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ABSTRACT
As data are increasingly modeled as graphs for expressing com-
plex relationships, the tree pattern query on graph-structured data
becomes an important type of queries in real-world applications.
Most practical query languages, such as XQuery and SPARQL,
support logical expressions using logical-AND/OR/NOT operators
to define structural constraints of tree patterns. In this paper, (1)
we propose generalized tree pattern queries (GTPQs) over graph-
structured data, which fully support propositional logic of struc-
tural constraints. (2) We make a thorough study of fundamental
problems including satisfiability, containment and minimization,
and analyze the computational complexity and the decision pro-
cedures of these problems. (3) We propose a compact graph repre-
sentation of intermediate results and a pruning approach to reduce
the size of intermediate results and the number of join operations –
two factors that often impair the efficiency of traditional algorithms
for evaluating tree pattern queries. (4) We present an efficient algo-
rithm for evaluating GTPQs using 3-hop as the underlying reach-
ability index. (5) Experiments on both real-life and synthetic data
sets demonstrate the effectiveness and efficiency of our algorithm,
from several times to orders of magnitude faster than state-of-the-
art algorithms in terms of evaluation time, even for traditional tree
pattern queries with only conjunctive operations.

1. INTRODUCTION
Graphs are among the most ubiquitous data models for many

areas, such as social networks, semantic web and biological net-
works. As the most common tool for data transmissions, XML
documents are desirably modeled as graphs rather than trees to
represent flexible data structures by incorporating the concept of
ID/IDREFs. Semantic Web data are also modeled as graphs, e.g.
in RDF/RDFS. On graph data, tree pattern queries (TPQs) are one
of important queries of practical interest. In query languages such
as XQuery and SPARQL, many queries can be regarded as TPQs
over graphs. As most of them support logical operations includ-
ing conjunction (∧), disjunction (∨) and negation (¬) in the query
conditions, it is necessary to study TPQs over graphs with multiple
logical predicates, as illustrated in the following example.
Example 1. A DBLP XML document separately stores inproceed-
ing records for papers and proceeding records for volumes, linked
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Figure 1: The tree representation of Q1, Q2, and Q3 in Exam-
ple 1. Document elements matching the starred query nodes
are required to be returned and the single-/double-lined edges
denote the parent-child/ancestor-descendant relationships be-
tween elements.

by crossref elements indicating where a paper is published [24].
The underlying data structure is clearly a graph. Consider the fol-
lowing three queries which ask for information of publications for
which a certain tree pattern of data holds.
Q1: Retrieve the information about Alice’s conference papers that are pub-

lished from 2000 to 2010 and co-authored with Bob.
Q2: Retrieve the information about the conference papers of either Alice

or Bob published from 2000 to 2010.
Q3: Retrieve the information about Alice’s conference papers that are not

co-authored with Bob and published from 2000 to 2010.

They can be expressed in XQuery and are essentially TPQs on
graph-structured data (see [1] for the corresponding XQuery ex-
pressions), but Q2 and Q3 cannot be expressed in traditional TPQs,
which only contain conjunctive predicates. Indeed, they share the
same tree representation as depicted in Fig. 1, but different struc-
tural predicates should be imposed on the inproceedings element
u1. For example, in Q1, each embedding of the pattern should
satisfy all paths specified in the query; but for Q2, the two path
conditions “u1–u2” and “u1–u3” are not required to be satisfied
simultaneously. A predicate that specifies those edge constraints
and incorporates disjunction and negation needs to be attached to
each query node in order to express Q2 and Q3. In general, (1)
it is common in practice that logical expressions on query nodes
needs to be imposed to specify complex relationships for not only
attribute predicates (e.g. 2000 ≤ year ≤ 2010) but also structural
constraints

(
e.g. (u1–u2 or u1–u3) in Q2 and not(u1–u3) in Q3

)
;

(2) some of the nodes
(
e.g. ui(i ∈ {1, 2, 3, 6, 8})

)
in the query

pattern only serve as filters for pruning unexpected results, which
means that the results of a TPQ should consist of matches for a
portion of the query nodes only.

Although TPQs have been widely studied for many years, few
of the proposed processing algorithms can be used to efficiently
evaluate such queries over general graphs. They can neither support
disjunction and negation on structural constraints nor be optimized
for the situation where output nodes take only a portion of query
nodes (see Related work for details).
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Contributions & Roadmap. This work makes the first effort to
deal with TPQ over general graph-structured data with Boolean
logic support. The contributions are summarized as follows.
(1) We introduce a new class of tree pattern queries over graph-
structured data, called generalized tree pattern queries (GTPQs)
(Section 2). In a GTPQ, a node is not only associated with an at-
tribute predicate, which specifies the property conditions, but also a
structural predicate in terms of propositional logic with logic con-
nectives including conjunction, negation and disjunction to specify
structural conditions with respect to its descendants. The query al-
lows a portion of the query nodes to be output nodes. We also show
that our formalization of query is advantageous over those in the
literature on queries against tree-structured data.
(2) We investigate fundamental problems for GTPQs, including sat-
isfiability, containment, equivalence and minimization (Section 3).
We show that the satisfiability of a special GTPQ with only con-
junction and disjunction is solvable in linear time, but the satisfi-
ability and the other three problems become computationally in-
tractable when negation is incorporated. We propose an exact al-
gorithm to minimize GTPQs, which is supposed to be sufficiently
efficient, since the query sizes are typically small in practice.
(3) We propose a graph representation of intermediate results and
a pruning approach to address notable problems in evaluating query
patterns over graphs, develop an algorithm for GTPQs with ancestor-
descendant edges and its extension to deal with parent-child edges
(Section 4). The algorithm can largely filter nodes that cannot con-
tribute to the final results, wisely avoid generating redundant inter-
mediate results, and compactly represent the matches.
(4) We implement our algorithm and conduct an experimental study
using synthetic and real-life data (Section 5). We find that our eval-
uation algorithm performs significantly better than state-of-art al-
gorithms even for conjunctive TPQs. It also has better scalability
and is robust for different queries on different graphs. The exper-
iments also demonstrate the effectiveness of the graph representa-
tion of results and the efficiency of the pruning method.

Related work. There is a large body of research work on TPQs
over tree-structured data (see [14] for a survey). However, all stud-
ies heavily relied on the relatively simple structure of trees and
employed the node encoding schemes (including the interval [4],
Dewey [21] and sequence [28] encodings) that are not applicable to
graphs for determining structural relationships. Techniques critical
for their efficiency, such as stack encoding and nodes skipping, can
be only applied to tree-structured data. For some sparse graph data
whose structures can be modeled by disjoint trees connected by
edges, such as many XML documents with ID/IDREFs, although
one can apply those existing algorithms for tree-structured data to
evaluate a query over such graphs by first decomposing it to several
TPQs over different trees and then merging the results of distinct
queries to form the final results, it is inefficient due to large redun-
dant intermediate results and costly merging processes.

Some studies extended the traditional TPQs by incorporating ad-
ditional functions and restrictions. Chen et al. [10] included op-
tional nodes to patterns and investigated efficient evaluation plans
upon native XML database systems. The generalized tree pattern
is still against tree-structured data, which differs from this work
that studies TPQs over graph-structured data with logical predi-
cates. Jiang et al. [16] proposed new holistic algorithms based on a
concept of OR-blocks to process AND/OR-twigs, TPQs with OR-
predicates. In the end of Section 2, we shall show that (1) our
query size can be always no larger than the size of element nodes
of AND/OR-twig for expressing a semantically identical query;
(2) constructing OR-blocks involves converting a propositional for-
mula to conjunctive normal form, thus taking exponential time in

the worst case; (3) the proposed algorithms only support tree-struct-
ured data as input. [17] studied path queries with negation, while
[29] and [20] added negation to TPQs. They cannot be applied to
GTPQs either, since they are based on the classical holistic twig
join algorithm [4] that only works on tree-structured data.

There has been work on pattern queries for graph-structured data.
TwigStackD [7] generalized the holistic algorithms, but it takes
considerable time and space without a pre-filtering process [30].
HGJoin [27] can evaluate general graph pattern queries using OPT-
tree-cover [2] as the underlying reachability indexing approach. It
decomposes a pattern into a set of complete bipartite graphs and
generates matches for them in order according to a plan. The time
cost of plan generation is always exponential since it has to pro-
duce a state graph with exponential nodes no matter for obtain-
ing an optimal or suboptimal plan. Cheng et al. [11] proposed R-
join/R-semijoin processing for the graph pattern matching problem.
It relies on a cluster-based R-join index whose size is typically pro-
hibitively large, as the index stores matches for every two labels
derived from 2-hop indexing [12]. Unlike the plan generation of
HGJoin, it adopts left-join to reduce the cost, but in the worst case
the time complexity is still exponential. Since both HGJoin and
R-join/R-semijoin use structural joins similar to the earlier work on
tree-structured data, they typically have large intermediate results
and need to perform large amounts of expensive join operations.
All these three algorithms also do not directly support queries with
negative/disjunctive predicates. A straightforward approach to ap-
ply them to the GTPQ processing is to decompose the query into
multiple conjunctive TPQs and perform the difference and merge
operations on results of the decomposed queries. However, the
number of the resultant conjunctive TPQs may be exponential and
large intermediate results may need to be generated and merged.

A number of studies investigated various graph pattern match-
ing problems [13, 15, 31]. [15] proposed a graph query language
GraphQL and studied graph-specific optimization techniques for
graph pattern matching that combines subgraph isomorphism and
predicate evaluation. While the language is able to express queries
with ancestor-descendant edges and disjunctive predicates, the work
focused on processing non-recursive and conjunctive graph pattern
queries, where all edges of a query pattern correspond to the parent-
child edges of GTPQs, specifying the adjacent relationship between
desired matching nodes. [13] defined matching in terms of bounded
simulation to reduce its computation complexity. [31] studied dis-
tance pattern matching, in which query edges are mapped to paths
with a bounded length. Queries of [13] and [31] do not support
negative/disjunctive predicates on edges and have quite different
semantics with ours.

Most existing algorithms are to find all instances of patterns con-
taining matches of all query nodes. In real-world applications,
however, the answer to the query often only require matches of sev-
eral but not all query nodes. Indeed, many query nodes only serve
as filters for imposing structural constraints on output nodes. Our
framework can avoid generating redundant matches at run time.

Satisfiability, containment, equivalence and minimization are fun-
damental problems for any query languages. The minimization of
TPQs over tree-structured data has been investigated in several pa-
pers. Amer-Yahia et al. [3] proposed algorithms for the minimiza-
tion with and without integrity constraints. Ramanan [23] studied
this problem for TPQs defined by graph simulation. Chen et al. [6]
used a richer class of integrity constraints for query minimization
of TPQs with an unique output node. However, we are not aware of
previous work on minimization as well as the other three problems
for TPQs with logical predicates either over tree-structured data or
over graph-structured data.
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2. DATA MODEL AND GENERALIZED
TREE PATTERN QUERIES

Data graphs. A data graph is a directed graph G = (V,E, f),
where (1) V is a finite set of nodes; (2) E ⊆ V × V is finite set of
edges, in which each pair (v, v′) denotes an edge from v to v′; (3) f
is a function on V defining attribute values associated with nodes.
For each node v ∈ V , f(v) is a tuple (A1 = a1, . . . , An = an),
where the expression Ai = ai(i ∈ [1, n]) represents that v has a
attribute denoted by Ai and its value is a constant ai. For example,
in a data graph G = (V,E, f) of a DBLP document, the node
properties in f may include tags, string values, typed values, and
attributes specified in the elements.

Abusing notions for trees and traditional tree pattern queries, we
refer to a node v2 as a child of a node v1 (or v1 as a parent of v2)
and say they have a parent-child (PC) relationship if there is an
edge (v1, v2) in E, and refer to v2 as a descendant of v1 (or v1 as
an ancestor of v2) and say they have an ancestor-descendant (AD)
relationship if there is a nonempty path from v1 to v2 in G.
Generalized tree pattern queries. A generalized tree pattern query
(GTPQ) Q = (Vb, Vp, Vo, Eq, fa, fe, fs), where:
(1) Vb and Vp are both a finite set of nodes, called backbone nodes
and predicate nodes, respectively. The complete set of query nodes
is denoted as Vq , i.e., Vq = Vb ∪ Vp.
(2) Vo ⊆ Vb. The nodes in Vo are called output nodes.
(3) Eq ⊆ {(u1, u2)|u1, u2 ∈ Vb} ∪ {(u1, u2)|u1 ∈ Vb ∪ Vp, u2 ∈
Vp}, is a finite set of edges. Here, (Vq, Eq) is restricted to a di-
rected tree .
(4) fa is a function defined on Vq such that for each node u ∈ Vq ,
fa(u) is an attribute predicate that is a conjunction of atomic for-
mulas of the form of “A op a”, in which A is an attribute name, a is
a constant and op is a comparison operator in {<,≤,=, ̸=, >,≥}.
(5) fe is a function on Eq to specify the type of the edge. Each
edge (u1, u2) represents either PC relationship or AD relationship.
(6) fs is a function defined on internal nodes. For each inter-
nal node u ∈ Vq with k children being predicate nodes, fs(u),
called a structural predicate, is a propositional formula in k vari-
ables pu′

1
, . . . , pu′

k
, each corresponding to a tree edge directing to

a predicate child of u. In particular, if u has no predicate children,
fs(u) = 1. Each node u is associated with a distinct propositional
variable denoted by pu.

We call a GTPQ a union-conjunctive GTPQ if the structural pred-
icates on all query nodes are negation-free, and call it a conjunctive
GTPQ if the structural predicates on all the query nodes only have
conjunction connectives.

Before giving the semantics of GTPQs, we add variables for non-
root backbone nodes to extend the structural predicate. For an inter-
nal node u with k′ backbone children, denoted by u1, . . . , uk′ , the
extended structural predicate fext(u) = pu1 ∧ . . .∧ puk′ ∧ fs(u).
Example 2. In Example 1, Q1 = (Vb, Vp, Vo, Eq, fs, fe, fs) is a
conjunctive GTPQ, in which (1) Vb = {u1, u4, u5, u6, u7}, Vp =
{u2, u3, u8}, Vo = {u4, u5, u7}; (2) the attribute predicate fa for
a query node is a conjunction of comparisons among tags and typed
values

(
e.g. fa(u2) = (tag = “author” ∧ value = “Bob”)

)
; (3)

fs(u1) = pu2 ∧ pu3 , and fs(u6) = pu8 . The only difference
between Q2 and Q1 is that in Q2, fs(u1) = pu2 ∨ pu3 . In Q3,
fs(u1) = pu2 ∧¬pu3 . As an example of extended structural pred-
icates, for Q2, fext(u1) = (pu2 ∨ pu3) ∧ pu4 ∧ pu5 ∧ pu6 .
Semantics. Consider a data graph G = (V,E, f) and a GTPQ
Q = (Vb, Vp, Vo, Eq, fa, fe, fs). We say that a data node v in G
downwardly matches a query node u in Q, denoted by v |= u, if
the following conditions are satisfied:
(1) v satisfies the attribute predicate of u, denoted by v ∼ u. That
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Figure 2: Example of a data graph and a GTPQ. We use a rect-
angle to represent a predicate node and a circle to represent a
backbone node.
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Figure 3: Comparison between a B-twig query and a GTPQ

is, for each formula “A op a” in fa(u), there is an element (A = a′)
in f(v) such that a′ op a. v is called a candidate matching node of
u. mat(u) denotes the set of candidate matching nodes of u, i.e.,
mat(u) = {v|v ∈ V, v ∼ u}.
(2) If u is an internal node, the data node v determines a truth as-
signment to the variables of fext(u) such that fv

ext(u) = 1, where
fv
ext(u) denotes the truth-value of fext under the assignment. For

each variable pu′ , the truth-value pvu′ is assigned as follows: for
each PC (resp. AD) child u′ of u, pvu′ = 1 if there exists a child
(resp. descendant) v′ of v such that v′ |= u′; otherwise, pvu′ = 0.

Let Vb = {u1, . . . , um}. A m-ary tuple (v1, . . . , vm) of nodes
in G is said to be a match of Q on G, if the following conditions
hold: (1) for each vi(i ∈ [1,m]), vi |= ui; (2) for each edge
(ui, uj) ∈ Eq(i, j ∈ [1,m]), if uj is a PC child of ui, vj is a child
of vi; otherwise, vj is a descendant of vi.

The answer Q(G) to Q is a set of results in the form of tuples,
where each tuple consists of the images of output nodes Vo in a
match of Q. For each match, there is at least an assignment for all
variables that makes the extended structural predicates of all inter-
nal backbone nodes and some of internal predicate nodes evaluate
to true, which we call a certificate of the match. For a match and an
assignment as a certificate of the match, an instance of Q on G is a
tuple consisting of such nodes that each of them matches a distinct
query node whose corresponding propositional variable is true un-
der the assignment. In particular, an instance of conjunctive GTPQ
is exactly a match of the query.
Example 3. For simplicity of presentation, a lower-case letter xi

in all figures throughout this paper denotes f(v) for a data node v
and a capital letter Yj denotes fa(u) for a query node u such that
v ∼ u if j ≤ i and X = Y .

Consider the data graph and the query shown in Fig. 2. v13 ∼
u5, v15 ̸∼ u5. Accordingly, mat(u5) = {v13},mat(u10) =
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{v9, v10, v13, v15}. The answer Q(G) = {(v3, v11), (v3, v12), (v3,
v14), (v8,v12), (v8,v14)}. One of the query matches leading to
(v3, v11) is (v1, v3, v3, v11), where elements are sorted in the as-
cending order of the subscripts of corresponding query nodes. An
instance of this match is {u1 : v1, u2 : v3, u3 : v3, u4 : v11, u7 :
v6, u8 : v11, u9 : v15}, where ‘u : v’ means v is a match of u.
Indeed, v3 |= u3, because (1) v3 ∼ u3, and (2) fv3

ext(u3) = 1 since
v6 |= u7 and v11 |= u8. Also, v5 |= u3, because v5 cannot reach a
node matching u6 and hence pv5u3

= 0, thereby fv5
ext(u3) = 1.

For simplicity of semantics, we require a query to explicitly spec-
ify backbone nodes and predicate nodes and restrict output nodes to
backbone ones. The distinction between the two types of nodes is
that propositional variables associated with backbone nodes are dis-
allowed to be operands of negation and disjunction as those asso-
ciated with predicate nodes, which guarantees that each backbone
node has an image in a match of the query. Permitting negation and
disjunction on any query nodes leads to issues that are not compu-
tationally desirable. If each query result is still required to have an
image for each output node, the expressive power does not change;
but to determine whether a query is valid is effectively to check
whether the variables associated with output nodes are always true
for all certificates of matches, which is a co-NP-complete problem.
Otherwise, the output structures become not fixed. They can ei-
ther be specifically defined in the query, or consist of exponential
combinations of output nodes by default. Our algorithm described
in Section 4 can be straightforwardly extended to process queries
with multiple output structures [1].

We now compare GTPQ with the works in [29] and [5]. [29]
deals with AND/OR-twig against tree-structured data. [5] further
extends [29] to handle B-twig, which additionally introduces the
logical-NOT operation into the query. Both represent a query by
defining special types of nodes for operators, namely logical-AND
nodes, logical-OR nodes and logical-NOT nodes. For each occur-
rence of a variable in a structural predicate of a GTPQ, the corre-
sponding AND/OR-twig or B-twig needs to use a distinct subtree
to express the structural constraints with respect to descendants as
specified by the variable, since in AND/OR-twigs and B-twigs, the
query nodes connected to different operator nodes are considered as
distinct. The query size of AND/OR-twigs or B-twigs hence may
be much larger than the size of a GTPQ for expressing complex tree
patterns. In Fig. 3, the B-twig query has to use two paths u2–u4 and
u5–u6 to represent the constraints that can be imposed by a single
path u2–u5 in the semantically equivalent GTPQ. Moreover, be-
fore evaluating the query, [29] and [5] have to construct OR-blocks
to normalize the twig. The normalization process is essentially a
CNF conversion of propositional formulas. Since a CNF conver-
sion can lead to an exponential explosion of the formula, the time
cost of a conversion is exponential in the size of original query, and
the resulting query size also becomes exponential in the worst case.
Therefore, our query representation is more powerful and compact
than the tree representation of [29] and [5].

3. FUNDAMENTAL PROBLEMS FOR GEN­
ERALIZED TREE PATTERN QUERIES

In this section, we study the problems of satisfiability, contain-
ment, equivalence, and minimization of GTPQs, which are impor-
tant for query analysis and optimization.

3.1 Satisfiability
A GTPQ Q is satisfiable if there is a data graph G on which the

answer Q(G) to Q is nonempty. We first introduce some definitions
before showing how to determine the satisfiability and establishing
the property of the problem.

We say u is an independently constraint node if (1) the formula(
fs(u

′)[pu/1]⊕fs(u
′)[pu/0]

)
∧fs(u) is satisfiable, in which u′ is

the parent of u, fs(u′)[pu/x] is the formula produced by assigning
x to the variable pu (x ∈ {0, 1}), and ⊕ is the exclusive-or logical
operator; (2) all ancestors of u are independently constraint nodes.
Intuitively, the variables of independently constraint nodes can in-
dependently affect the resulting truth-value of the structural pred-
icates of their parents and ancestors. Backbone nodes are clearly
independently constraint nodes, if their structural predicates are sat-
isfiable.

A transitive structural predicate ftr(u) for a node u is con-
structed from fext(u) in a bottom-up sweep as follows. (1) For
each leaf node and each non-independently constraint node u , the
transitive structural predicate is the same as the extended structural
predicate, i.e. ftr(u) = fext(u). (2) For an internal node u such
that the transitive structural predicates of all children have been de-
fined, ftr(u) is produced by substituting

(
pu′ ∧ ftr(u

′)
)

for each
variable pu′ of independently constraint node u′ in fs(u).

For two non-root nodes u1, u2 in Q, we say that u2 is similar to
u1, denoted by u1 ◁ u2, if the following conditions hold. (1) For
each formula “A op a1” in fa(u1), there is a formula “A op a2”
in fa(u2) such that (a) if op ∈ {≤, <}, a2 ≤ a1, (b) if op ∈
{≥, >}, a2 ≥ a1, (c) if op ∈ {=, ̸=}, a1 = a2. We use u2 ⊢
u1 to denote that u1 and u2 satisfy this condition. (2) For each
PC (resp. AD) child u′

1 of u1 such that u′
1 is an independently

constraint node, there is a PC child (resp. a descendant) u′
2 of u2

such that u′
1 ◁ u′

2. (3) The formula ftr(u2) → ftr(u1)[u1 7→ u2]
is a tautology, where ftr(u1)[u1 7→ u2] is a formula transformed
from ftr(u1) by replacing pu′ with pu′′ for each pair (u′, u′′) such
that (a) u′ is a descendant of u1, (b) u′′ is a descendant of u2 and (c)
u′ ⊴ u′′. We say that u1 is subsumed by u2, denoted by u1 ⊴ u2, if
(1) u1 ◁u2, and (2) the parent of u1 is the lowest common ancestor
ulca of u1 and u2, and (a) if u1 is a PC child of ulca, u2 is also a
PC child of ulca; (b) otherwise u2 is a descendant of ulca.

We finally define complete structural predicates to characterize
the whole structural constraints of a GTPQ. For a node u, the com-
plete structural predicate fcs(u) is created from the corresponding
transitive structural predicate ftr(u) by performing the following
operations: (1) for each descendant u′ of u, if its attribute pred-
icate is unsatisfiable, fnew

cs (u) = fold
cs (u)[pu′/0], where fold

cs (u)
is the old formula before this transformation and fnew

cs (u) is the
newly generated formula; (2) for every two nodes u1 and u2 in two
distinct subtrees of u such that u2 ⊴ u1, fnew

cs (u) = fold
cs (u) ∧(

¬pu1 ∨ (pu2 ∧ fext(pu2)
)
, where fold

cs (u) and fnew
cs (u) have the

same meaning as above in (1).
Theorem 1 shows that the satisfiability of a GTPQ is equivalent

to the satisfiability of the complete structural predicate of the root,
if given that the attribute predicate of the root is satisfiable. If the
query is a conjunctive or union-conjunctive GTPQ, the problem of
satisfiability can be solved in linear time. When negation is added
into the query, the satisfiability becomes NP-complete.
Theorem 1. A GTPQ Q is satisfiable if and only if for the root
node u of Q, fa(u) and fcs(u) are both satisfiable.

Theorem 2.
1. The satisfiability of a union-conjunctive GTPQ can be deter-

mined in linear time.

2. The satisfiability of a GTPQ is NP-complete.

Example 4. Consider the query in Fig. 2(b). All query nodes are
independently constraint nodes. Replacing pu7 with pu7 ∧ (pu9 ∨
pu10) in fext(u3), we have ftr(u3) = ¬pu6 ∨ (pu7 ∧ (pu9 ∨
pu10) ∧ pu8). Since there are no two nodes u and u′ such that
u ⊴ u′, fcs(u1) = ftr(u1) = pu5 ∧ pu4 ∧ pp5 ∧ pu3 ∧

(
¬pu6 ∨
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Figure 4: Examples for four fundamental problems of GTPQs

(pu7 ∧ (pu9 ∨ pu10) ∧ pu8)
)
. Due to the satisfiability of fcs(u1),

we see that the query is satisfiable. Indeed, we can get a nonempty
answer by posing Q on G in Fig. 2(b) as shown in Example 3.

Let us turn to Q1 and Q2 depicted in Fig. 4. The following table
presents structural predicates of internal nodes for Q1 and Q2.

fs(u1) = ¬pu2 fs(u2) = pu4 fs(u5) = pu8

fs(u3) = (pu5 ∧ pu6 ) ∨ (¬pu5 ∧ pu6 ) fs(u6) = pu7

For both queries, u5 and u8 are two non-independently con-
straint nodes. In Q1, we have u2 ⊴ u6, because (1) u6 ⊢ u2,
(2) u4 ⊴ u7, (3) ftr(u6) → ftr(u2)[u2 7→ u6] = pu7 → pu7 ,
which is a tautology, (4) u2 is an AD child of u1 which is an ances-
tor of u6. In contrast, for Q2, u2 ̸⊴ u6, since now u2 is a PC child
of u1 but u6 is not. Suppose attribute predicates of all nodes are
satisfiable. Then for Q2, f2

cs(u1) = ¬(pu2 ∧pu4)∧pu3 ∧
(
(pu5 ∧

pu6 ∧pu7)∨ (¬pu5 ∧pu6 ∧pu7)
)
, which is satisfiable; but for Q1,

f1
cs(u1) = f2

cs(u1)∧
(
pu6 → (pu2 ∧pu4)

)
, which is unsatisfiable.

Therefore, we know that Q2 is satisfiable and Q1 not.

3.2 Containment and Equivalence
For two GTPQs Q1 and Q2, Q1 is contained in Q2, denoted by

Q1 ⊑ Q2, if for any data graph G, Q1(G) ⊆ Q2(G). Q1 and
Q2 is equivalent, denoted by Q1 ≡ Q2, if Q1(G) ⊆ Q2(G) and
Q2(G) ⊆ Q1(G).
Homomorphism. Given two GTPQs Q1 with query nodes V 1

q and
Q2 with query nodes V 2

q , a homomorphism from Q1 to Q2 is a
mapping λ from V 1

q to V 2
q ∪{⊥} such that (1) the two sets of output

nodes of Q1 and Q2 are bijective; (2) for any non-independently
constraint node u ∈ V 1

q , λ(u) =⊥; (3) for any independently con-
straint node u1 in V 1

q , (a) for any PC (resp, AD) child node u′
1 of

u1 such that u′
1 is also an independently constraint node, λ(u′

1) is a
PC child (resp, a descendant) of λ(u1), and (b) λ(u1) ⊢ u1; (4) the
formula fcs(u

2
root) → fcs(u

1
root)[u

1
root 7→ λ(u1

root)] is a tautol-
ogy, where u1

root is the root node of Q1 and fcs(u
1
root)[u

1
root 7→

λ(u1
root)] is a formula transformed from fcs(u

1
root) by replacing

pu′ with pλ(u′) for each independently constraint node u′ ∈ V 1
q .

Theorem 3 yields a decision procedure for containment and equiv-
alence between two GTPQs. Theorem 4 states the intractability of
the two problems of containment and equivalence.

Theorem 3. For two GTPQs Q1 and Q2, Q1 ⊑ Q2 iff there exists
a homomorphism from Q2 to Q1.

Theorem 4. Containment of GTPQs is co-NP-hard.

Example 5. Recall the queries in Fig. 4. We now assume fs(u1) =
pu2 and others the same as in Example 4. Let Q3 be a conjunc-
tive GTPQ, and uj

i denote ui in Qj to distinguish nodes in dif-
ferent queries. We have that Q2 ⊑ Q3, Q2 ⊑ Q1 and Q1 ≡
Q3. Indeed, there is a homomorphism λ3,2 from Q3 to Q2, where
λ3,2(u

3
1) = u2

1, λ3,2(u
3
2) = u2

3, λ3,2(u
3
3) = u2

6, λ3,2(u
3
4) = u2

7.
There is also λ1,3 from Q1 to Q3, in which λ1,3(u

1
i ) =⊥ (i =

5, 8), λ1,3(u
1
j ) = u3

3(j = 2, 6), λ1,3(u
1
k) = u3

4(k = 4, 7), λ1,3(u
1
1)

= u3
1, λ1,3(u

1
3) = u3

2. We can also derive λ3,1 and λ1,2.

Algorithm 1: minGTPQ
Input: GTPQ Q = (Vb, Vp, Vo, Eq , fa, fe, fs) with the root ur .
Output: A minimum equivalent GTPQ Qm of Q.

1. construct an equivalent query Qm from Q by removing subtrees
rooted at a node whose attribute predicates are unsatisfiable and
assigning the variables of the removed nodes to 0 for respective
structural predicates

2. check each structural predicate to determine for each node whether
it is an independently constraint node and remove all
non-independently constraint nodes followed by assigning the
variables of them to 0 for respective structural predicates

3. compute the complete structural predicate fcs(u) for each node u in
Qm in bottom-up order

4. for each u ∈ V m
q in bottom-up order do do

5. if fcs(u) is unsatisfiable then
6. fs

(
parent(u)

)
:= fs

(
parent(u)

)
[pu/0]

7. remove the whole subtree rooted at u from Qm

8. for each node u ∈ V m
q do

9. if the formula fcs(ur) → pu is a tautology then
10. for each u′ such that u′ ⊴ u do
11. fs

(
parent(u′)

)
:= fs

(
parent(u′)

)
[pu′/1]

12. for each output node uo in the subtree rooted at u′ do
13. if there exists u′′ such that uo ◁ u′′ and the

subtree query pattern rooted at u′′ and that rooted
at uo are isomorphic then

14. remove uo from the set of output nodes and
add u′′ into it

15. remove nodes in the subtree rooted at u′ from Qm

that are not ancestors of any output nodes and
corresponding edges they connect

16. else if the formula fcs(ur) → ¬pu is a tautology then
17. for each pair (u, u′) ∈ S do
18. fs

(
parent(u′)

)
:= fs

(
parent(u′)

)
[pu′/0]

19. remove the whole subtree rooted at u′ from Qm

20. return Qm

3.3 Minimization
Since the efficiency of processing a query depends on the size of

it, it is necessary to identify and eliminate redundant nodes. For a
GTPQ with query nodes Vq , we define its size as |Q| = |Vq|.
Minimization. Given a GTPQ Q, the minimization problem is to
find another GTPQ Qm such that (1) Q ≡ Qm, (2) |Qm| ≤ |Q|,
and (3) there exists no other such Q′ with |Q′| < |Qm|.

From Theorem 3, we have that for a GTPQ Q, there is a minimal
equivalent GTPQ of Q whose query nodes are a subset of query
nodes of Q. We say two GTPQs Q1 and Q2 are isomorphic, if there
is a homomorphism between them that is a one-to-one mapping.
The following proposition shows that the minimal equivalent query
of a GTPQ is unique up to isomorphism.

Proposition 5. Let GTPQs Q1 and Q2 be minimal and equivalent.
Then Q1 and Q2 are isomorphic.

Algorithm 1 shows how to minimize a GTPQ. Due to space limit,
we omit the description and instead give an example to illustrate it.
Example 6. In Fig. 4, the query Q3 is a minimum equivalent query
of Q1 with structural predicates given in Example 5. (1) Since we
suppose all attribute predicates are satisfiable, there are no nodes
to be removed in this step, and Qm = Q1 (line 1). (2) All nodes
except u5 and u8 are independently constraint nodes, hence we re-
move u5 and u8 and assign 0 to pu5 in fs(u3), thereby having that
fs(u3) = pu6 (line 2). In this step, all propositional formulas of
structural predicates are simplified to equivalent formulas with min-
imum variables. (3) There are no nodes whose complete structural
predicates are unsatisfiable, and so none is removed (line 4–7). (4)
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The formula fcs(u1) → pu6 is a tautology and u2 ⊴ u6, so u2 and
its child u4 is removed, and we have fs(u1) = 1, thereby generat-
ing the query Q3 (line 8–19). This step is to remove subtrees which
can be semantically subsumed by others.

The correctness can be proved based on Theorem 3. Since the al-
gorithm involves solving SAT problems, the worst-case time com-
plexity is exponential in the query size. In fact, Theorem 6 shows
that the minimization problem is NP-hard and hence it is difficult
to find a polynomial-time algorithm. Nevertheless, because there
are many high-performance algorithms for SAT and the query size
is not much large in practice, it is still worth minimizing a GTPQ
considering the benefits of efficiency of evaluation.
Theorem 6. The minimization problem for GTPQs is NP-hard.

4. EVALUATING GENERALIZED TREE
PATTERN QUERIES

4.1 Framework
Recall that two major problems that impair the efficiency of al-

gorithms for processing TPQs over graphs are large intermediate
results and expensive join operations on them. In the following, we
propose two new techniques to address them.
Graph representation of intermediate results. To reduce the cost
of storing intermediate results and avoid merge-join operations, we
represent intermediate results as a graph rather than sets of tuples.
Each match for a path or a substructure of the query pattern can
be embedded into the tree pattern and hence naturally can be rep-
resented as a tree. By grouping all the candidate matches by the
corresponding matched query nodes and adding an edge to connect
a pair of data nodes whenever there’s an edge between the corre-
sponding pair of query nodes in the query pattern, we can represent
the intermediate and final results as graphs. In such a graph rep-
resentation, each data node exists at most once, in contrast to the
tuple representation in which a data node may be in multiple tu-
ples. Also, the AD or PC relationship between two nodes is exactly
represented by only one edge, while in the tuple form the corre-
sponding two nodes may be put as an element in more than one
tuple to repeatedly and explicitly represent their relationship. Since
the size of the intermediate matches may be huge, even exponen-
tial in both the query size and the data size in the worst case, the
graph representation is much more compact with at most quadratic
space cost. Moreover, to enumerate all resulting matches of a pat-
tern query, we only need to perform one single graph traversal on a
presumably small graph instead of multiple merge-join operations
over large intermediate results.

It is worth noting that such a way of representing intermediate
results can be also applied to algorithms for other graph pattern
queries to boost their evaluation. For TPQs, it is particularly op-
timal because we can enumerate matches directly from the graph.
However, for graph pattern queries, additional matching operations
including joins may be unavoidable because it is difficult to locally
determine which nodes should be traversed to form a match. The
additional matching operations are in essence an easier evaluation
of a pattern matching on a smaller graph, such a technique can thus
still be expected to speed up the whole processing.
Reachability index enhanced effective pruning. Since the num-
ber of data nodes to be processed significantly affects the efficiency
of pattern query evaluation, it is desirable to perform effective prun-
ing to reduce the number of candidate matching nodes. In the lit-
erature, [7] and [11] have developed two pruning approaches for
reachability query pattern matching. TwigStackD [7] proposed a
pre-filtering approach that can select nodes guaranteed to be in fi-
nal matches. Since it has to perform two graph traversals on the

data graph, it is likely unfeasible for large-scale real-world graphs.
The work [11] on pattern queries over labeled graphs proposed an-
other pruning process, namely R-semijoin, using a special index
called cluster-based R-join index. It can filter nodes that cannot
possibly contribute to partial matches for an AD edge between two
labeled query nodes. However, (1) the selected nodes may be still
redundant since the nodes only satisfy the reachability condition
imposed by one edge and the global structural satisfaction is not
checked. (2) It is highly costly to construct and store the R-join
index for a large data graph since the index essentially precom-
putes and stores all matches for pairwise labels and the index size
is quadratic in the graph size. (3) It cannot be used to perform
pruning for queries that have expressive attribute predicates rather
than a fixed set of labels associated with nodes. Since predicates of
query nodes are often not fixed and predictable, the index actually
cannot be precomputed and this approach cannot be used.

We explore the potentials of existing reachability index for ef-
fective pruning. It is interesting to note that most reachability in-
dexing schemes follow a paradigm. They first utilize a relatively
simple reachability index which often assigns two or three labels to
each node in order to cover the reachability of a substructure, called
a cover, such as tree-cover in [2, 26], path-tree in [18], and chain-
cover in [9, 19]. To cover the remaining reachability information,
each node keeps one or two lists where complete or just a portion
of ancestors and descendants are stored. When answering whether
a node can reach another, the algorithms typically use nodes stored
in the lists as the intermediate to determine the reachability.

When it comes to answer a number of reachability queries be-
tween two sets of nodes, the following two observations are help-
ful: (1) the lists of different nodes often share a number of nodes,
(2) the nodes in different lists have rich reachability information. If
we merge the lists of a set of nodes by eliminating the duplicates
and those whose reachability information can be derived from oth-
ers, the merged list “subsumes” all the reachability information in
the original lists of the node set but the size will not be much larger,
and possibly even much smaller, than the list size of any individual
node. Using the merged list, reachability patterns are likely to be
evaluated more efficiently.

For example, considering a reachability pattern uA—uB , we
want to filter data nodes in mat(uA) that cannot reach any nodes
in mat(uB). Instead of performing |mat(uA)| × |mat(uB)| pair-
wise reachability queries to check for each node v ∈ mat(uA)
whether it can reach a node v′ ∈ mat(uB), (1) we merge all index
lists of mat(uB) to a single list of the minimum size that preserves
all the reachability information saved in the original lists; and (2)
for each v ∈ mat(uA), use the list of v and the merged list rather
than individual lists for mat(uB) to holistically determine whether
v reaches some node in mat(uB). Intuitively, we can regard the
set mat(uB) as a single dummy node which is reachable from all
nodes that are ancestors of nodes in mat(uB).

In this paper, we use 3-hop [19] as the underlying reachability
index scheme, as 3-hop has both a very compact index size and rea-
sonable query processing time. As different labeling schemes are
often preferable to different graph structures, it is also very flexi-
ble for our framework to use other labeling schemes to efficiently
process different types of graphs.

We restrict our attention to in-memory processing and do not ad-
dress the issues relating to disk-based access methods and physical
representation of graph data.

Algorithm outline. Our GTPQ evaluation algorithm (referred to
as GTEA) is outlined as follows. First, it prunes candidate match-
ing nodes that do not satisfy downward structural constraints (i.e.
not satisfy the subtree pattern query rooted at the corresponding
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Figure 5: Chain decomposition and 3-hop index

query node). Second, it performs the second round pruning pro-
cess on a carefully selected subtree pattern, called prime subtree,
to remove nodes not satisfying upward structural constraints (i.e.
not reachable from any candidate nodes of the root). Third, the
prime subtree is further shrunk if possible, and GTEA generates
the matches of the shrunk prime subtree while representing the in-
termediate results as a graph, from which the final results can be
efficiently obtained. We begin with focusing on evaluating GTPQs
with AD edges only and show how to extend the algorithm to pro-
cess PC edges in Section 4.4.

4.2 Pruning Candidate Matching Nodes
We use a two-round pruning process to filter unqualified data

nodes. The first round selects data nodes that satisfy downward
structural constraints of the query pattern for each query node. At
the second round, we then obtain a minimum subtree that contains
all output nodes having more than one candidate matching node,
and select necessary edges from this subtree to find nodes satisfying
upward structural constraints.

4.2.1 Preliminary: Merging 3­hop index
3-hop is a recent graph reachability indexing scheme well-known

for its compact index size and reasonable query time. It follows the
indexing paradigm mentioned in Section 4.1. It uses the chain-
cover which consists of a set of disjoint chains covering all nodes
in the graph. Each node in the graph is assigned a chain ID cid and
its sequence number sid on its chain. For two nodes v and v′ on
the same chain (i.e., v.cid = v′.cid), v ≤c v′, if v.sid ≤ v′.sid.
In particular, if v.sid < v′.sid, we say v is smaller than v′. Obvi-
ously, reachability on the chain-cover can be answered using chain
IDs and sequence numbers. To encode the remaining reachabil-
ity information outside chain-cover, 3-hop records a successor list
Lout(v)

(
resp. predecessor list Lin(v)

)
of “entry” (resp. “exit”)

nodes to (resp. from) other chains for each node v. The entry (resp.
exit) node to (resp. from) a chain is the smallest (resp. largest) one
on that chain that v reaches (resp. reaches v). See [19] for details of
3-hop index construction. For answering the reachability between
two nodes v1 and v2 on different chains, 3-hop takes the follow-
ing steps. (1) Collect the smallest nodes on any other chain that v1
can reach through exit nodes of chain v1.cid. That is, we get a set
of nodes Xv1 = {x|x ∈

∪
v1≤cv′ Lout(v

′) and ∀v′≥cv1, x ≤c

Lx.cid
out (v′)} ∪{v1}, where Lx.cid

out (v′) is the entry node of v′ on
chain x.cid. We call Xv1 the complete successor list of v1. (2)
Collect the largest nodes on any chain that can reach v2 through
entry nodes of chain v2.cid. In this step, we get a set of nodes
Yv2 = {y|y ∈

∪
v′≤cv2

Lin(v
′) and ∀v′≤cv2, Ly.cid

in (v′) ≤c

y} ∪ {v2}, where Ly.cid
in (v′) is the exit node of v′ on chain y.cid.

We call Yv2 the complete predecessor list of v2. (3) If there is a pair
(x, y)(x ∈ Xv1 , y ∈ Yv2) such that x ≤c y, then we can conclude
that v1 can reach v2.
Example 7. Fig. 5 gives a chain decomposition of G of Fig. 2(a)
and the corresponding 3-hop index. Chain IDs and sequence num-
bers are omitted. As an example, v3.cid = v11.cid = 1, v11.sid =

Procedure 2: MergePredLists
Input: A set of nodes S.
Output: The predecessor contour Cp of S.

1. for each node v ∈ S do
2. if Cp[v.cid] < v.sid then Cp[v.cid] := v.sid
3. v′ := v
4. repeat
5. for each index node v′′ ∈ Lin(v

′) do
6. if Cp[v′′.cid] < v′′.sid then
7. Cp[v′′.cid] := v′′.sid

8. v′ := prev(v′)
9. until v′ = null or visitedv′.cid ≥ v′.sid

10. if visitedv.cid < v.sid then visitedv.cid := v.sid

11. return Cp

4 and v3.sid = 2. Because v3.sid < v11.sid, v3 ≤c v11 and
v11 is reachable from v3. To answer whether v3 can reach v9, we
collect the entry nodes in Lout(vi)(i = 3, 7, 11, 16) into Xv3 =
{v3, v4}. Then we look up the exit nodes in Lin(vj)(j = 9, 5)
and get Yv9 = {v9, v12}. Since there is a pair (v4, v12) such that
v4 ∈ Xv3 , v12 ∈ Yv9 , and v4 ≤c v12, we say v3 can reach v9.

Note that to obtain the complete predecessor (resp. successor)
lists, the original 3-hop needs to visit all larger (resp. smaller) nodes.
We can assign a forward (and backward) tracing pointer to each
node which points to the smallest larger (resp. largest smaller) node
whose Lout (resp. Lin) list is nonempty so that nodes with empty
lists can be skipped. We define two operations next(v) and pre(v)
on each node v, which return the node that the forward and the
backward tracing pointer points to respectively. For example, since
v6 is the largest smaller node that has a non-empty Lin w.r.t. v15,
prev(v15) = v6.

A basic operation of the pruning process is merging the complete
predecessor/successor lists for a given set of data nodes (denoted by
S). For the 3-hop case, it picks the largest (resp. smallest) nodes on
each chain from the complete predecessor (resp. successor) list and
we call the resultant list predecessor contour Cp (resp. successor
contour Cs). A node v is said to reach (resp. be reachable from)
S if v reaches (resp. is reachable from) at least one node in S. We
have the following proposition.
Proposition 7. A data node v reaches mat(u) iff there is a pair
(x, y) ∈ Xv × Cp such that x ≤c y, while mat(u) reaches v iff
there exists a pair (x, y) ∈ Cs × Yv such that x ≤c y.

Procedure 2 sketches the process of calculating the predecessor
contour Cp, where visitedi records the largest node on chain i
whose predecessor list has been looked up. For each node v ∈ S,
MergePredLists processes v and those smaller nodes whose prede-
cessor lists have not been looked up as follows. For each node v′

to be processed and each exit node v′′ in Lin(v
′), it compares v′′

with the nodes in Cp on the same chain of v′′, and update Cp if
v′′ is larger (line 4–9). To retrieve nodes from Cp efficiently, Cp

can be implemented as a map that uses chain IDs as keys and the
sequence numbers as values.
Example 8. We show how to compute the predecessor contour of
mat(u10) for the query Q of Fig. 2. Example 3 have given that
mat(u10) = {v9, v10, v13, v15}. The procedure collects the com-
plete predecessor lists for each of mat(u10) one by one, but no
predecessor list is repeatedly visited. For example, assume that
v10 is read before v15. When collecting Yv15 , although prev(v15)
points to v6, MergePredLists needs not look up Lin(v6), because
the list has been looked up when collecting Yv10 . The predecessor
contour of mat(u10) is {v3, v9, v13, v15}. It can be easily verified
that the size of this predecessor contour is a half of the total size
of the four individual complete lists of v9, v10, v13 and v15. Note
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Procedure 3: PruneDownward
Input: 3-hop index Lout, a GTPQ Q.
Output: Updated candidate matching nodes satisfying downward

structural constraints.
1. for each node u ∈ Vq do mat(u) := {x|x ∈ V, x ∼ u}
2. for each leaf node u′ in Vq do Cp

u′ := MergePredLists
(
mat(u′)

)
3. V ′

q = Vq\{u′|u′ is a leaf node}
4. for each u ∈ V ′

q in bottom-up order do
5. for each v ∈ mat(u) do chainv.cid := chainv.cid ∪ {v}
6. for each chaini that is not empty do
7. for each child u′ of u do val[pu′ ] := 0
8. for each node vi ∈ chaini do
9. for each child u′ of u s.t. val[pu′ ] = 0 do

10. if vi reaches mat(u′) then // using Proposition 7
11. val[pu′ ] := 1

12. if fs(u) evaluates to false with the valuation val then
13. mat(u) := mat(u)\{vi}

14. Cp
u := MergePredLists

(
mat(u)

)
that the size of a predecessor contour is bounded by the number of
chains. This example actually gives the worst case but still has a
high compression rate (50%).
Time complexity. The time complexity of the procedure is O(|S|+
|Lin|), where |Lin| is the total size of all predecessor lists in 3-hop
index. It can be observed from the fact that no index node in a
predecessor list has been ever repeatedly visited.

Following the same line of MergePredLists, we develop Merge-
SuccLists that calculates the successor contour of a node set with
time complexity of O(|S| + |Lout|), where |Lout| is the total size
of all successor lists in 3-hop index.

4.2.2 Pruning process for downward structural con­
straints

Procedure 3 describes the first round of the pruning process. In
the procedure, val refers to a valuation for variables associated with
query nodes. PruneDownward first collects mat(·) sorted in the de-
scending order of sequence numbers for each query node and cal-
culates the predecessor contours for leaf nodes (line 1–2). Then, it
processes each non-leaf query node u following a bottom-up fash-
ion (line 4–14). For each node u, it first groups nodes mat(u) by
chain ID (line 5). Then for each candidate matching node vi of u
on each chain i, PruneDownward checks whether vi satisfies down-
ward structural constraints (line 8–13). To do this, (1) it first as-
signs a valuation to pu′ for each child node u′ of u according to the
reachability from vi to mat(u′) (line 9–11) , (2) and then remove
vi from mat(u) if the structural predicate fs(u) of u evaluates to
false under the valuation (line 12–13). Note that when process-
ing the next node on the same chain, the valuation for the previous
node is inherited due to the transitive property of transitive closure
in a chain. Therefore, no predecessor list is repeatedly looked up.
After all candidate matching nodes for u have been processed, the
remaining data nodes in mat(u) must satisfy the downward struc-
tural constraints. Then the predecessor contour for u is computed
(line 14), and used in the pruning process of the parent node of u.
The procedure terminates after the root is processed.
Example 9. We first show how procedure PruneDownward prunes
mat(u3) of Fig. 2. In a bottom-up fashion, before pruning mat(u3),
PruneDownward first processes its non-leaf child u7. No nodes in
mat(u7)(i.e. {v6, v7}) are removed, because v6 can reach both
mat(u9) and mat(u10) while v7 can reach mat(u10). The prede-
cessor contour for mat(u7) is then computed and Cp

u7
= {v6, v7}.

For determining whether v5 should be removed from mat(u3),
PruneDownward checks the reachability between v5 and mat(u6),

Procedure 4: PruneUpward
Input: 3-hop index Lin, the prime subtree (Vt, Et).
Output: Updated candidate matching nodes satisfying upward

structural constraints.
1. Cs

uroot
:= MergeSuccLists

(
mat(uroot)

)
2. Vt := Vt\{uroot}
3. for each node u ∈ Vt in top-down order such that |mat(u)| > 1 do
4. for each child u′ of u such that |mat(u′)| > 1 do
5. for each node v ∈ mat(u′) do
6. chainv.cid := chainv.cid ∪ {v}
7. Groupv := Groupv ∪ {u′}

8. for each node vi in a nonempty chaini do
9. if mat(u′) do not reach vi then // using Proposition 7

10. for each u′ ∈ Groupvi do
11. mat(u′) := mat(u′)\{vi}

12. else break
13. for each non-leaf child u′ of u do
14. Cs

u′ := MergeSuccLists
(
mat(u′)

)

mat(u7), mat(u8) respectively by using the predecessor contours.
One can verify that v5 cannot reach mat(u6), which means val[pu6 ]
= 0 and the structural predicate fv5

s (u3) evaluates to true. Thus,
v5 remains in mat(u3). Because the other two nodes v3 and v8
are in different chains, they do not inherit the valuation determined
by v5 and PruneDownward needs to check pairwise reachability
between {v3, v8} and {mat(u6), mat(u7), mat(u8)}. Only v8
is subsequently removed, because pu8 = 1, pu6 = pu7 = 0
and fv8

ext(u3) evaluates to false. Finally, after this pruning round,
mat(u3) = {v3, v5}.

When PruneDownward refines mat(u1) and reads v2, the as-
signments of pu2 and pu3 are directly inherited from the result
computed in the previous step of processing v4 and fv2

ext(u1) im-
mediately evaluates to true without any index lookups.

PruneDownward gets the following refined candidate matching
nodes which satisfy the downward structural constraints: mat(u2)
= {v3, v8},mat(u3) = {v3, v5}.
Time complexity. Since no successor list is repeatedly checked,
the 3-hop index is looked up for at most |Eq||Lout| times, where
|Eq| is the number of edges in the tree pattern. MergePredLists
is invoked (|Vq| − 1) times to compute predecessor contours for
each non-root query node, and the total time cost is O(|Vmat| +
|Vq||Lin|), where |Vq| is the number of query nodes and |Vmat|
is the total size of initial candidate matching nodes (i.e. |Vmat| =
Σi|mat(ui)|). Therefore, PruneDownward is in O(|Vq|(|Lin| +
|Lout|) + |Vmat|) time.

4.2.3 Pruning process for upward structural con­
straints

After the fist-round pruning process, for each backbone node u,
the remaining nodes in mat(u) satisfy all the structural constraints
imposed by predicates. Because the results of the query should
consist of matches of output nodes only, the matches for predi-
cate nodes are no longer useful and do not need to be considered.
Moreover, some backbone nodes may not contribute to determin-
ing which candidate matching output nodes are in the same instance
and hence can be also discarded. With these two observations, the
structural constraints of a backbone subtree are enough to derive
the relationships among candidate matching nodes for the output
query nodes. Such a subtree, we call the prime subtree, can be in-
duced by the paths from the query root to all such output nodes that
|mat(·)| > 1. The next pruning step only needs to consider this
subtree pattern which in essence is reduced to a conjunctive GTPQ.
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Figure 6: Example of the maximal matching graph for Q over
G depicted in Fig. 2

In the opposite direction to PruneDownward, procedure Prune-
Upward (Procedure 4) traverses down the prime subtree. For each
query node u, it filters the candidate matching nodes of each child
u′ of u (line 3–14). All the candidate nodes to be processed are
first clustered and merged into duplicate-free sets according to their
chain IDs, where the order of nodes is reversed (line 4–7). As a data
node can match multiple query nodes, the algorithm uses Groupv
to record the corresponding query nodes that v matches (line 7) in
order to update mat(·) when a reachability condition is determined
(line 10–11). Then, for each node vi ∈ mat(u′) on a nonempty
chaini, vi should be removed if mat(u) cannot reach vi according
to Proposition 7. Observe that once a node is confirmed to satisfy
the condition of the incoming edge, all other larger nodes do not
need to be checked since they must also satisfy the condition.
Example 10. In this example, assume that u2 and u3 are out-
put nodes of Q of Fig. 2. The prime subtree is induced by u1,
u2 and u3. PruneUpward starts from u1 to refine mat(u2) and
mat(u3). After grouping distinct data nodes into chain, it gets
chain1 = {v3}, chain3={v8}, and chain4 = {v5}. v3 is in both
mat(u2) and mat(u3), but the procedure only stores one copy
in chain to avoid processing it repeatedly when checking reach-
ability with mat(u1). After the two query nodes whose match-
ing candidate nodes have the identical v3 are inserted to Groupv3 ,
Groupv3 = {u2, u3}. Because mat(u1) reaches v3, v3 is not re-
moved from either mat(u2) or mat(u3). Similarly, it can be veri-
fied that mat(u1) can reach v8 and v5. In the end, none is removed
from mat(u2) and mat(u3) after this pruning round.
Time complexity. The time complexity is O(|V ′

mat| + (|Lin| +
|Lout|)|V ′

t |), where |V ′
t | is the number of internal nodes in the

prime subtree and |V ′
mat| is the total size of the remaining can-

didate matching nodes after the first pruning round.

4.3 Computing Final Results
Shrunk prime subtree. As a result of the pruning process, the
matching output nodes are guaranteed to be in the answer. The left
to do is to identify how they form the final results by computing
the matches of edges in the prime subtree. Given a prime subtree,
assume that u is the lowest common ancestor of all output nodes.
We can further shrink the subtree by (1) removing the ancestors
of u if u is not the root, and (2) removing all such nodes u′ that
|mat(u′)| = 1. If the removing process leads to disjoint subtrees,
we just compute results for each subtree, do a Cartesian product
of them and add the candidate matching nodes of removed output
nodes to assemble the whole final results. From now on, we only
need to compute edge matches for the shrunk prime subtree(s).
Example 11. The shrunk prime subtree of Q of Fig. 2 is induced
by u2 and u4. Even if we change the query to mark u5 also as
an output node, the shrunk prime subtree is still the same since
|mat(u5)| = |{v13}| = 1 and v13 must be in every answer.
Maximal matching graph. The full matches of the shrunk prime
subtree can be represented by a maximal matching graph Qg(G) =
(Vr, Er), where (1) Vr ⊆ V such that v ∈ Vr , if there is a query

Procedure 5: CollectResults
Input: The maximal matching graph MaximalGraph, a query

node u and one of its candidate matching node v.
Output: the answer to the subGTPQ rooted at u and dominated by

v.
1. if v is a leaf node then return {u : v}
2. else
3. results := ∅
4. for each branch list bch of v do
5. branchResults := ∅
6. for each node v′ that a pointer in bch points to do
7. branchResults := branchResults ∪

CollectResults(MaximalGraph, v′)

8. results := results× branchResults

9. if u is an output node then results := {u : v} × results
10. return results

node u ∈ Vq such that v |= u; (2) Er ⊆ Vr × Vr such that
(v1, v2) ∈ Er , if (v1, v2) is a match of an edge (u1, u2) ∈ Eq .

We group the nodes and edges in the graph according to what
query nodes and edges they match. Specifically, in an implemen-
tation, each node v has several branch lists, each of which corre-
sponds to the child of the query node that v matches and includes
pointers pointing to nodes matching the child.
Example 12. Recall the GTPQ Q and data graph G in Fig. 2.
Let u2, u3 and u4 be output nodes. Fig. 6 shows the correspond-
ing maximal matching graph. As an example, v1 has two branch
lists corresponding to the two incident query edges, denoted by
bch1 and bch2 respectively. bch1 = {ptrv3 , ptrv8}, and bch2 =
{ptrv3 , ptrv5}, where ptrvi(i = 3, 5, 8) is pointer to vi.

Computing the maximal matching graph. Since the nodes of the
maximal matching graph have been obtained after the pruning pro-
cess, we only need to compute matches for each query edge whose
head and tail both have more than one matching node. Given a
query edge (u1, u2), a straightforward way is to check the reach-
ability between nodes in mat(u1) and mat(u2) using 3-hop in-
dex. The time complexity is O((|Lin + Lout|)|Eq||Vmat|2max),
with |Vmat|max being the maximal size of the candidate matching
nodes after the pruning process. Since in practice many queries
are highly selective and |Vmat|max is presumably pretty small, the
straightforward way is expected to be fast and practical.

A more sophisticated approach that we choose is to utilize the
similar technique used in procedure PruneUpward. Observe that
the loop from line 9 to 12 in PruneUpward is to determine whether
a data node matching some child of u is reachable from mat(u).
By replacing Cs

u with the successor list of a node v, we can simul-
taneously get all edges from v in the maximal matching graph in
O(|Lin| + |Lout| + |Ev|), where |Ev| is the out-degree of v in
the resulting graph. The total time complexity then is O((|Lin| +
Lout)|V inter

mat |+|Emg|), where |V inter
mat | is the number of candidate

matching nodes for internal query nodes and |Emg| is the number
of edges in the resulting maximal matching graph.
Enumerating results. We next present procedure 5, referred to
as CollectResults, which derives final results from the maximal
matching graph. Each result is in a tuple format. To avoid ambigu-
ity in presentation, we explicitly specify in the tuple which query
node a data node matches. Specifically, each element in a tuple is
of the form u : v, which means v is an image of u in a match.

Procedure CollectResults traverses down the maximal graph. For
a leaf node, since its corresponding query node must be an output
node, the procedure returns a tuple with only an element of it (line
1). For an internal node, it collects results from each child for ev-
ery branch list, and then does a Cartesian product of them (line
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4-8). If the query node it matches is an output node, it is inserted
into each result (line 9). The final answer to the query is the union
of the results of those nodes matching the query root. When query
nodes in the shrunk prime subtree are all output nodes, no redun-
dant intermediate results would be produced. Note that no existing
algorithms for pattern queries on graphs can achieve this. When
there are non-output query nodes in the shrunk prime subtree, our
algorithm is not duplicate free. Recall Example 12. The results
obtained from v1 are the same as those obtained from v3, since u1

is not an output node and v1 can reach v3. However, the duplicate
intermediate tuples are a subset of the counterpart of other works,
because (1) the prime subtree we pick is a minimum subtree of the
original query pattern that contains all output nodes, (2) for non-
output nodes, the algorithm merges the intermediate partial results
in advance (line 7).

4.4 Evaluating Queries with PC Edges
In the context of graph database, the research on pattern queries

often focuses on reachability patterns. Indeed, the reachability pat-
tern query is an important building block for other queries. Adding
PC edges to a pattern significantly increases the complexity of eval-
uation. Even for tree-structured data, [25] has theoretically demon-
strated the difficulty of handling TPQs with arbitrary combination
of PC and AD edges. [25] has proved that no holistic algorithms can
achieve optimality as for queries with AD edges only. For graph-
structured data, the evaluation of conjunctive pattern queries whose
edges all represent PC relationship is essentially a computationally-
hard labeled graph isomorphism problem. Nevertheless, we can use
the similar idea of our framework to support GTPQs with PC edges.

When processing a node u in PruneDownward: (1) if u has only
PC outgoing edges, we merge the set of parents of mat(u′) for
each child u′ of u into Pu′ , instead of computing the predecessor
contours. Then we sort mat(u) and each Pu′ , and check for each
node v in mat(u) whether it is in some Pu′ in a multiway merge-
sort style. If yes, then val[pu′ ] := 1, otherwise val[pu′ ] := 0. (2)
If u has both AD and PC edges, we process these two type of edges
separately to refine mat(u). Similarly, when performing PruneUp-
ward, we collect sets of children of mat(u) instead of computing
the successor contour.

After the pruning stage, all candidate matching nodes are guar-
anteed to be in final results. To compute the maximal matching
graph, we can either do nested joins to check the adjacent relation-
ships, or perform multiway merge-join to derive the adjacent edges
in the resulting graph. Other operations including determining the
prime subtree and enumerating final results are the same.

Alternatively, we can also use another strategy to deal with PC
edges. Regarding PC edge as a special type of AD edge, we can first
process PC edges in the same way with AD edges in the process of
pruning, except those whose tail’s structural variable is the operand
of a negation operator and which need to be processed as stated be-
fore. The prime subtree becomes a minimum subtree that contains
all output nodes and those PC edges that are regarded as AD edges
when pruning. After computing the maximal matching graph, we
check whether the two incident nodes of the corresponding edge
in the maximal matching graph are adjacent in the data graph and
remove them if not. Next, the unsatisfied nodes are removed in a
top-down fashion, followed by enumerating final results. We use
this strategy in our implementation.

5. EXPERIMENTAL EVALUATION
In this section, we present an experimental study using both real-

life and synthetic data to evaluate (1) the efficiency and scalability
of our algorithm, (2) the effectiveness of representing intermediate
results as graphs, and (3) the efficiency of the pruning process.

Table 1: Statistics of XMark datasets
Scaling factor 0.5 1 1.5 2 4
Dataset size (MB) 55 111 167 223 447
Nodes (Million) 0.64 1.29 1.94 2.52 5.17
Edges (Million) 0.77 1.54 2.32 3.09 6.20

We only give the experimental results for conjunctive TPQs with
all query nodes being output nodes (i.e. the traditional TPQs). We
found that our algorithm has better performance than other algo-
rithms even for them. Since there has been no other algorithms
designed for GTPQs and the decomposition-based approach that
may be applied on top of them to process GTPQs incurs high over-
head as analyzed in Related work and empirically demonstrated in
prior studies [16] and [29], our algorithm can do even far better
for general GTPQs than those algorithms, compared to the results
reported here. Additional experimental results concerning I/O cost
and the results on GTPQs with disjunctive and negative predicates
can be found in [1].
Implementation. We have implemented the algorithm proposed in
Section 4 (GTEA), TwigStack [4], Twig2Stack [8], TwigStackD [7]
and HGJoin [27]. TwigStack is the classical holistic twig join al-
gorithm. Twig2Stack is the latest algorithm for evaluating TPQs
on tree-structured data which has a distinct feature of representing
results in hierarchical stacks. Other algorithms for tree-structured
data that can support disjunction and/or negation, such as BTwig-
Merge [5] and TwigStackList¬ [29], are in essence the same as
TwigStack with respect to the conjunctive TPQs and hence are not
included in our experiments. TwigStackD can evaluate conjunc-
tive TPQs over graph-structured data. In our implementation, we
fixed the problems in the original paper [30]. HGJoin is a hash-
based structural join algorithm for processing graph pattern queries.
We did not implement the query plan generation in the original al-
gorithm which relies on selective estimation techniques [22] and
takes exponential time in the query size; instead, for each query,
we generated all valid plans and took evaluation on each. The min-
imum query processing time on the best plan is reported; thus, the
time presented in this paper is always smaller than the real time
of the original HGJoin. This version is denoted by HGJoin+. By
representing intermediate results as graphs, we have also imple-
mented another version denoted by HGJoin*. All experiments are
performed on a 2.4GHz Intel-Core-i3 CPU with 3.7 GB RAM.

5.1 On XMark Data
In this set of experiments, we use large synthetic XMark data

[24] to evaluate the efficiency and scalability of various algorithms.
As mentioned in Section 1, many graph-structured XML database
can be modeled by a special form of graphs consisting of trees con-
nected by cross edges (ID/IDREF links). In this case, we can use
existing twig join algorithms to process conjunctive TPQs by de-
composing them into a set of subqueries on separative trees. We
use TwigStack and Twig2Stack to investigate the efficiency of ap-
plying this approach.
Datasets. We generated five XMark datasets with the scaling fac-
tors from 0.5 to 4. For each dataset, we generate a graph, where
nodes correspond to XML elements and edges represent the inter-
nal links (parent-child) and ID/IDREF links. The attribute for graph
nodes is the tag of elements except for nodes corresponding to per-
son, item elements, for each type of which we randomly classify
them into ten groups to represent different properties. A label is
assigned to each node according to the tag or the group it belongs
to. Distinct labels indicate different attribute values. The details of
the generated documents and graphs are presented in Table 1.
Queries. Three types of queries we used for experiments are de-
picted in Fig. 7, where dotted edges refer to ID/IDREF links in
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Table 2: The average size of query results on XMark
Queries 55M 111M 167M 223M 447M
Q1 368 762.8 1115.8 1496.8 2986.8
Q2 34.6 75.8 117.8 150.3 297.2
Q3 1.9 4.1 5.8 6.1 17.1

open_auction

person

education address

city

bidder current

person_ref

(a) Q1

open_auction

person

education address

city

bidder current

person_ref

item_ref

item

location

(b) Q2

open_auction

person

education address

city

bidder current

person_ref

item_ref

item

location

seller

person

profile

(c) Q3

Figure 7: Queries for XMark data

the original data. For each query type, we generated ten queries
by randomly choosing a label for each of person and item nodes
representing a different attribute predicate. The average is reported.
Experimental results. Fig. 8(a) shows the query evaluation time
for Q1 on datasets varying the data size. The results for Q2 and
Q3 are quite similar. The results reveal the following. (1) GTEA
constantly outperforms all other algorithms. Specifically, GTEA
is three times to more than one order of magnitude faster than
TwigStack and Twig2Stack, five times to more than two orders of
magnitude faster than HGJoin, and in the best cases three times
faster than TwigStackD. When data size becomes larger, the perfor-
mance gain by GTEA becomes more significant. (2) TwigStackD
also has very good performance in this set of experiments with the
following reasons. (a) It utilizes SSPI, a reachability index with
pretty small size and good querying time for tree-like graphs. (b)
Its basic idea is extended from the holistic twig join algorithms,
and so TwigStackD also has the advantages taken by the stack en-
coding and the blocking method for path results [4]. (c) Although
TwigStackD has to buffer every nodes in pools (a special structure
used to store nodes popped from stacks) and large amounts of the
operations of checking edge conditions with all nodes in pools have
to be done (indicated as reasons of inefficiency in [27] and [11]), the
pre-filtering process it uses can filter redundant nodes and relieve
the cost of the above operations. Indeed, without the pre-filtering
process, TwigStackD is slower by orders of magnitude [30]. (3)
It is sort of surprising that TwigStack has slightly better perfor-
mance than Twig2Stack. The reason is that although Twig2Stack
can avoid generating path matches (as a primary reason for the ef-
ficiency in [8]), the overhead brought by merging stack trees and
maintaining the hierarchical structures overrides the benefits in the
experiments. The fact that the depth of XMark graphs is small (with
an average of 5), also make the hierarchical stack encoding have not
a strong advantage. Besides, the enumeration of path matches (as
a reason for inefficiency for TwigStack in [8]) can be done fast us-
ing the blocking technique. (4) HGJoin has the worst performance,
mainly because (a) the structural-join way has to generate a large
number of (largely redundant) intermediate results for small sub-
structures and (b) non-trivial merge-join operations on them have
to be done even with the best plan. The query processing time in-
creases significantly when the size of data graphs increases.

Fig. 8(b) shows the results on the XMark dataset of scale 0.5 for
different queries. (1) The query processing time of GTEA nearly
maintains the same as the query size increases. In particular, the
time cost for evaluating Q2 is smaller than that for Q1. It is because
the size of the results of Q2 is much smaller than that for Q1 as pre-
sented in Table 2, resulting in smaller cost for enumerating the final
results. (2) The processing time of TwigStack and Twig2Stack does
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Figure 8: Performance results on XMark data

not increase significantly over Q1, Q2 and Q3, although they have
to evaluate a increasing number of subqueries and perform a grow-
ing number of merge operations. Indeed, as shown in Table 2, the
sizes of the results of Q1 and Q2, which are a subquery of Q2 and
Q3 respectively, are small and thus the extra cost for evaluating Q2

and Q3 is very limited. (3) However, HGJoin is much more sensi-
tive to the increase of the query size, which is due to the impact of
the redundant intermediate results and expensive sort operations in-
volved in performing multi-structural joins. The results for HGJoin
highlight the crucial importance of using a pruning process to re-
duce the size of intermediate results not contributing to the answer.

5.2 On arXiv Data
In this set of experiments, we used a real-life graph to evaluate

the performance of GTEA, TwigStackD and HGJoin for general
graph data, verify the effectiveness of graph representation of in-
termediate results and the efficiency of the pruning process.
Dataset. We generated a graph from the HEP-Th database1, orig-
inally derived from the arXiv2. There are paper nodes and author
nodes, each associated with multiple properties. For simplicity, we
assigned a label to each author node according to the email domain,
and a label to each paper node based on its area and journal it is
published in, to represent the attributes. The edges of the graph rep-
resent author or citation relationships. The graph has 9562 nodes,
28120 edges, and 1132 distinct labels.
Query generator. We designed a query generator to randomly pro-
duce meaningful queries. Each query node is associated with a
label randomly chosen from the data graph to represent attribute
predicates. Two groups of queries are generated: one has a small
size of results between 2 and 50, the other has a large size between
200 and 1200. For each group, five sets of queries were generated
with query size varying from 5 to 13. We generated fifteen differ-
ent queries for each size scale and report the average. The average
time can reflect the average case performance of each algorithm,
since the queries are generated in a random way. The results for
queries of distinct sizes in the same group are comparable, because
the differences of the result sizes of the queries have little impact
on the query processing time and the number of query results for
each size scale follow a close distribution as illustrated in Fig. 9(a).
Experimental results. Fig. 9(b) and (c) report the results for the
two groups of queries. They tell us the following. (1) GTEA has
the best query processing time, significantly smaller than the pro-
cessing time of other algorithms (more than one order of magnitude
in most cases). It also has the best scalability in both two groups of
experiments. (2) TwigStackD no longer has good performance as
on XMark data. In fact, it has the longest querying time for queries
with size of 5 to 9. The arXiv graph is much denser and deeper than
XMark data, causing the inefficiency of the pool structure as well
as SSPI. The problem of TwigStackD is highlighted by Fig. 9(c)
where it fluctuates sharply for queries with large results. The results
1http://kdl.cs.umass.edu/data/hepth/hepth-info.html
2http://arxiv.org/
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Figure 9: Performance results on arXiv data. (a) Distribution of the result sizes. (b) Query processing time on the queries with small
sizes of results. (c) Query processing time on the queries with small sizes of results. (d) Comparison with the pre-filtering process.

reflect that TwigStackD has rather poor performance for particular
queries. In contrast, GTEA is most robust since it always main-
tains good performance for all experiments. (3) HGJoin+ is not
quite scalable similar to the performance on the XMark data. Yet
it now has better performance than TwigStackD when the query
size is smaller than 11. (4) The revised HGJoin (i.e. HGJoin*)
has better scalability than HGJoin+. For the group of queries with
large results, the query processing time of HGJoin* is smaller than
that of HGJoin+ when the query size is larger than 7, compared
to 11 for the group of queries with small results. This observation
demonstrates that graph representation of intermediate results can
improve the performance and achieve better scalability especially
when there are many intermediate/final results and when the query
size is large. The reason why the revised one takes more time than
the original one for processing the queries of small sizes is that
HGJoin* incurs costs for dynamically and recursively deleting un-
qualified nodes (not exist in our algorithm though), which offset the
benefits taken by avoiding merge-join operations on tuples.

Fig. 9(d) evaluates the efficiency of our pruning process and the
pre-filtering algorithm in TwigStackD, which clearly shows that our
pruning method greatly outperforms the counterpart and also has
better scalability with the query size. It is because the pre-fltering
algorithm in TwigStackD requires two traversals of the data graph.

6. CONCLUSIONS
We have proposed the GTPQ, a new class of tree pattern queries

on graph-structured data, which incorporates structural predicates
defined in terms of propositional logic to specify structural condi-
tions. We studied several fundamental problems, and established a
general framework for evaluating GTPQs using a graph represen-
tation of graphs and a pruning approach. An algorithm has been
developed for evaluating GTPQs, which can achieve a small size of
intermediate results due to the effective pruning process and largely
avoid generating redundant matches by dynamically shrinking the
tree pattern during pruning and enumerating processes.
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