongji University, China
{sqluo, luoyf, sgzhou}@fudan.edu.cn, gaocong@ntu.edu.sg, jhguan@tongji.edu.cn

ABSTRACT

Query (e.g., shortest path) on road networks has been exten-
sively studied. Although most of the existing query process-
ing approaches are designed for centralized environments,
there is a growing need to handle queries on road network-
s in distributed environments due to the increasing query
workload and the challenge of querying large networks. In
this demonstration, we showcase a distributed system called
DISKs (DI stributed Spatial K eyword search) that is capa-
ble of efficiently supporting spatial group keyword search (S-
GKS) on road networks. Given a group of keywords X and
a distance r, an SGKS returns locations on a road network,
such that for each returned location p, there exists a set
of nodes (on the road network), which are located within a
network distance r from p and collectively contains X. We
will demonstrate the innovative modules, performance and
interactive user interfaces of DISKs.

1. INTRODUCTION
In a road network, each node represents a location1, the

edge between two nodes represents the path between them,
and the length of the path is referred to as the edge weight.
Each node can be tagged with textual information such as
“restaurant” or “school”. Query processing on road net-
works has many applications, such as online map services
and mobile services.

In this demonstration, we present a new type of spatial
keyword search query, called spatial group keyword search (S-
GKS), on road networks in a distributed environment. Giv-
en a set of keywords ψ, a specified distance r, and a road
network, a location (i.e., node) is retrieved as a result of
the spatial group keyword search if for each keyword t ∈ ψ
there exists a node containing t and within a road network
distance r to the location. An example application of SGKS
is that a real estate company wants to select on the map a
place whose distances to hospital, school and supermarket

1In the sequel we use interchangeably node and location.

are all within 5 kilometers, where the query keywords are
“hospital”, “school” and “supermarket”.

Most existing proposals on spatial keyword search [3, 7,
9] consider Euclidean distance of spatial objects rather than
network distance. Recently, Li et al. [6] consider network
distance for a type of spatial keyword query where each re-
turned object nodes should contain a keyword similar to
the query keyword. However, the technique [6] cannot be
employed for processing SGKS. Furthermore, all of the pro-
posals focus on the centralized setting. Most of the existing
systems/methods of keyword search in graphs [2, 3, 4, 7, 9]
are designed under a centralized setting, and cannot be used
for SGKS.

In this demonstration, we present DISKs (DI stributed
Spatial K eyword search) for SGKS on road networks in
a Hadoop [1] based distributed architecture. DISKs pro-
vides interactive user interfaces for composing queries and
presenting the results. The main features of DISKs are as
follows:

• DISKs employs an innovative distributed index called
NPD-index (N ode Partition D istance index) for dis-
tributed query processing. Our experiments show that
the index is compact in space. In theory, it can elimi-
nate the communication cost between machines during
distributed query processing.

• DISKs is implemented based on Hadoop, a popular
cloud computing platform. We demonstrate how to
build index on Hadoop and how to employ it to signif-
icantly boost the efficiency of distributed query pro-
cessing on Hadoop.

• DISKs offers interactive user interfaces for composing
queries as well as presenting, analyzing and comparing
query results.

2. DISKS OVERVIEW
Figure 1 shows the architecture of DISKs, which consists

of three major modules: Partitioner, Indexer and Distribut-
ed Query Processor. Partitioner and Indexer are preprocess-
ing modules for constructing index. The index is constructed
once, and works for all queries.

2.1 Partitioner and Indexer
The Partitioner takes a road network (a graph) as the in-

put and outputs N small node-disjoint balanced subgraph
partitions. This module employs METIS [5], which can min-
imize the number of cross-partition edges and balance the

1966

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 38th International Conference on Very Large Data Bases,
August 27th - 31st 2012, Istanbul, Turkey.
Proceedings of the VLDB Endowment, Vol. 5, No. 12
Copyright 2012 VLDB Endowment 2150-8097/12/08... $ 10.00.

Visual result

present

interface…
…

HDFS

Data

…
…

Partitioner
callMetis

library partitions

output

Indexer

…
…

input

input

Hadoop

MapReduce

cluster

output

u
ti
liz

e

q
u

e
ry

Hadoop

MapReduce

cluster

input

input

Distributed

query

processor

u
ti
liz

e

output

output

…
…

results

Build index procedure Query procedure

Road

map

Portal

nodes

Part A

Part B

SC(A)

SC(B)

DL(A)

DL(B)

Result A

Result B

access

Keyword-

node index

Figure 1: The architecture of DISKs.

size of each partition. The cross-partition edges are only a
small subset of the entire edge set in our experiments, as
road networks are sparse graphs. We refer to the end n-

odes of cross-partition edges as portal nodes, which are also
output by Partitioner.

The Indexer takes partitions and portal nodes as argu-
ments, and outputs NPD-index. NPD-index is composed
of N components, each of which corresponds to a parti-
tion. Each component contains two structures, which we
call Distance-List (DL) and Short-Cut (SC), respectively.
We proceed to describe DL and SC via Fig. 2.

DL is a search tree on the nodes of the road network,
where each leaf node of the search tree is tagged with dis-
tances between this node and part of the portal nodes of
partition P , as shown in Fig. 2. Here, A1 is a leaf node of
the DL search tree corresponding to partition P . We say
that a portal node p in P is effective (e.g., C, D and E in
the figure) with respect to A1, if any shortest path2 between
A1 and p goes through only one node in P , which is p itself
here. Our interesting finding is that only the distances be-
tween A1 and its effective portal nodes need to be recorded
in DL for query processing.

The other structure SC is a set of extra added edges be-
tween two portal nodes of P . If any shortest path between
two portal nodes u and v covers only two nodes u and v (e.g.,
U and V in Fig. 2) in P , then a new edge (u, v, d(u, v)) is
added into SC, where d(u, v) is the shortest distance between
u and v.

With partition P and its corresponding DL and SC struc-
tures, we can compute the exact shortest distance from any
node of the road network to any node in P . The rationale
is that, for any node u outside P and any node p inside P ,
there exists a shortest path between them, which only inter-
sects P by effective portal nodes with respect to u [8]. For
example, in Fig. 2, the shortest distance from A1 to V is
computed by d(A1, E) (recorded in DL as E is an effective
portal node with respect to A1), d(E,U) (computed inside
partition P) and d(U, V) (recorded in SC). If two nodes u

2we use “any” as multiple shortest paths of equal length
may exist.

d(A1,C); d(A1,D); d(A1,E)

d(A2,C); d(A2,E)

d(Ai,D); d(Ai,E)

...

A1

A2

Ai

...

...

...

Search tree Tagged distances

DL

outside node

A1

E

U

C

D

partition P

V

shortest paths

effective for A1

non-effective for A1

new edge added to SC

Figure 2: NPD-index illustration.

and p are both inside P , then there exists a shortest path
from u to p composed of original edges in P and newly added
edges in SC. For example, the shortest distance from E to
V is the sum of d(E,U) and d(U, V).

We define the spatial cost between a location u and a n-
ode set S (the set of nodes containing a keyword) as the
minimum shortest path length (a.k.a shortest distance) be-
tween u and all nodes in S. For example, if set S = {p, q},
the spatial cost between u and S, d(u, S), is the minimum
of d(u, p) and d(u, q), where d(u, p) (resp. d(u, q)) is the
shortest distance between u and p (resp. u and q).
SGKS concerns the nodes whose spatial cost to each node

set related to a keyword is no more than r. In practice, r
is much smaller than the diameter of the spatial network.
Therefore, we set a parameter maxR as the maximal of r,
instead of the diameter of the network. During index con-
struction, we neglect the nodes whose shortest distances to
all portal nodes are larger than maxR. Specifically, NPD-
index can be constructed by performing a set of local Dijk-

stra algorithms on the whole network, with the portal nodes
as sources. The Dijkstra search stops when the distance to
the source is larger than maxR.

2.2 Distributed Query Processor
After the NPD-index is constructed, queries can be pro-

cessed distributedly based on a machine pool (e.g., a cloud
computing platform). Each partition together with its index
is assigned to a machine for computing the results in that
partition. Each machine may receive multiple partitions,
depending on the number of machines and the number of
partitions. The distributed query processor takes as input a
parameter r and several keywords. For each keyword K, the
node set XK comprising the nodes containingK is extracted
via a keyword-node inverted index (see Fig. 1). For parti-
tion P , the query processor performs the following steps:

1967

Step 1: For each node set XK (corresponding to a key-
word K), the following 2 sub-steps are preformed:

Sub-step 1: Access the search tree of DL to find the
leaf nodes contained in XK , and retrieve their tagged portal
nodes with distances at most r.

Sub-step 2: Beginning from the retrieved portal nodes,
search over P∪SC, and return the nodes in P whose distance
to at least one node in the node set XK is not larger than
r.

Step 2: Intersect the returned nodes of all node sets.
Step 1 computes for each keyword K the set of nodes in P
whose distance to the node set XK (corresponding to K) is
not larger than r. Step 2 does an intersection to find the
result nodes of P whose distances to all node sets (each cor-
responding to a query keyword) are not larger than r. Note
that the computation for different partitions is independent.

2.3 Hadoop-based DISKs Implementation
The proposed DISKs architecture and techniques are inde-

pendent of any specific distributed computing platform. Our
current system is implemented on Hadoop. Hadoop stores
data on Hadoop Distributed File System (HDFS) and com-
pletes computation by jobs. A Hadoop job is composed of
the map phase and the reduce phase. During the map phase,
the workload is distributed to different machines (datan-
odes), while during the reduce phase the output of the map
phase with the same key is sent to the same machine for
further processing.

NPD-index construction can be reduced to a set of Dijk-

stra instances taking portal nodes as sources. The instances
can be conveniently distributed to different machines in the
Hadoop cluster for computing during the map phase. Key-
value pairs in the form of (key : {u, P}, value : {s, d(u, s)})
are output at the map phase, indicating that node s is ef-
fective with respect to node u. As a result, in the reduce
phase, the effective portal nodes and tagged distances (e.g.,
{s, d(u, s)}) with respect to node u are aggregated, compro-
mising all the tagged distances for the leaf node u in DL for
partition P . DL is stored in Hadoop MapFile, which is an
index file in Hadoop that stores the content as a series of
key-value pairs, and the keys are accessed by a binary tree.
Both DL and SC are stored distributively in HDFS.

The distributed query steps (Section 2.2) are implemented
in a Hadoop job using only the map phase as the compu-
tation on different partitions can be separated. This is a
desirable feature as the reduce phase will incur many net-
work I/Os.

��
�
 �
	
	
 �

���

���

���

���

���

���

���

���

���

���

���

���

���

�

�

�

�
�
�
��
�

�
��

�

	
��

�
�
�
�
�
�
�

	���
�
���

� ��� �
���

� �����
���

� � � � � � 	
 � �� �� �� �� �� ��

���

���

���

���

���

���

���

���

�

�

�

�
�
�
��
�

�
��

�

	
��

�
�
�
�
�
�
�

��������	

� ����
��	�

Figure 3: Left: scalability with graph size. Right:
scalability with the number of datanodes.

.

Table 1: Datasets
name nodes edges description

NY 264,346 733,846 New York
COL 435,666 1,057,066 Colorado
FLA 1,070,376 2,712,798 Florida
CAL 1,890,815 4,657,742 California,Nevada
E 3,598,623 8,778,114 Eastern USA

Table 2: The ratio of average index size (DL or SC)
per partition to the road network size. The second
row is the value of maxR/105. N = #partitions.

N
DL SC

0.5 1 1.5 0.5 1 1.5
10 0.0196 0.0602 0.1107 0.0001 0.0002 0.0002
20 0.0198 0.0603 0.1126 0.0002 0.0004 0.0005
30 0.0118 0.0368 0.0692 0.0001 0.0002 0.0003

3. SYSTEM PERFORMANCE
We present a summary of experimental results on index

size and query performance of the implemented system. The
Hadoop cluster consists of 16 machines, installed with Hadoop
0.20.2 and Ubuntu Linux. The machines are interconnect-
ed with an 100MB TP-LINK switch. Statistics of the real
road network datasets3 used in the experiments are listed
in Tab. 1. As the datasets have no textual information as-
sociated with the nodes, we randomly select keywords from
a vocabulary for each node such that each keyword is con-
tained by 100 nodes. Table 2 shows the index sizes for dif-
ferent numbers of partitions and different values of maxR,
where the index size is measured by the number of effec-
tive portal nodes (for DL) and the number of newly added
edges (for SC). We can see that DL size is relatively small-
er than the size of road network (number of edges), while
SC size is much smaller than the road network size. To
demonstrate the effectiveness of the NPD-index, we com-
pare the proposed approach with a baseline query method
without employing index on Hadoop, which is marked as
“No Index”. The baseline simply distributes the entire road
network to several machines, each of which is responsible
for searching an r-range for a node set (corresponding to a
keyword). The output node sets of all machines are inter-
sected in the reduce phase as the final result. By default,
the evaluation is performed on CAL, the number of query
keywords is 4 and we report the average performance of 20
queries4. For index construction, the number of partitions is
10 and maxR = 150000 (150000 is a relatively large search
range as the average edge length of CAL is 2650).

EXP 1: Effect of road network size. We evaluate
the scalability of the methods with regard to graph size.
Results are shown in the left of Fig. 3. The runtime of the
index-based method only slightly increases with the increase
of graph size, whereas the method without index is more
sensitive to the network size.

EXP 2: Effect of the cluster size. We vary the num-
ber of datanodes (i.e., the machines handling computation)
from 1 to 15 by a step size of 2. The results are shown in the

3http://www.dis.uniroma1.it/˜challenge9/download.shtml
4Hadoop startup time is not included.

1968

Present board

A

B

C

drag

Compare board

Figure 4: DISKs’ visual presentation interface.

right of Fig. 3. We observe that the running time decreases
as the number of datanodes increases.

4. DEMONSTRATION
The demonstration is the first system that is developed

to distributedly process SGKS queries. The demonstration
environment will consist of up to five laptop computers on
site. Participants will be able to experience how DISKs can
be used to issue queries, as well as selecting and comparing
results via DISKs’ interactive user interface.

4.1 Issuing and Evaluating SGKS Queries
The input is a text file containing the set of query key-

words and a parameter r. It will be uploaded to a user-
specified directory in HDFS of the Hadoop cluster. The
index file locates in a specified directory in HDFS. The S-
GKS query can be performed when the input file and index
file are ready. The result file will be stored under a user-
specified HDFS directory. We intend to demonstrate the
performance of DISKs with road networks of varying sizes
and different numbers of machines, as illustrated in Fig. 3.

4.2 Visual Interactive Interface
Users can check the results via a visual interface of DISKs.

The demonstration will show how DISKs interface facilitates
users to examine the results. First, users can filter the re-
sults by specifying a filter file containing the set of nodes
that users are interested in (the “filter” in Box A of Fig. 4)
This functionality can be employed in a scenario where the
users want to impose restriction on the returned locations,
e.g., closing to restaurants. Second, users can also choose
the ranking strategy to present the results (Box B of Fig. 4).
For example, under the default ranking strategy “max”, a
result has a higher rank if the largest distance between the
result node (in the center colored red) and the node sets
is smaller. Other strategies include sum or variance of the
spatial cost between the result node and the node sets. Fi-
nally, users can press “query” button (Box A) to inspect
the result (Box C) satisfying the filtering condition and the
selected ranking strategy.

The presentation of results highlights the spatial relation-
ship between the result node (circle) and its closest keyword

related node (rectangle) with respect to each keyword. The
direction from the result node to such nodes reflects their
real coordinates if the node coordinates are available. The
results can be presented one by one according to their ranks
from high to low by pressing “next” button in Box A. User
can inspect the previous result by clicking the “previous”
button. The corresponding distances and keywords are il-
lustrated near the nodes. If the shown values are very close
(left of Fig. 4), users can drag the node around for better pre-
sentation. DISKs also offers a convenient comparison board
for comparing different results, and users can select any pair
of results to compare, as shown in the right of Fig. 4.

5. REFERENCES
[1] Hadoop, http://hadoop.apache.org/.

[2] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and
S. Sudarshan. Keyword searching and browsing in
databases using BANKS. In ICDE, pages 431–440,
2002.

[3] X. Cao, G. Cong, C. S. Jensen, and B. C. Ooi.
Collective spatial keyword querying. In SIGMOD,
pages 373–384, 2011.

[4] H. He, H. Wang, J. Yang, and P. S. Yu. BLINKS:
Ranked keyword searches on graphs. In SIGMOD,
pages 305–316, 2007.

[5] G. Karypis and V. Kumar. A fast and highly quality
multilevel scheme for partitioning irregular graphs.
SIAM J. Sci. Comput., 20(1):359–392, 1998.

[6] F. Li, B. Yao, M. Tang, and M. Hadjieleftheriou.
Spatial approximate string search. IEEE Trans. Knowl.

Data Eng., 99(PrePrints), 2012.

[7] Z. Li, K. C. K. Lee, B. Zheng, W.-C. Lee, D. L. Lee,
and X. Wang. IR-Tree: An efficient index for
geographic document search. IEEE Trans. Knowl. Data

Eng., 23(4):585–599, 2011.

[8] S. Luo, Y. Luo, and S. Zhou et al. Distributed index for
keyword search. Technical Report #2011-218, School of
Computer Science, Fudan University. 2011.

[9] B. Yao, F. Li, M. Hadjieleftheriou, and K. Hou.
Approximate string search in spatial databases. In
ICDE, pages 545–556, 2010.

1969

