
Efficient Big Data Processing in Hadoop MapReduce

Jens Dittrich Jorge-Arnulfo Quiané-Ruiz

Information Systems Group
Saarland University

http://infosys.cs.uni-saarland.de

ABSTRACT

This tutorial is motivated by the clear need of many organizations,

companies, and researchers to deal with big data volumes effi-

ciently. Examples include web analytics applications, scientific

applications, and social networks. A popular data processing en-

gine for big data is Hadoop MapReduce. Early versions of Hadoop

MapReduce suffered from severe performance problems. Today,

this is becoming history. There are many techniques that can be

used with Hadoop MapReduce jobs to boost performance by orders

of magnitude. In this tutorial we teach such techniques. First, we

will briefly familiarize the audience with Hadoop MapReduce and

motivate its use for big data processing. Then, we will focus on dif-

ferent data management techniques, going from job optimization to

physical data organization like data layouts and indexes. Through-

out this tutorial, we will highlight the similarities and differences

between Hadoop MapReduce and Parallel DBMS. Furthermore, we

will point out unresolved research problems and open issues.

1. INTRODUCTION
Nowadays, dealing with datasets in the order of terabytes or even

petabytes is a reality [24, 23, 19]. Therefore, processing such big

datasets in an efficient way is a clear need for many users. In this

context, Hadoop MapReduce [6, 1] is a big data processing frame-

work that has rapidly become the de facto standard in both industry

and academia [16, 7, 24, 10, 26, 13]. The main reasons of such

popularity are the ease-of-use, scalability, and failover properties

of Hadoop MapReduce. However, these features come at a price:

the performance of Hadoop MapReduce is usually far from the per-

formance of a well-tuned parallel database [21]. Therefore, many

research works (from industry and academia) have focused on im-

proving the performance of Hadoop MapReduce jobs in many as-

pects. For example, researchers have proposed different data lay-

outs [16, 9, 18], join algorithms [3, 5, 20], high-level query lan-

guages [10, 13, 24], failover algorithms [22], query optimization

techniques [25, 4, 12, 14], and indexing techniques [7, 15, 8]. The

latter includes HAIL [8]: an indexing technique presented at this

VLDB 2012. It improves the performance of Hadoop MapReduce

jobs by up to a factor of 70 — without requiring expensive index

creation phases. Over the past years researchers have actively stud-

ied the different performance problems of Hadoop MapReduce.

Unfortunately, users do not always have a deep knowledge on how

to efficiently exploit the different techniques.

In this tutorial, we discuss how to reduce the performance gap

to well-tuned database systems. We will point out the similarities

and differences between the techniques used in Hadoop with those

used in parallel databases. In particular, we will highlight research

areas that have not yet been exploited. In the following, we present

the three parts in which this tutorial will be structured.

2. HADOOP MAPREDUCE
We will focus on Hadoop MapReduce, which is the most popu-

lar open source implementation of the MapReduce framework pro-

posed by Google [6]. Generally speaking, a Hadoop MapReduce

job mainly consists of two user-defined functions: map and reduce.

The input of a Hadoop MapReduce job is a set of key-value pairs

(k, v) and the map function is called for each of these pairs. The

map function produces zero or more intermediate key-value pairs

(k′, v′). Then, the Hadoop MapReduce framework groups these in-

termediate key-value pairs by intermediate key k′ and calls the re-

duce function for each group. Finally, the reduce function produces

zero or more aggregated results. The beauty of Hadoop MapRe-

duce is that users usually only have to define the map and reduce

functions. The framework takes care of everything else such as

parallelisation and failover. The Hadoop MapReduce framework

utilises a distributed file system to read and write its data. Typi-

cally, Hadoop MapReduce uses the Hadoop Distributed File Sys-

tem (HDFS), which is the open source counterpart of the Google

File System [11]. Therefore, the I/O performance of a Hadoop

MapReduce job strongly depends on HDFS.

In the first part of this tutorial, we will introduce Hadoop MapRe-

duce and HDFS in detail. We will contrast both with parallel

databases. In particular, we will show and explain the static phys-

ical execution plan of Hadoop MapReduce and how it affects job

performance. In this part, we will also survey high level languages

that allow users to run jobs even more easily.

3. JOB OPTIMIZATION
One of the major advantages of Hadoop MapReduce is that it

allows non-expert users to easily run analytical tasks over big data.

Hadoop MapReduce gives users full control on how input datasets

are processed. Users code their queries using Java rather than SQL.

This makes Hadoop MapReduce easy to use for a larger number

of developers: no background in databases is required; only a ba-

sic knowledge in Java is required. However, Hadoop MapReduce

jobs are far behind parallel databases in their query processing ef-

ficiency. Hadoop MapReduce jobs achieve decent performance

2014

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 38th International Conference on Very Large Data Bases,
August 27th - 31st 2012, Istanbul, Turkey.
Proceedings of the VLDB Endowment, Vol. 5, No. 12
Copyright 2012 VLDB Endowment 2150-8097/12/08... $ 10.00.



through scaling out to very large computing clusters. However, this

results in high costs in terms of hardware and power consumption.

Therefore, researchers have carried out many research works to ef-

fectively adapt the query processing techniques found in parallel

databases to the context of Hadoop MapReduce.

In the second part of this tutorial, we will provide an overview

of state-of-the-art techniques for optimizing Hadoop MapReduce

jobs. We will handle two topics. First, we will survey research

works that focus on tuning the configuration parameters of Hadoop

MapReduce jobs [4, 12]. Second, we will survey different query

optimization techniques for Hadoop MapReduce jobs [25, 14].

Again, we will highlight the differences and similarities with par-

allel databases.

4. DATA LAYOUTS AND INDEXES
One of the main performance problems with Hadoop MapRe-

duce is its physical data organization including data layouts and

indexes.

Data layouts: Hadoop MapReduce jobs often suffer from a row-

oriented layout. The disadvantages of row layouts have been thor-

oughly researched in the context of column stores [2]. However, in

a distributed system, a pure column store has severe drawbacks as

the data for different columns may reside on different nodes lead-

ing to high network costs. Thus, whenever a query references more

than one attribute, columns have to be sent through the network

in order to merge different attributes values into a row (tuple re-

construction). This can significantly decrease the performance of

Hadoop MapReduce jobs. Therefore, other, more effective data

layouts have been proposed in the literature for Hadoop MapRe-

duce [16, 9, 18].

Indexes: Hadoop MapReduce jobs often also suffer from the lack

of appropriate indexes. A number of indexing techniques have been

proposed recently [7, 15, 17, 8].

In the third part of this tutorial, we will discuss the above data

layouts and indexing techniques in detail.

5. CONCLUSION
We conclude by providing a holistic view on how to leverage

state-of-the-art approaches (presented in the first three parts) to sig-

nificantly improve the performance of Hadoop MapReduce jobs.

In particular, we will identify open challenges. In addition, we will

sketch a vision on how future Hadoop MapReduce platforms may

look like. Finally, we will open the floor for questions on dedicated

topics presented in this tutorial.

Target Audience. The first part of this tutorial covers the basics

of Hadoop MapReduce. Therefore this part is interesting for all

VLDB attendees who want to learn how Hadoop MapReduce can

be used for big data analytics. The second and third part of this

tutorial are designed for attendees — researchers as well as practi-

tioners — with an interest in performance optimization of Hadoop

MapReduce jobs.

Acknowledgments. We would like to thank all students of the sem-

inar Efficient Parallel Data Processing in MapReduce Workflows

at Saarland University, summer term 2012, for the fruitful discus-

sions. We would like to thank the entire Hadoop++/HAIL team for

their feedback and support.

Biographical Sketches
Jens Dittrich (@jensdittrich) is an Associate Professor of Com-

puter Science/Databases at Saarland University, Germany. Previ-

ous affiliations include U Marburg, SAP AG, and ETH Zurich.

He received an Outrageous Ideas and Vision Paper Award at

CIDR 2011, a CS teaching award for database systems, as well as

several presentation and science slam awards. His research focuses

on fast access to big data.

Jorge-Arnulfo Quiané-Ruiz is a postdoctoral researcher at Saar-

land University, Germany. Previous affiliations include INRIA and

University of Nantes. He was awarded with a Ph.D. fellowship

from the Mexican National Council of Technology (CONACyT).

He obtained, with highest honors, a M.Sc. in Computer Science

from the National Polytechnic Institute of Mexico. His research

mainly focuses on big data analytics.

6. REFERENCES
[1] Hadoop, http://hadoop.apache.org/mapreduce/.

[2] D. Abadi et al. Column-Oriented Database Systems. PVDLB,
2(2):1664–1665, 2009.

[3] F. N. Afrati and J. D. Ullman. Optimizing Joins in a Map-Reduce
Environment. In EDBT, pages 99–110, 2010.

[4] S. Babu. Towards automatic optimization of MapReduce programs.
In SOCC, pages 137–142, 2010.

[5] S. Blanas et al. A Comparison of Join Algorithms for Log Processing
in MapReduce. In SIGMOD, pages 975–986, 2010.

[6] J. Dean and S. Ghemawat. MapReduce: A Flexible Data Processing
Tool. CACM, 53(1):72–77, 2010.

[7] J. Dittrich, J.-A. Quiané-Ruiz, A. Jindal, Y. Kargin, V. Setty, and
J. Schad. Hadoop++: Making a Yellow Elephant Run Like a Cheetah
(Without It Even Noticing). PVLDB, 3(1):519–529, 2010.

[8] J. Dittrich, J.-A. Quiané-Ruiz, S. Richter, S. Schuh, A. Jindal, and
J. Schad. Only Aggressive Elephants are Fast Elephants. PVLDB, 5,
2012.

[9] A. Floratou et al. Column-Oriented Storage Techniques for
MapReduce. PVLDB, 4(7):419–429, 2011.

[10] A. Gates et al. Building a HighLevel Dataflow System on Top of
MapReduce: The Pig Experience. PVLDB, 2(2):1414–1425, 2009.

[11] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file system.
In SOSP, pages 29–43, 2003.

[12] H. Herodotou and S. Babu. Profiling, What-if Analysis, and
Cost-based Optimization of MapReduce Programs. PVLDB,
4(11):1111–1122, 2011.

[13] M. Isard et al. Dryad: Distributed Data-Parallel Programs from
Sequential Building Blocks. In EuroSys, pages 59–72, 2007.

[14] E. Jahani, M. J. Cafarella, and C. Ré. Automatic Optimization for
MapReduce Programs. PVLDB, 4(6):385–396, 2011.

[15] D. Jiang et al. The Performance of MapReduce: An In-depth Study.
PVLDB, 3(1-2):472–483, 2010.

[16] A. Jindal, J.-A. Quiané-Ruiz, and J. Dittrich. Trojan Data Layouts:
Right Shoes for a Running Elephant. In SOCC, 2011.

[17] J. Lin et al. Full-Text Indexing for Optimizing Selection Operations
in Large-Scale Data Analytics. MapReduce Workshop, 2011.

[18] Y. Lin et al. Llama: Leveraging Columnar Storage for Scalable Join
Processing in the MapReduce Framework. In SIGMOD, pages
961–972, 2011.

[19] D. Logothetis et al. Stateful Bulk Processing for Incremental
Analytics. In SoCC, pages 51–62, 2010.

[20] A. Okcan and M. Riedewald. Processing Theta-Joins Using
MapReduce. In SIGMOD, pages 949–960, 2011.

[21] A. Pavlo et al. A Comparison of Approaches to Large-Scale Data
Analysis. In SIGMOD, pages 165–178, 2009.

[22] J.-A. Quiané-Ruiz, C. Pinkel, J. Schad, and J. Dittrich. RAFTing
MapReduce: Fast Recovery on the RAFT. ICDE, pages 589–600,
2011.

[23] A. Thusoo et al. Data Warehousing and Analytics Infrastructure at
Facebook. In SIGMOD, pages 1013–1020, 2010.

[24] A. Thusoo et al. Hive – A Petabyte Scale Data Warehouse Using
Hadoop. In ICDE, pages 996–1005, 2010.

[25] S. Wu, F. Li, S. Mehrotra, and B. C. Ooi. Query Optimization for
Massively Parallel Data Processing. In SOCC, 2011.

[26] M. Zaharia et al. Improving MapReduce Performance in
Heterogeneous Environments. In OSDI, pages 29–42, 2008.

2015


	Introduction
	Hadoop MapReduce
	Job Optimization
	Data Layouts and Indexes
	Conclusion
	References

