
Deco: A System for Declarative Crowdsourcing

Hyunjung Park
Stanford University

hyunjung@cs.stanford.edu

Richard Pang
Stanford University

rrpang@cs.stanford.edu

Aditya Parameswaran
Stanford University

adityagp@cs.stanford.edu

Hector Garcia-Molina
Stanford University

hector@cs.stanford.edu

Neoklis Polyzotis
UC Santa Cruz

alkis@cs.ucsc.edu

Jennifer Widom
Stanford University

widom@cs.stanford.edu

ABSTRACT

Deco is a system that enables declarative crowdsourcing: answer-

ing SQL queries posed over data gathered from the crowd as well

as existing relational data. Deco implements a novel push-pull

hybrid execution model in order to support a flexible data model

and a precise query semantics, while coping with the combination

of latency, monetary cost, and uncertainty of crowdsourcing. We

demonstrate Deco using two crowdsourcing platforms: Amazon

Mechanical Turk and an in-house platform, to show how Deco pro-

vides a convenient means of collecting and querying crowdsourced

data.

1. INTRODUCTION
Crowdsourcing [3, 6] uses human workers to capture or generate

data on demand and/or to classify, rank, label or enhance existing

data. Often, the tasks performed by humans are hard for a com-

puter to do, e.g., rating a new restaurant or identifying features of

interest in a video. We can view the human-generated data as a

data source, so naturally one would like to seamlessly integrate the

crowd data source with other conventional sources, allowing the

end user to interact with a single, unified database. And naturally

one would like a declarative system, where the end user describes

the needs, and the system dynamically figures out how to obtain the

best crowdsourced data, and how it must be integrated with other

data.

We propose to demonstrate Deco (for “declarative crowdsourc-

ing”), a system that answers declarative queries posed over stored

relational data together with data gathered on-demand from the

crowd. Deco’s data model was designed to be general (it can be

instantiated to other proposed models), flexible (it allows methods

for data cleansing and external access to be plugged in), and princi-

pled (it has a precisely-defined semantics). Deco’s query language

is a simple extension to SQL, and expresses the constraints nec-

essary for crowdsourcing. In a companion full paper [5], we de-

scribe in detail the Deco prototype, which uses a novel push-pull

hybrid query execution model to overcome the limitations of the

traditional iterator model in the crowdsourcing setting. In [5] we

also illustrate how the flexibility of the Deco data model provides

many alternative query execution plans with different performance

characteristics.

There have been other recent systems designed to support declar-

ative crowdsourcing [4]. Deco’s generality and semantics enable a

variety of query processing alternatives not available to these sys-

tems, and we propose to highlight these alternatives in our demon-

stration scenarios.

2. DATA MODEL AND QUERY LANGUAGE
We begin by illustrating each of the Deco data model compo-

nents using a running example, then we describe our query lan-

guage and semantics. For more details see [5].

Conceptual Relation: Conceptual relations are the logical rela-

tions specified by the Deco schema designer and queried by end-

users and applications. The schema designer also partitions the

attributes in each conceptual relation into anchor attributes and de-

pendent attribute-groups. Informally, anchor attributes typically

identify “entities” while dependent attribute-groups specify prop-

erties of the entities. We will see how they are used below.

As a simple running example, suppose our users are interested in

querying a conceptual relation of countries:

Country(name, [language], [capital])

Each dependent attribute-group (single attributes in this case) is en-

closed within square brackets. In this example, the anchor attribute

name identifies a country, while language and capital are indepen-

dent properties of the country. We assume that each country can

have one or more languages but exactly one capital.

Raw Schema: Deco is designed to use a conventional RDBMS as

its back-end. The raw schema—for the tables actually stored in the

underlying RDBMS—is derived automatically from the conceptual

schema, and is invisible to both the schema designer and end-users.

Specifically, for each relation R in the conceptual schema, there

is one anchor table containing the anchor attributes, and one de-

pendent table for each dependent attribute-group; dependent tables

also contain anchor attributes.

In our example, we have the raw schema:

CountryA(name)
CountryD1(name, language)
CounrtyD2(name, capital)

Fetch Rules: Fetch rules allow the schema designer to specify how

data can be obtained from humans. A fetch rule takes the form

A1 ⇒ A2 : P , where A1 and A2 are sets of attributes from one

conceptual relation (with A1 = ∅ permitted), and P is a fetch

procedure that implements access to human workers. (P might

generate HITs (Human Intelligence Tasks) to Amazon Mechanical

1990

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 38th International Conference on Very Large Data Bases,
August 27th - 31st 2012, Istanbul, Turkey.
Proceedings of the VLDB Endowment, Vol. 5, No. 12
Copyright 2012 VLDB Endowment 2150-8097/12/08... $ 10.00.

Turk [1], for example.) When invoked, the fetch rule A1 ⇒ A2

obtains new values for A2 given values for A1, and populates raw

tables using those values for A1 ∪A2.

Here are some example fetch rules and their interpretations for

our running example.

• ∅ ⇒ name: Ask for a country name, inserting the obtained

value into raw table CountryA.

• name ⇒ capital: Ask for a capital given a country name,

inserting the resulting pair into table CountryD2.

• language ⇒ name: Ask for a country name given a lan-

guage, inserting the resulting country name into table Coun-
tryA, and inserting the name-language pair into CountryD1.

There are many more possible fetch rules for our example. In

the demonstration scenario (Section 4), we use slightly more so-

phisticated fetch rules such as name ⇒ language,capital and lan-
guage ⇒ name,capital. For a full description of the allowable

fetch rules, see [5].

Resolution Rules: Suppose we’ve obtained values for our raw ta-

bles, but we have inconsistencies in the collected data. We use

resolution rules to cleanse the raw tables—to get values for con-

ceptual relations that are free of inconsistencies. For each con-

ceptual relation, the schema designer can specify a resolution rule

∅ → A : f for the anchor attributes A treated as a group, and one

resolution rule A → D : f for each dependent attribute-group D.

In ∅ → A : f , the resolution function f “cleans” a set of anchor

values. In A → D : f , the resolution function f “cleans” the set

of dependent values associated with specific anchor values.

In our example, we might have the following three resolution

rules:

• ∅ → name : dupElim(1,1)

• name → language : dupElim(4,2)

• name → capital : majority(3)

where the resolution functions are defined as:

• dupElim(n,m): Given a set S of values, if |S| ≥ n, retain

all distinct values appearing at least m times in S, otherwise

return NULL.

• majority(n): Given a set S of values, if |S| ≥ n and a value

v appears at least ⌈n+1

2
⌉ times, return v, otherwise return

NULL.

Recall that each country can have one or more languages but ex-

actly one capital. Resolution function dupElim(4,2) for a given

country produces distinct language values that appear at least twice

in four or more answers for the country. Resolution function ma-

jority(3) produces the majority of three or more capital answers for

a given country.

Data Model Semantics: The semantics of a Deco database is de-

fined as a potentially infinite set of valid instances for the concep-

tual relations. A valid instance is obtained by the Fetch-Resolve-

Join sequence: (1) Fetching additional data for the raw tables using

fetch rules; this step may be skipped. (2) Resolving inconsistencies

using resolution rules for each of the raw tables. (3) Outerjoining

the resolved raw tables to produce the conceptual relations.

It is critical to understand that the Fetch-Resolve-Join sequence

is a logical concept only. When Deco queries are executed, not only

may these steps be interleaved, but typically no conceptual data is

materialized except for the tuples in the query result.

Query Language and Semantics: A Deco query Q is a SQL query

over the conceptual relations. The answer to Q must be the result

of evaluating Q over some (logical) valid instance of the database.

One valid instance of the database can be obtained by resolving

Parser

Deco API

Planner

Executor

Amazon

Mechanical

Turk

Other

Crowdsourcing

Service

Other

External

Source

End

User

Schema

Designer

DDL, Register UDFsResultsDML

Statistics

Catalogs

Raw Tables

User Defined

Fetch Proc.

User Defined

Fetch Proc.

MTurk

Fetch Proc.

Resolution

Functions

User

Defined

Resolution

Functions

Figure 1: Deco Architecture

and joining the current contents of the raw tables, without invoking

any fetch rules. Thus, it appears a query Q can be always answered

correctly without consulting human workers at all. The problem

is that often times this “correct” query result will also be empty.

To retain our straightforward semantics over valid instances while

avoiding the empty-answer syndrome, we simply add to our query

language an “AtLeast n” clause. This clause says that not only

must the user receive the answer to Q over some valid instance of

the database, but it must be a valid instance for which the answer

has at least n tuples without NULL attributes.

For further details and examples of Deco’s data model and query

semantics, see [5].

3. SYSTEM OVERVIEW
We implemented our Deco prototype in Python with a SQLite

back-end. Currently, the system supports DDL commands to cre-

ate tables, resolution functions, and fetch rules, as well as a DML

command that executes queries. In this section, we describe Deco’s

overall architecture (Figure 1) and query processing model.

3.1 Architecture
Client applications interact with the Deco system using the Deco

API, which implements the standard Python Database API v2.0:

connecting to a database, executing a query, and fetching results.

The Deco API also provides an interface for registering and con-

figuring fetch procedures and resolution functions. Using the Deco

API, we built a command line interface, as well as a web-based

graphical user interface that executes queries, visualizes query plans,

and shows log messages in real-time.

When the Deco API receives a query, the overall process of pars-

ing the query, choosing the best query plan, and executing the cho-

sen plan is similar to a traditional DBMS. However, the query plan-

ner translates declarative queries posed over the conceptual schema

to execution plans over the raw schema, and the query executor is

not aware of the conceptual schema at all. To obtain data from

humans, the query executor invokes fetch procedures, and the raw

data is cleaned by invoking resolution functions.

1991

Figure 2: Query Plan Visualization

3.2 Query Processing
The Deco prototype uses a novel Push-Pull Hybrid Execution

Model to implement the Deco semantics. This new model has the

following significant differences with respect to the traditional iter-

ator model:

• Not only may each query operator pass its output tuples to its

parent operator, but it can also remove or modify output tu-

ples that were passed to the parent operator previously, anal-

ogous to incremental view maintenance [2]. For example, the

output of the resolution function majority can change when

new tuples are added to the raw table.

• The getNext calls are asynchronous. A parent operator does

not expect an immediate response to its getNext request; the

child operator will respond later when a new tuple becomes

available. This built-in asynchrony allows Deco to ask multi-

ple questions to the crowd in parallel without having to wait

for individual crowd answers.

• Operators can pass a new tuple to their parent operators with-

out receiving any getNext requests. For example, if a fetch

rule name ⇒ language,capital is invoked based on the need

for a language value, data may as a side effect be inserted in

the raw table for capital.

Deco queries are executed in two phases, referred to as materi-

alization and accretion. In the materialization phase, the “current”

result is materialized using the current contents of the raw tables

without invoking additional fetches. If this result does not meet the

AtLeast constraint, the accretion phase invokes fetch rules to obtain

more results. This second phase maintains the result incrementally

as fetch rules complete, and invokes more fetches as necessary until

the AtLeast constraint is met.

4. DEMONSTRATION

4.1 Basic Scenario
In the introductory scenario, we set up our simple countries data-

base schema using a series of DDL commands, and we execute a

query to demonstrate Deco’s functionality and usability.

Create Resolution Functions: To create the conceptual relation

of countries in Deco, we first need to create the resolution func-

Figure 3: Query Execution

tions. For example, the following command creates the resolution

function majority(n) in Python:

CREATE FUNCTION majority AS

‘def majority(tuples, n):
for t in tuples:
if tuples.count(t) > 0.5 * max(n, len(tuples)): return [t]

if len(tuples) >= n: return []’

The first argument tuples contains the set S of values to be re-

solved.

Create Table: Once the resolution functions are created, we can

create the conceptual relation Country:

CREATE TABLE country (name varchar USING dupelim(1,1),
[language varchar USING dupelim(4,2)],
[capital varchar USING majority(3)])

Create Fetch Rules: We create three fetch rules: (a) language ⇒
name, (b) name ⇒ language, and (c) name ⇒ capital. As an ex-

ample, the fetch rule name ⇒ capital is created with the following

command:

CREATE FETCHRULE nam to cap ON country
(name TO capital) USING mturk WITH ‘{‘‘reward’’: 0.05,
‘‘question’’: ‘‘What is the capital city of ${name}?’’}’

When this fetch rule is invoked, the question template “What is the
capital city of ${name}?” is instantiated by replacing ${name}
with an actual country name.

Execute Query: Now, we ask for ten Spanish-speaking countries

along with their capital cities using the following query:

SELECT name, capital FROM country
WHERE language=’Spanish’ ATLEAST 10

Before executing the query, we can visualize the query plan in

the Deco web interface by clicking the Explain button (Figure 2).

Figure 4 shows the same query plan with a few additional details.

We will refer back to this plan, calling it a “reverse” configuration

because the fetch rule language ⇒ name obtains value for the

anchor attribute given values for the dependent attribute.

1992

AtLeast[10]

Project[N,C]

DLOJoin[N]

DLOJoin[N]

Resolve[de(1,1)] Resolve[de(4,2)]

Resolve[maj(3)]Filter[L=’Spanish’]

Scan

[CtryA]

Fetch

[LàN]

Scan

[CtryD2]

Fetch

[NàC]

Scan

[CtryD1]

Fetch

[NàL]

Figure 4: Reverse Configuration

Figure 5: Mechanical Turk Worker Interface

Finally, we start executing the query by clicking the Execute
button. Since the raw tables are empty, Deco invokes all three fetch

rules to produce the result. As the query is running, the Deco web

interface displays the up-to-date result (Figure 3). In this figure,

our query is almost done except for one last NULL capital value for

Peru. At this moment, Figure 5 shows a screenshot of a Mechanical

Turk worker submitting an answer for the capital of Peru. To give

an engaging demonstration, the audience will be invited to submit

answers while the query is running.

4.2 Improving Execution Time and Cost
The second scenario primarily focuses on the flexibility of Deco

fetch rules and its performance implications, by running the same

query under different fetch configurations.

Create Additional Fetch Rules: Deco’s data model supports a

wide variety of fetch rules. Next we set up a “hybrid” configuration

by creating two new fetch rules (a) language ⇒ name,capital and

(b) name ⇒ language,capital. Notice that these fetch rules get

two pieces of information at once.

Execute Query: Figure 6 shows Deco’s chosen query plan when

we use the hybrid configuration. Unlike Figure 4, the fetch rule

name ⇒ language,capital is shared by two different parent oper-

ators. As a result, Deco invokes name ⇒ language,capital when-

ever it needs either a language or capital value for a given country.

We observe that Deco asks about 40% fewer questions of humans

in the hybrid configuration compared to the original “reverse” con-

figuration. In many cases, the execution time also improves as the

DLOJoin[N]

Resolve[de(4,2)]

Resolve[maj(3)]

Scan

[CtryD2]

Scan

[CtryD1]

Fetch

[NàL,C]

Resolve[de(1,1)]

Scan

[CtryA]

Fetch

[LàN,C]

AtLeast[10]

Project[N,C]

DLOJoin[N]

Filter[L=’Spanish’]

Figure 6: Hybrid Configuration

number of questions decreases. Moreover, assuming we offer the

same monetary compensation for each fetch rule, the total mone-

tary cost is lower as well. In general, this scenario depicts that it

is important for a declarative crowdsourcing system (like Deco) to

handle fetch rules of different types, and thus increase the opportu-

nities for finding a good execution plan.

4.3 Improving Data Quality
The third and final scenario demonstrates how Deco’s resolution

rules are useful for controlling data quality.

Change Resolution Rules: Suppose our query result indicates that

the capital of Spain is not Madrid but Barcelona, and we realize

that asking just three different workers for the capital of a country

is not enough. We change the resolution function for capital:

ALTER TABLE country
ALTER COLUMN capital USING majority(5)

Execute Query: If we execute our same query again but with-

out “ATLEAST 10”, we get ten Spanish-speaking countries with

NULL capital values, since the current contents of the raw table

CountryD2 populated by previous queries are insufficient to re-

solve capital values. When we add “ATLEAST 10”, Deco collects

more capital values for each country to produce ten result tuples

with better quality data.

5. REFERENCES
[1] Mechanical Turk. http://mturk.com.

[2] J. A. Blakeley, P. Larson, and F. W. Tompa. Efficiently

updating materialized views. In SIGMOD, pages 61–71, 1986.

[3] A. Doan, R. Ramakrishnan, and A. Halevy. Crowdsourcing

systems on the world-wide web. Communications of the ACM,

54(4):86–96, 2011.

[4] M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and

R. Xin. Crowddb: answering queries with crowdsourcing. In

SIGMOD, pages 61–72, 2011.

[5] A. Parameswaran, H. Park, H. Garcia-Molina, N. Polyzotis,

and J. Widom. Deco: Declarative crowdsourcing,

http://ilpubs.stanford.edu:8090/1015/. Technical report,

Stanford Infolab, 2012.

[6] A. Quinn and B. Bederson. Human computation: a survey and

taxonomy of a growing field. In CHI, pages 1403–1412, 2011.

1993

