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ABSTRACT
Big array analytics is becoming indispensable in answering impor-
tant scientific and business questions. Most analysis tasks consist of
multiple steps, each making one or multiple passes over the arrays
to be analyzed and generating intermediate results. In the big data
setting, I/O optimization is a key to efficient analytics. In this paper,
we develop a framework and techniques for capturing a broad range
of analysis tasks expressible in nested-loop forms, representing them
in a declarative way, and optimizing their I/O by identifying shar-
ing opportunities. Experiment results show that our optimizer is
capable of finding execution plans that exploit nontrivial I/O sharing
opportunities with significant savings.

1. INTRODUCTION
Scientific and business decisions increasingly rely on the analysis

of big array data, e.g., vectors, matrices. It is often impossible
or uneconomical to fit such data entirely in memory, even after
partitioning and distribution in a parallel or cluster setting. Besides
the big input data, analysis can write out big intermediate and/or
final results. Thus, big array analytics today are I/O-intensive, and
I/O optimization is critical in achieving high overall performance.
Furthermore, data analysis has become more sophisticated—it may
use linear algebra instead of relational operations as building blocks,
and each step may exhibit a complex, multi-pass access pattern over
its input and output. Optimizing I/O in this setting is challenging.

Example 1. Consider a program with two steps, a matrix addition
and a matrix multiplication: C = A + B, E = CD. Suppose the
matrices are stored on disk in blocks. The blocks here are a logical
storage and access unit, usually large in size and not to be confused
with physical disk blocks. The following C-style program describes
the operations involved. In the following (and the rest of this paper),
each array access (such as C[i, j] below) represents a block access,
not an element access.

for (i=0; i<n1; ++i)
for (k=0; k<n2; ++k)

C[i,k] = A[i,k] + B[i,k]; // s1
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for (i=0; i<n1; ++i)
for (j=0; j<n3; ++j)

for (k=0; k<n2; ++k)
E[i,j] += C[i,k] * D[k,j]; // s2

There are two statements in the program: s1 and s2. If we regard
each array access as an I/O, A and B are both read once, C is
written once and then read n3 times, D is read n1 times, and E is
written n2 times and read n2 − 1 times.1 However, it is not hard to
find some I/O-saving opportunities:
1. E[i, j] in s2 can be kept in memory until the innermost loop is

done, and written once.
2. C[i, k] in s2 can be read once and kept in memory for the inner-

most loop, if we make j the innermost loop.
3. If 2 is done, the two loop nests can be merged and C in s1 does

not have to be written to disk at all.
4. D[k, j] in s2 can be read once and kept in memory for the inner-

most loop, if we make i the innermost loop.

The above example illustrates an important optimization idea—
I/O sharing. When data is accessed repeatedly within the same
processing step or by multiple steps in a data-intensive application,
sharing I/O—i.e., retaining data in memory to avoid subsequent
I/O—can reduce the overall running time. Although the example
is simple in nature, it already reflects some intricacies of the I/O
sharing problem, as listed below.

Memory requirement Each I/O sharing opportunity in Exam-
ple 1 results in different amount of I/O savings and requires different
amount of memory in order to keep certain array blocks in memory.
The opportunity that results in the most I/O savings may require
more memory than available. It is necessary to analyze both factors.

Legality Some opportunities (2, 3 and 4) change the original ex-
ecution order of statement instances, which may or may not preserve
the semantics of the program.

Incompatibility of I/O sharing opportunities Some opportunities
conflict and cannot be applied together. For example, Opportunity 1
requires k to be the innermost loop for s2, Opportunity 2 and 3
require j to be the innermost loop, and Opportunity 4 requires i to
be the innermost loop.

Dependence on parameters The optimal solution depends on
not only the operators involved, but also the input parameters,
namely sizes of arrays and their blocks. In Example 1, in the special
case n3 = 1, s2 is surrounded by essentially only two loops. In
this case, Opportunity 1 does not contradict Opportunities 2 and 3
1The listed code is simplified. Statement s2 should actually be:

if (k==0) E[i,j] = C[i,k] * D[k,j];
else E[i,j] += C[i,k] * D[k,j];
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any more; they can all be realized by the transformed program in
Figure 1(a). While this special-case solution is easy for a human
to produce, the general case of n3 ≥ 1 is not. If E[i, j] is pinned in
memory for continuous self accumulation (Opportunity 1), then it is
impossible to avoid writing C (Opportunities 2 and 3) unless n3 = 1.
However, it is still possible to “merge” the two loop nests and save
a single pass of reading C, as shown in Figure 1(b). This solution
subsumes the one in Figure 1(a). For a human to devise such a
solution is nontrivial and error-prone; we would rather achieve this
optimization automatically. As we will show in this paper, our opti-
mizer can indeed find a parameterized solution for the most general
case automatically.

for (i=0; i<n1; ++i) {
// init E[i,0] with 0 in memory
for (k=0; k<n2; ++k) {

// read A[i,k] and B[i,k]
C[i,k] = A[i,k] + B[i,k]; // s1
// pipeline C[i,k] from s1 to s2
// read D[k,0]
E[i,0] += C[i,k] * D[k,0]; // s2

}
// write E[i,0]

}

(a) Special case of n3 = 1.

for (i=0; i<n1; ++i) {
for (j=0; j<n3; ++j) {

// init E[i,j] with 0 in memory
for (k=0; k<n2; ++k) {

if (j == 0) {
// read A[i,k] and B[i,k]
C[i,k] = A[i,k] + B[i,k]; // s1
// write C[i,k]

}
// read D[k,j]
// pipeline C[i,k] if j==0
// read C[i,k] if j>0
E[i,j] += C[i,k] * D[k,j]; // s2

}
// write E[i,j]

}
}

(b) General case of n3 ≥ 1.
Figure 1: Transformed code for Example 1.

Existing database and compiler techniques fall short of solving
the I/O sharing problem in our setting. First, a database-like, op-
erator-based approach does not allow full-fledged inter-operator
optimization. With this approach, users can write their programs in
terms of logical operators such as matrix addition and multiplica-
tion. The system can provide for each logical operator a variety of
physical implementations, each corresponding to a particular way
of structuring the loops that implement the operator. This approach
does allow for some I/O sharing opportunities such as pipelining
between operators. Although this approach has enjoyed tremendous
success in relational data processing, it is not suited for the array-
and loop-centric applications that we consider, because the operators
in our case have a far wider variety of implementation alternatives
with complex data access patterns governed by many parameters.
When putting our operators together for co-optimization, they can-
not be treated as black boxes but need to be “opened up” so that
the optimizer can tweak their inner workings further.2 Otherwise,
even a program as simple as in Example 1 cannot be handled. For
instance, a database-like approach may be able to find a pipelining
opportunity for C if n3 = 1, but will not be able to exploit “partial”
pipelining as in Figure 1(b) if n3 > 1.

2One might wonder if the need to “open up” operators can be avoided by
making them more fine-grained. However, a complex operation often cannot
be represented simply by a tree of fine-grained operators; instead, loop
constructs would be required, which traditional database optimization does
not handle. Indeed, our approach offers ways to reason with loops.

Second, traditional compiler techniques cannot solve our I/O
sharing problem because they lack explicit control over data reuse.
The compiler community has developed a plethora of techniques for
automatic optimization of data locality [24, 9, 4, 7]. Their traditional
focus is minimizing the traffic between CPU cache and memory,
while ours is minimizing disk I/O. Although similar at a first glance,
the two problems are fundamentally different. Traffic between cache
and memory is hardware-managed and has peculiarities such as
cache associativity; therefore, optimization tends to be best-effort,
and does not produce a program that controls data sharing precisely.
Traffic between memory and disk, on the other hand, is completely
under our control, making precise control and analysis possible for
our approach. Nonetheless, we have found the polyhedral model,
which has been applied in a number of compiler optimizations
[17, 11, 12, 13], to be a viable foundation to build on because it
admits higher-level program analysis.
Contributions In this paper, we present RIOTShare , for opti-
mizing I/O of loop-centric data-intensive programs. Building on
the polyhedral model, we develop a new framework for capturing
the I/O patterns of a program that is high-level enough to allow
automatic extraction and reasoning of the I/O patterns, yet not too
high-level to impede optimization flexibility (as black-box operators
do). With this framework, we develop an optimizer that considers
a rich space of plans (transformed programs), and is able to accu-
rately determine their legality, I/O costs, and memory requirements.
The optimizer employs Apriori-like search algorithm to enumerate
different combinations of sharing opportunities and to look for legal,
I/O-efficient plans under memory constraints. We demonstrate the
effectiveness and accuracy of our optimizer through experiments.

2. RELATED WORK
Database systems rely on the buffer pool mechanism for sharing

common I/O. This approach is rather low-level, opportunistic, and
extremely sensitive to timing and the replacement policy used. There
has also been much work on proactive work sharing. QPipe [16]
proposes an on-demand simultaneous pipelining paradigm for maxi-
mizing data and work sharing across concurrent queries. It detects
overlapping scans at run time and exploit the sharing opportunities
using circular scans. Cooperative scans [27] is based on a similar
idea, but coordinates I/O sharing using an active buffer manager
and a policy called relevance, which is shown to be more effective
than circular scans. Both approaches fall under the category of
execution-time optimization, which is different from the principled,
systematic optimization developed in this paper. Multi-query opti-
mization [21, 19] tries to match common subqueries so that query
processing can be partially shared. The recent DataPath system
[2] relaxes the condition of sharing by employing a data-centric,
push-based approach.

The aforementioned database-like, operator-based approaches
have limited applicability in statistical and scientific data analysis
workloads for two reasons. First, analytical operations typically have
much more complex, parameter-governed data access patterns than
most sequential-scan database operators. To support optimization
of these complex I/O patterns across operators, operators need to be
“opened up” so that the optmizer can reason about I/O sharing. Sec-
ond, support for user-defined operators implementing customized
analytical algorithms is a must. The system can no longer base
optimization solely on some built-in knowledge of a static list of
(physical) operators. This optimizable extensibility requirement
again calls for a representation upon which both user-defined and
built-in operators can be reasoned.

The compiler community has been working on automatic locality
(data reuse) optimization of programs for decades. Most of the
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efforts have been devoted to locality at the cache level; examples
include [24, 9, 4]. Since the cache is hardware-managed and its
behavior depends on the machine’s runtime state, the optimizer does
not have explicit control over the data reuse at that level. Cache asso-
ciativity further complicates the problem and only admits heuristic,
instead of exact, solutions. Our problem is to optimize locality at
the memory level and the key difference is that memory is explicitly
managed by software, allowing us to develop a precise optimizer.

Tiling [4, 7], also called blocking or chunking, is a common tech-
nique to increase data locality. We solve a different problem in this
paper: we assume tiling is already done and try to share the I/O of
tiles by restructuring the data access patterns. The coarse-grained
tiling optimizer of PLuTo [7] aims to increase parallelism and lo-
cality simultaneously, by minimizing the maximum of all reuse
distances in the input program. In contrast, we directly optimize the
total amount of data reuse, because the memory-level (as opposed
to cache-level) data reuse can be precisely characterized.

Some compiler optimization ideas have been successfully applied
in database systems. For example, MonetDB/X100 [6] adopts vector
processing in place of the traditional tuple-at-a-time paradigm to
achieve high CPU efficiency. HIQUE [18] uses a set of highly
efficient code templates to customize code generation during query
evaluation. It abandons the CPU-unfriendly iterator model and takes
advantage of existing compiler optimizations to achieve high in-
memory execution efficiency. Our work also has close ties to the
compiler field, but we attack a different problem at a higher level.

Our optimizer represents and reasons about I/O sharing oppor-
tunities using the polyhedral model. The polyhedral model dates
back to the seminal work of Karp, Miller and Winograd on uniform
recurrence equations [17]. Because of its power of algebraic ab-
straction and transformation expressiveness, it has gain traction in
the compiler field on some important optimization problems [14, 7].
However, to the best of our knowledge, this is the first time that it is
applied to the I/O sharing problem.

3. OVERVIEW
Figure 2 shows the architecture of RIOTShare. The input to the

system is a representation of an input program whose I/O we want
to optimize. The representation is based on the polyhedral model,
further discussed in Section 4.1, and can capture loop nests with
conditional statements. We require the unit of I/O to be logical
blocks, which is a standard practice to increase locality and reduce
I/O overhead. Since we focus on optimizing I/O, we care only about
read and write accesses to these blocks; the actual in-memory com-
putation on them is unimportant. To obtain the representation for
the input program in the polyhedral model, we can start with the pro-
gram written using a library of high-level operators (such as matrix
addition and multiplication), where the polyhedral representations
of their implementations are already provided and can be assembled
into a presentation for the entire program. Alternatively, we can
obtain this representation by analyzing user-supplied pseudo-code
(such as in Example 1) or source code for a user-defined operator or
program, using standard code analysis tools like Clan.3 The details
of this preprocessing step are beyond the scope of this paper.

The next step is to identify data dependences as well as individual
I/O sharing opportunities. Basically, a sharing opportunity signifies
a data reuse relationship between two statements in the program.
Note that the two statements can be the same one, in which case
a self sharing opportunity occurs. We capture both dependences
and sharing opportunities precisely, down to the instance level, i.e.,
individual accesses to the same block (as opposed to statements

3http://www.cse.ohio-state.edu/~pouchet/software/pocc

Input Program

Sharing Opportunities Analysis

Plan Enumeration

Plan Cost Evaluation

Code Generation

Optimal Physical Plan

Operator Library

Figure 2: System architecture.

operating on the same array). In Section 4.3, we show how to ex-
press dependences and sharing opportunities concisely in polyhedral
forms, which avoid costly enumeration of individual accesses and
enable optimization.

Given the dependences and sharing opportunities, our optimizer
explores the space of plans (or schedules of data accesses) to find
the I/O-optimal plan that is legal (i.e., respects all dependences)
and meets the memory requirement. Intuitively, dependences and
sharing opportunities translate to constraints on plans. The optimizer
considers combinations of sharing opportunities using a strategy
similar to the Apriori algorithm [1], to prune infeasible combinations
of sharing opportunities. Legal plans are fed into a costing module,
which evaluates their memory requirements and I/O costs. Finally,
the best plan given the current avaialble memory resource is chosen
and further converted into an executable plan. Section 5 discusses
how the optimizer searches for and costs plans.

Finally, Section 6 demonstrates through experiments the effective-
ness of our I/O sharing optimization framework. Section 7 concludes
the paper and presents directions for future work.

4. A POLYHEDRAL I/O OPTIMIZATION
FRAMEWORK

We first introduce some well-established concepts in the poly-
hedral model (Section 4.1), which serves as the foundation of our
optimization framework. Next, we define the I/O sharing opti-
mization problem (Section 4.2) and show how to characterize data
dependences and I/O sharing opportunities (Section 4.3).

4.1 The Polyhedral Model
Static-Control Programs In this paper we focus on data-intensive
programs that make “regular” accesses of out-of-core data. In par-
ticular, we assume the I/O patterns of the program can be described
by a set of static-control loop nests and if conditionals, where
the loop bounds, conditionals, and array access functions are affine
combinations (linear combination plus a constant) of the enclosing
loop variables and global parameters (e.g., array sizes). Note that
this encompasses a large body of scientific and analytical programs,
such as matrix addition, multiplication and factoriation, linear re-
gression, table scans and nested loop joins in traditional databases,
FILTER and FOREACH commands in Pig, etc. More general data
flow programs, such as those with data-dependent control and non-
affine conditionals, can also be cast into a static-control form by
techniques like safe over-approximation [5].
Iteration Domains A program consists of a set S of statements.
Each statement s ∈ S has an iteration domain, denoted Ds, which
describes the set of all executed instances of this statement. Each
instance of s is identified by the values of the loop variables sur-
rounding s. In Example 1, (i = 0, k = 0) is an instance of s1, which
is contained in its iteration domain Ds1 = {(i, k) ∈ Z2 | 0 ≤ i <
n1, 0 ≤ k < n2}. If s is enclosed by a loop nest of depth ds, then Ds

is a parametric integer polyhedron [10] which is a subset of Zds and

766



contains the statement instances as integer points. Ds1 is parame-
terized by n1, n2 and n3. Geometrically, a polyhedron is a union of
convex polyhera, each of which is the intersection of finitely many
half-spaces and can be described by a system of linear inequalities.
For example, Ds1 above can be written as a system of linear inequal-
ities: (i ≥ 0) ∧ (−i + n1 − 1 ≥ 0) ∧ (k ≥ 0) ∧ (−k + n2 − 1 ≥ 0), or
equivalently in matrix form as:

∆s~xs = ∆s

~ls
~p
1

 =


1 0 0 0 0 0
−1 0 1 0 0 −1
0 1 0 0 0 0
0 −1 0 1 0 −1




i
k
n1
n2
n3
1

 ≥ ~0.
We call ~ls s’s loop iteration vector, ~xs the extended iteration vector,
and ~p the parameter vector. Different statements in a program can
have (partly or completely) different iteration domains. For the
brevity of presentation, we may drop the parameter vector and refer
to the extended iteration vector simply as the iteration vector.
Array Accesses A statement s can access multiple arrays. Each
access is defined as a tuple a = 〈s, t, A,Φ〉, where s is the statement
performing the access, t ∈ {R,W} the type of access (read or write),
A the array accessed, and Φ a matrix describing the affine access
function which maps ~xs (the extended iteration vector of s) to a
subscript in A. Each point in A’s subscript space corresponds to a
block of array elements. Φ has as many rows as A’s dimensionality
and as many columns as ~xs’s dimensionality. Note that Φ is re-
quired to uniquely identify an access because s may access multiple
parts of A. For example, there are three accesses in a statement s
A[i,j]=A[i,j]+A[i,j]+A[i,j+1]:〈

s,W, A,
(
1 0 0
0 1 0

)〉
,
〈
s,R, A,

(
1 0 0
0 1 0

)〉
,
〈
s,R, A,

(
1 0 0
0 1 1

)〉
.

A[i,j] and A[i,j+1] are regarded as different read accesses be-
cause they access different parts of A; the write (assignment) of
A[i,j] is regarded as a different access from the reads of A[i,j]
because of different access types. However, note the two reads of
A[i,j] are treated as one access and have the same tuple repre-
sentation, because they can always be serviced with only one I/O.
In this paper, we assume each statement can have only one write
access, which holds in most programming languages.
Schedules Each program has a schedule, which maps all statement
instances in the program to an execution time. Formally, we define a
statement schedule for statement s to be an affine function (or matrix)
Θs mapping Ds, the iteration domain of s, to a multidimensional
time domain, and a program schedule to be the set of all statement
schedules in the program Θ = {Θs | s ∈ S}. The time domain is
a totally ordered set of vectors, where the order is lexicographic
(the vector components can be thought of as, for example, year,
month, day, etc.): (x1, . . . , xm) ≺ (y1, . . . , ym) ⇔ ∃r ∈ [1,m], (∀i ∈
[1, r − 1], xi = yi) ∧ (xr < yr). For the code in Example 1, one
possible program schedule is (loop variables of s2 are renamed to
avoid confusion):

Θs1~xs1 =

0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0




i
k
n1
n2
n3
1

 =

0
i
k

 ,

Θs2~xs2 =


0 0 0 0 0 0 1
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0




i′
j′
k′
n1
n2
n3
1


=


1
i′
j′
k′

 .

Because of the 0 and 1 in the first component of the result time
vectors, all instances of s1 are scheduled before those of s2. Also, i
appearing before k in Θs1 corresponds to the fact that i is an outer
loop than k. Note that there are many equivalent schedules for
the same program as far as the execution order is concerned. For
example, changing Θs2~xs2 to (2, i′ + 1, j′, k′) does not change the
relative execution order of statement instances in the program. Our
optimizer works no matter which one of the equivalent schedules is
specified for the input program.

4.2 Problem Definition
With the above preliminaries, the problem we tackle is the fol-

lowing. Given a memory cap and a static-control input program,
whose iteration domains, array references, and original schedule
are specified under the polyhedral model, find a legal transforma-
tion (represented by a schedule) of the given program such that I/O
sharing is maximized (i.e., total I/O cost minimized) and memory
consumption does not exceed the cap. A legal program schedule
is one under which all data dependences in the original program
schedule are observed; we formalize the notion of dependences
in Section 4.3. We discuss how to compute I/O cost and memory
consumption for a program schedule in Section 5.4.
Why Explicitly Capping Memory? We impose an explicit mem-
ory cap instead of relaxing the restraint and relying on the virtual
memory mechanism. As verified in previous work such as [25], the
virtual memory mechanism fails to utilize application-level memory
usage information to optimally orchestrate contending consumers,
and as a result, may lead to excessive paging for the types of pro-
grams we consider. Thus, we choose to impose a memory cap and
control memory data reuse explicitly.
Schedule Search Space Recall that a (program) schedule is a set
of affine functions, one for each statement, which maps the iteration
instances to their scheduled execution time. It has been shown [13]
that we can always find a schedule with dimension d̃ + 1 for any
static-control program, where d̃ = maxs∈S ds and ds is the depth of
the loop nest enclosing s in the original program. Thus, we can
safely restrict our search to (d̃ + 1)-dimensional schedules only.
Statement s’s schedule is then a list of (d̃ + 1) 1-d affine functions:
Θs = (θ1

s , . . . , θ
d̃+1
s ), where each function corresponds to a row in the

matrix and maps the iteration vector to a scalar time component.
As shown in [13], it is possible to make the last schedule dimen-

sion a constant, i.e., θd̃+1
s = cs, for all s ∈ S, where cs denotes the tex-

tual position of s in the transformed program under the schedule. For
example, Θs1~xs1 = (k, 0, 1), Θs2~xs2 = (i+n, j, 1), Θs3~xs3 = (i+n, j, 2)
is a schedule describing the program below:

for (k=0; k<n; ++k)
// s1

for (i=0; i<n; ++i)
for (j=0; j<n; ++j) {

// s2 and s3
}

All instances of s1 are scheduled before those of s2 and s3 due to the
first schedule dimension. The order of the two instances of s2 and
s3 within the same loop iteration are determined by the last constant
dimension, which specifies the textual order of the two statements.
Why the Polyhedral Model? We choose the polyhedral model as
the “language” for solving the I/O sharing problem for three reasons.
First, it is well known that the polyhedral model captures a large
space of transformations, such as loop interchange, reverse, skew,
fusion, etc., and their compositions [12, 14, 7]. It can also handle
programs with more general code than static-control loops [5].

Second, analysis of data flow in the polyhedral model is at the
level of statement instances as opposed to just statements. This level
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of detail makes it possible to build a precise cost-based optimizer
that captures individual block accesses. For example, our optimizer
is able to identify the “partial” sharing opportunity in Figure 1(b).

Third, the polyhedral model abstracts program transformations to
make them amenable to automatic and systematic search. This is in
direct contrast with traditional syntactic analysis, where programs
are represented in abstract syntax trees and go through a series of
pattern-matching and transformation steps, which does not lend
itself to structured search [14].

4.3Dependences and I/O Sharing Opportunities
Building on the polyhedral model, we show how to represent data

dependences and I/O sharing opportunities, which are essential in
determining the legality, I/O cost, and memory requirement of a
program transformation (schedule). We begin with the notions of
co-accesses and their extent polyhedra.

Definition 1 (Co-Access and Extent Polyhedron). Let A denote
the set of all array block accesses in the program. A co-access,
denoted a→ a′, is a pair of accesses inA ×A to the same array;
i.e., a.A = a′.A. The type of co-access a→ a′ is a.t → a′.t, which is
one of R→ R, R→ W, W→ R, and W→ W.

Suppose the original program schedule is Θ = {Θs | s ∈ S}. The
(extent) polyhedron of co-access a→ a′, where a = 〈s, t, A,Φ〉 and
a′ = 〈s′, t′, A,Φ′〉, is P(a → a′) = {(~x, ~x′) | ~x ∈ Ds, ~x′ ∈ Ds′ ,Φ~x =

Φ′~x′,Θs~x ≺ Θs′~x′}.

Thus, the extent polyhedron of a co-access is a polyhedron in
the product space of the iteration domains of the two statements
involved. Intuitively, it contains all pairs of statement instances
that access the same array block (Φ~x = Φ′~x′), where the source
instance executes before the target instance in the original schedule
(Θs~x ≺ Θs′~x′).

In the following, when no ambiguity exists (specifically, if state-
ments s and s′ each make only one access of a given type to the array
A), we may omit Φ and Φ′ and denote a co-access by stA→ s′t′A.

Using the notion of co-accesses, we can now define data depen-
dences and I/O sharing opportunities.

Definition 2 (Dependences). A (data) dependence is a co-access
a → a′ with type R → W, W → R, or W → W (i.e., at least one
access is a write) and P(a → a′) , ∅. Let D denote the set of all
dependences in the original program.

Intuitively, the polyhedron for a dependence specifies all data
dependences among individual array block accesses. Given a depen-
dence, for any pair of statement instances (~x, ~x′) in its polyhedron, ~x
must execute before ~x′ under any legal schedule. Note that R→ R
co-accesses are not dependences because exchanging the order of
two reads by itself does not affect program semantics.

I/O sharing opportunities are also defined using co-accesses, but
they are different from dependences in subtle yet important ways.

Definition 3 (Sharing Opportunities). An I/O sharing opportunity
is a co-access a → a′ with type W → R, W → W, or R → R and
P(a→ a′) , ∅. Let O denote the set of all sharing opportunities in
the original program.

Intuitively, the polyhedron for a sharing opportunity identifies all
possibilities for sharing I/O among individual array block accesses.
Given a sharing opportunity, for any pair of statement instances
(~x, ~x′) in its polyhedron, ~x and ~x′ may share I/O in accessing the
same array block (at Φ~x = Φ′~x′). Note that a sharing opportunity
merely indicates the potential for sharing but does not guarantee
it; whether the potential is realized depends on the final schedule
chosen. Specifically, depending on the type of the opportunity,

sharing may happen in the following ways (see Section 5.2 for
details on how they are considered by the optimizer):
• R→ R: A read followed by a read. The I/O for the second read

may be eliminated using the in-memory copy of the shared block
used to serve the first read (assuming there is no write of the
same block in between). Alternatively, a new schedule may be
able to reorder the reads, such that the first read in the original
schedule becomes the second in the new schedule and saves its
I/O. In either case, to realize the sharing opportunity, the shared
block has to be kept in memory until the reuse.

• W→ R: A write followed by a read. The I/O for the read may
be eliminated using the in-memory copy of the shared block
used to serve the write (assuming here is no other write of the
same block in between). To realize this opportunity, the shared
block has to be kept in memory until the read. Unlike the case of
R→ R, the new schedule cannot reorder these accesses because
it would violate the W→ R dependence.

• W → W: A write followed by a write. The first write may
be eliminated since it will be overwritten by the second one
(assuming there is no other write of the same block in between).
The shared data need not be kept in memory. Like the case of
W → R but unlike R → R, the new schedule cannot reorder
these accesses because it would violate the W→ W dependence.

Note that a R→ W co-access does not make a sharing opportunity
because neither the read nor the write can be saved.4

The resemblance between Definitions 2 and 3 is not a coincidence:
two accesses to the same data may impose an execution order on
the two statement instances and thus induce a dependence (if either
access is a write), or may represent an opportunity for reducing I/O
(if the co-access is not R→ W). However, their differences should
also be clear. First, dependences capture the ordering constraints
that must be preserved for any transformation, whereas sharing
opportunities capture data reuse relationships that may potentially
lead to I/O savings. Second, because of their distinct purposes, they
stem from different subsets of co-access types: R → W can be a
dependence but not a sharing opportunity, whereas R→ R can be a
sharing opportunity but not a dependence.

It is important to point out that the extent polyhedron of a co-
access characterizes fine-grained, instance-level relationships, not a
coarse-grained, statement-level relationship. Nonetheless, the poly-
hedron can be succinctly represented in an algebraic form (system
of inequalities), instead of literal enumerations of integer points
in the polyhedron. For example, in Example 1, s1WC → s2RC
is both a dependence and a sharing opportunity, and P(s1WC →
s2RC) = {(i, k, i′, j′, k′) | i = i′, k = k′, 0 ≤ i, i′ < n1, 0 ≤ k, k′ <
n2, 0 ≤ j < n3}. On the other hand, s2RC → s1WC is neither,
because P(s2RC → s1WC) = ∅ (no instance of s2 executes before
any instance of s1 in the original program).

It is also worth noting that the arrow in stA→ s′t′A does not nec-
essarily imply s should textually precede s′ in the original program.
As a more dramatic example, consider the code below:

for (i=0; i<n; ++i) {
A[i] = B[i]; // s1
C[i] = A[n-1-i]; // s2

}

Two dependences (and sharing opportunities) with opposite direc-
tions exist at the same time, with polyhedra P(s1WA → s2RA) =

4Here we assume that a write operation does not include first reading that
data. If a statement performs a read-modify-write, the read and the write
are modeled as two separate accesses. This assumption still holds in the
presence of disk blocks, because the unit of I/O is a logical array block as
opposed to an individual array element.
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{(i, i′) | i + i′ = n − 1, 0 ≤ i ≤ (n − 1)/2} and P(s2RA → s1WA) =

{(i′, i) | i′ + i = n − 1, 0 ≤ i′ ≤ (n − 2)/2}.

5. THE OPTIMIZER
This section presents the design and implementation of our I/O

sharing optimizer. At a high level, the optimizer translates indi-
vidual data dependences and sharing opportunities, after necessary
preprocessing, to constraints on schedules, which represent possible
program transformations. The optimizer then uses an Apriori-like
algorithm to efficiently enumerate feasible combinations of sharing
opportunities while satisfying all dependences. Each feasible com-
bination leads to a legal plan, which is then evaluated in terms of its
memory requirement and total I/O cost. Finally, given the amount
of memory available, the plan with the least I/O cost is chosen and
converted into code for compilation and execution.

5.1 Preprocessing and Pruning
Before passing the sets of dependences and sharing opportunities

on to the rest of the optimizer, we preprocess them by pruning out
possibilities that either can be safely ignored by optimization, or
need to be ignored to make optimization tractable. In this section, we
describe two pruning techniques in these respective categories, and
then discuss how extraction and preprocessing of dependences and
sharing opportunities are implemented. Both pruning techniques
stem from our concept of linear sharing model, which we first
introduce below.

With any program schedule, every statement instance is executed
at a specific time, which defines a linear ordering of all statement
instances. I/O sharing effectively only happens between consecutive
accesses to the same data in time order. To understand this statement,
imagine that when a statement instance touches a shared piece of
data, it becomes the owner of the data. A subsequent reuse of the
data is always “charged” to the owner, and the new user becomes the
new owner. We call this the linear sharing model. By considering
sharing only between consecutive accesses, we avoid the problem
of over-counting reuses. For example, consider three consecutive
reads to the same data. There are only two pairs of consecutive
accesses in time order, corresponding to two reuses. Including the
non-consecutive accesses (the first and the third) would give us three,
which is too much.
No Write in Between In light of the linear sharing model, the
“no-write-in-between” rule states that, given a sharing opportunity
a → a′, any pair of statement instances (~x, ~x′) ∈ P(a → a′) can be
removed from the polyhedron if there is a write to the same array
block that executes between ~x and ~x′ in the original program. This
rule makes sense because, to preserve program semantics, no legal
schedule can move the write before ~x or after ~x′; hence, in no legal
schedule will ~x and ~x′ ever be consecutive accesses.

The no-write-in-between rule also applies to dependences: given
a dependence a → a′, any pair of statement instances (~x, ~x′) ∈
P(a → a′) can be removed from the polyhedron if there is a write
to the same array block by some statement instance ~y that executes
between ~x and ~x′ in the original program. The rule is applicable in
this setting because the ordering constraint between ~x and ~x′ would
be redundant, as it is implied by the constraints between ~x and ~y,
and between ~y and ~x′.
Multiplicity Reduction We define the multiplicity of a sharing
opportunity as follows. A sharing opportunity is many-one if each
source instance is related to at most one target instance in the extent
polyhedron, one-many if each target instance is related to at most
one source instance, one-one if both, or many-many if neither. For a
sharing opportunity that is not one-one, there exists an instance ~x
related to multiple other instances. However, by the linear sharing

model, only one of these instances can possibly form a real sharing
relationship with ~x. Ideally, the optimizer should explore all possi-
bilities when realizing the sharing opportunity; however, doing so is
impractical because it would blow up the search space. As a prac-
tical alternative, we perform a multiplicity reduction step to make
all sharing opportunities one-one. Care is taken to minimize the
impact on optimality. For details, see Remark A.1 in the appendix.
Experiment results in Section 6 confirm that such reduction does
not miss interesting solutions.

Note that multiplicity reduction is not applied to dependences,
because a legal schedule must preserve the execution order of all
statement instances in a dependence’s polyhedron.
Extracting and Preprocessing Dependences and Sharing Op-
portunities We use isl [23], a library for manipulating integer
points in polyhedra, for extracting program dependences. The al-
gorithm used by isl was first introduced in [11]. Because of the
similarity of dependences and sharing opportunities, we adapt the
algorithm to extract sharing opportunities. The library supports
removing transitively-covered dependent statement instances, which
we use to produce no-wirte-in-between dependences and sharing
opportunities. We then apply our multiplicity reduction algorithm
on the sharing opportunities only. Henceforth, all dependences
and sharing opportunities are assumed to be no-write-in-between;
in addition, all sharing opportunities are assumed to be one-one.
With a slight abuse of notation, we still use P(a → a′) to denote
the polyhedron of a dependence or sharing opportunity after the
aforementioned preprocessing.

5.2 Deriving Constraints
There are three types of constraints imposed on a schedule.

Dimensionality Constraints At the very least—not even consid-
ering data dependences and sharing opportunities—a legal schedule
must map every statement instance in the original program to a
unique execution time. This requirement can be satisfied by en-
suring 1) instances belonging to the same statement are mapped
to different times, and 2) any two instances belonging to different
statements are mapped to different times. Below we explain how
1) can be translated into concrete constraints on the schedule. 2) is
handled by the optimizer’s search algorithm as it involves schedules
of multiple statements and thus needs global coordination.5

A schedule Θs of statement s is essentially a linear map, Θs :
Ds 7→ Z

d̃+1 (see Section 4.2 for the definition of d̃ and ds used
below). Ensuring all instances in Ds map to different images means
Θs has to be injective. Thus, the null space of Θs should have
dimension 0, i.e., dim null Θs = 0. By the rank-nullity theorem in
linear algebra, dimDs = dim null Θs + rank Θs, and the fact that
dimDs = ds, we have rank Θs = ds. In other words, the matrix
representation of Θs should have exactly ds linearly independent
rows out of the first d̃ rows (as the last dimension is a constant which
does not contribute to the dimensionality).

The optimizer finds the matrix representation of Θs in a row-by-
row fashion. When choosing each row, we use Algorithm 1 below to
enumerate whether the current row should be linearly independent
of previously found rows.
Dependence Constraints By definition, a schedule Θ = {Θs |

s ∈ S} is legal only if for any dependence a → a′, ∀(~x, ~x′) ∈
P(a→ a′),Θa.s~x ≺ Θa′ .s~x′. This ≺ condition should not be confused
with the one in the definition of extent polyhedron (Definition 1):

5The optimizer either assigns different constants for the last schedule di-
mensions of different statements, or tries to separate instances of different
statements at an earlier dimension. Due to the space limit, we omit the
technical details.
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Algorithm 1: EnumRow(i, j,k)
Input: Statement ID i, current row index j (1-based), and k, number of

independent rows before row j
Output: a list of Booleans indicating whether row j can be linear

independent of previous rows
1 if d̃ − j = dsi − k then
2 return {1}
3 else
4 return {0, 1}

that condition is in terms of the original schedule of the program,
whereas this condition applies to a new schedule. To translate the
dependence constraint into a linear form, we first let

Xq
s,s′ , (θ1

s~x = θ1
s′~x
′) ∧ · · · ∧ (θq−1

s ~x = θ
q−1
s′ ~x

′) ∧ (θq
s~x < θ

q
s′~x
′).

Then, by definition of ≺, we can write the dependence constraint as

∀(~x, ~x′) ∈ P(a→ a′), X1
a.s,a′ .s ∨ · · · ∨ Xd̃+1

a.s,a′ .s,

since ≺ can be satisfied at any depth. Note that the X terms are
mutually exclusive; i.e., only one of them can be true. If the q-th
term is true, we say the dependence is strongly satisfied at depth q.

The next question is how to handle the quadratic-form constraints,
i.e., vector inner products such as θq

s~x. As a concrete example, let
us examine the dependence s2WE → s2WE in Example 1. Its
polyhedron is P = {(i, j, k, i′, j′, k′) | i′ − i = 0, j′ − j = 0, k′ − k−1 =

0}.6 Suppose we want to find the constraint on a schedule dimension
q such that θq

s2 · (i, j, k) < θq
s2 · (i

′, j′, k′). If we let θq
s2 = (α, β, γ), the

target constraint can be rewritten as αi + β j + γk < αi′ + β j′ + γk′,
or −αi − β j − γk + αi′ + β j′ + γk′ − 1 ≥ 0. Note that this constraint
is quadratic and thus does not directly fit in the polyhedral model.
Fortunately, the following lemma provides a powerful mechanism
to linearize such constraints.

Lemma 1 (Affine Form of the Farkas Lemma [20]). Let P be a
nonempty polyhedron defined by p affine inequalities:

~ak~x + ~bk ≥ 0, k = 1, . . . , p. (1)

Then ∀~x ∈ P, ~θ~x ≥ 0 iff there exist λ0, . . . , λp ≥ 0 such that

~θ~x ≡ λ0 +
∑

k

λk(~ak~x + ~bk).

Note that constraints of forms other than ≥ 0 as in (1) can be
rewritten so that the affine form of the Farkas Lemma applies. For
example, θq

s~x < θ
q
s′~x
′ can be rewritten as θq

s~x − θ
q
s′~x
′ − 1 ≥ 0; an

equality can be split into two inequalities, ≥ 0 and ≤ 0.
Continuing the above example, by Lemma 1, −αi−β j−γk +αi′ +

β j′ + γk′ − 1 ≡ λ0 + λ1(i′ − i) + λ2(i − i′) + λ3( j′ − j) + λ4( j − j′) +

λ5(k′ − k − 1). Comparing the coefficients of the iteration variables
on both sides gives

−1 = λ0 − λ5, α = λ1 − λ2, β = λ3 − λ4, γ = λ5, λ0, . . . , λ5 ≥ 0.

By eliminating λ0, . . . , λ5, we obtain α ∈ Z, β ∈ Z, and γ ≥ 1, which
indeed preserve the execution order of dependent iterations.

A legal schedule should strongly satisfy each dependence in the
program at a certain depth. As we have seen through the above
example, the affine form of the Farkas Lemma helps us translate the
condition of “strongly satisfying a dependence at a depth q” into a
polyhedral constraint on the schedule’s coefficients at dimension q.
The union of such polyhedra for different depths characterizes the
space of valid schedules for the statements involved in this particular
dependence. The intersection of the results of these unions across
6For the ease of presentation, we have omitted the parameter dimensions n1,
n2, n3 and the constant dimension; they are unimportant for the purpose of
this example.

Table 1: Constraints on statement schedules Θs and Θs′ that
realize a sharing opportunity a → a′. Here, P = P(a → a′),
s = a.s, and s′ = a′.s.

non-self (s , s′)
W→ R, W→ W ∃c > 0,∀(~x, ~x′) ∈ P,Θs′~x′ − Θs~x = (0, . . . , 0, 0, c)

R→ R ∃c , 0,∀(~x, ~x′) ∈ P,Θs′~x′ − Θs~x = (0, . . . , 0, 0, c)
self (s = s′)

W→ R, W→ W ∀(~x, ~x′) ∈ P,Θs~x′ − Θs~x = (0, . . . , 0, 1, 0)
R→ R ∃c ∈ {±1},∀(~x, ~x′) ∈ P,Θs~x′ − Θs~x = (0, . . . , 0, c, 0)

all dependences characterizes the space of legal schedules for the
entire program. Conceptually, the optimizer uses the dependence
constraints to narrow the search space down to legal schedules only;
practically, it employs a less expensive, depth-by-depth algorithm
as discussed in Section 5.3.
Sharing Opportunity Constraints Realizing a sharing opportu-
nity in a schedule also imposes certain constraints on the schedule.
To reduce the duration for which the shared data has to remain in
memory, we require that related statement instances in a non-self
sharing opportunity a→ a′ (where a.s , a′.s) be scheduled to times
that differ only in the last constant time dimension. However, this
requirement would not work for a self sharing opportunity a→ a′

(where a.s = a′.s), because related statement instances have the
same constant for their last schedule dimension and thus enforcing
it would schedule two instances to the same time. Thus, we instead
require them to be scheduled to consecutive times, ignoring the
last constant time dimension. In mathematical terms, realizing a
sharing opportunity means satisfying the constraints listed in Table 1
according to its type. We special-case R→ R sharing opportunities
because a pair of related statement instances may have their execu-
tion order reversed by a new schedule without altering the original
program semantics. Note that the polyhedra in Table 1 are after the
preprocessing steps discussed in Section 5.1.

Each dimension (except the last one) of these constraints can eas-
ily be converted into linear constraints on the schedules by applying
the affine form of the Farkas Lemma. The last constant dimension
for all statements can be determined by a simple algorithm based on
topological sort.

5.3 Search Algorithm
The goal of optimization is to find a schedule that minimizes

I/O cost, or maximizes I/O savings, for a program given a certain
amount of available memory. I/O savings come from the realization
of sharing opportunities. It is important to note the following:
• Not all sharing opportunities can be realized simultaneously;

some may be in direct conflict, as shown in Example 1.
• Maximizing the number of realized sharing opportunities does

not necessarily minimize the total I/O cost, because the memory
requirement may exceed the given cap, or because the amount of
I/O saved by individual sharing opportunities varies depending
on the sizes of array blocks and their iteration domains.

A naı̈ve approach is to enumerate the power set of O, the set of
all sharing opportunities, and for each candidate subset check if
its member sharing opportunities can all be realized by a schedule
while satisfying all dimensionality and dependence constraints. We
propose a better algorithm based on the following key observation:

Lemma 2 (Apriori Property). If a set of sharing opportunities
cannot be realized simultaneously, nor can any of its supersets.

This lemma immediately suggests an algorithm similar to Apri-
ori [1]. Algorithm 2 shows the details. The algorithm proceeds in
the order of increasing size of sharing opportunity combinations. A
set of k sharing opportunities is considered a candidate only if all
its subsets of size k − 1 are found to be feasible already (Line 5). A
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candidate is feasible only if it survives the FindSchedule test (details
below), which attempts to find a schedule that realizes all the sharing
opportunities in the candidate while satisfying all dimensionality
and dependence constraints.

Algorithm 2: Apriori-like search.
Input: Set containing all sharing opportunities O, set containing all

dependencesD
Output: Set of legal schedules, each satisfying a different combination

of sharing opportunities
1 C1 ← {o | o ∈ O, FindSchedule({o},D) , ∅}
2 T ← {FindSchedule({o},D) | o ∈ C1}
3 k ← 2
4 while Ck−1 , ∅ and k ≤ |O| do
5 Ck ← {c | c ⊆ O, |c| = k, c’s subsets of size k − 1 all in Ck−1}
6 foreach c ∈ Ck do
7 t ← FindSchedule(c,D)
8 if t = ∅ then Ck ← Ck − {c} else T ← T ∪ {t}

9 k ← k + 1

10 return T

FindSchedule (Algorithm 3), repeatedly called by the search
algorithm, searches for a legal schedule for a candidate sharing op-
portunity set. Because each dependence constraint can be satisfied
at any of the d̃ + 1 depths and it is computationally too expensive
to consider all possibilities, the algorithm tries to satisfy each de-
pendence constraint in a greedy fashion, from depth 1 to depth
d̃ + 1. Satisfying a dependence constraint at an early depth may
lead to “over-separation” of statements (through enforcing the lexi-
cographic order of statement instances) and prevent I/O sharing. To
address this issue, we give higher priority to sharing opportunity
constraints (Lines 13–26) and lower priority to dependence con-
straints (Lines 39–43). A similar greedy algorithm is used to satisfy
dimensionality constraints (Lines 28–38). Note that Algorithm 3
involves many basic polyhedral operations, e.g., intersection and
applying the affine form of the Farkas Lemma. The isl library [23]
provides efficient implementation of these operations.

One subtlety is worth noting. For two feasible sharing opportunity
sets Q and Q′ where Q ⊂ Q′, FindSchedule may produce the same
schedule. Indeed, a schedule satisfying the sharing opportunity con-
straints forQmay happen to also satisfy those forQ′\Q, because the
algorithm does not explicitly consider other sharing opportunities
when trying to satisfy Q. However, as discussed earlier, “acciden-
tally” realizing more sharing opportunities may not be desirable,
as it may increase memory requirement. Thus, when generating
code for a schedule (Section 5.5), we consider the set Q of sharing
opportunities it is supposed to realize, and inject appropriate code
to exploit only Q.7 In any case, the search will eventually consider
superset Q′ ⊃ Q, so no good schedule will be missed.

5.4 Cost Evaluation
The search algorithm returns a list of legal schedules, each satis-

fying a particular subset of sharing opportunities. Next, we evaluate
each schedule in terms of memory requirement and I/O cost.
Memory Requirement We want to compute the maximum amount
of memory required by a schedule Θ found for a sharing opportunity
set Q. First consider the baseline, where no sharing opportunities are
realized. For a statement to successfully execute at time ~τ, all array

7This brings up the point that a schedule alone does not completely dic-
tate what and how I/O sharing is achieved; it only specifies the execution
timing of statement instances, a necessary but not sufficient condition for
sharing. Code generation must ensure that appropriate I/O and memory
buffer management actions are taken to enable sharing.

Algorithm 3: FindSchedule(Q,D).
Input: Sharing opportunity set Q, dependence setD

1 n← |S|, the number of statements
2 d̃ ← maxs∈S ds
3 Qsw ← self sharing opportunities of types W→ R, W→ W
4 Qsr ← self sharing opportunities of type R→ R
5 Qnw ← non-self sharing opportunities of types W→ R, W→ W
6 Qnr ← non-self sharing opportunities of type R→ R
7 k1, . . . , kn ← 0; Θ1, . . . ,Θn ← ∅

8 Let θd denote (θd
1 , . . . , θ

d
n), the d-th dimension of schedules

9 for d ← 1 to d̃ do
// Initialize the space of schedules for dimension d

10 Xd ← the polyhedron containing all integer points
// Weakly satisfy remaining dependence constraints

11 foreach a→ a′ ∈ D do
12 Xd ← Xd ∩ {θ

d | ∀(~x, ~x′) ∈ P(a→ a′), θd
a′ .s~x

′ − θd
a.s~x ≥ 0}

// Sharing opportunity constraints
13 foreach a→ a′ ∈ Qnw ∪ Qnr do
14 Xd ← Xd ∩ {θ

d | ∀(~x, ~x′) ∈ P(a→ a′), θd
a′ .s~x

′ − θd
a.s~x = 0}

15 if d < d̃ then
16 foreach a→ a′ ∈ Qsw ∪ Qsr do
17 Xd ← Xd∩

18 {θd | ∀(~x, ~x′) ∈ P(a→ a′), θd
a′ .s~x

′ − θd
a.s~x = 0}

19 else
20 foreach a→ a′ ∈ Qsw do
21 Xd ← Xd∩

22 {θd | ∀(~x, ~x′) ∈ P(a→ a′), θd
a′ .s~x

′ − θd
a.s~x = 1}

23 foreach a→ a′ ∈ Qsr do
24 Xd ← Xd∩

25 ({θd | ∀(~x, ~x′) ∈ P(a→ a′), θd
a′ .s~x

′ − θd
a.s~x = −1}∪

26 {θd | ∀(~x, ~x′) ∈ P(a→ a′), θd
a′ .s~x

′ − θd
a.s~x = 1})

27 if Xd = ∅ then return ∅
// Dimensionality constraints

28 for i← 1 to n do
29 f ← f alse
30 foreach l← EnumRow(i, d − 1, ki) do
31 if l = 0 then T ← space spanned by Θi
32 else T ← null space of Θi
33 if Xd ∩ T , ∅ then
34 Xd ← Xd ∩ T
35 ki ← ki + l
36 f ← true
37 break

38 if f = false then return ∅
// Strongly satisfy remaining dependence constraints

39 foreach a→ a′ ∈ D do
40 T ← {θd | ∀(~x, ~x′) ∈ P(a→ a′), θd

a′ .s~x
′ − θd

a.s~x > 0}
41 if Xd ∩ T , ∅ then
42 Xd ← Xd ∩ T
43 D ← D− {a→ a′}

44 θd
1 , . . . , θ

d
n ← sample a point from Xd

45 foreach i← 1 to n do Θi ← Θi ∪ {θ
d
i }

46 Find constants for the last dimensions of Θ1, . . . ,Θn
47 return Θ = {Θ1, . . . ,Θn}

blocks it accesses must all be in memory at ~τ. Therefore, the base-
line memory requirement at time ~τ, M(~τ), can be computed by first
finding the iteration instance ~x = Θ−1(~τ), and then summing up all
the sizes of the array blocks ~x accesses. Each realized sharing oppor-
tunity except those of type W→ W can require additional memory
for keeping the shared array block until the reuse occurs. For each
sharing opportunity a → a′ ∈ Q, for each (~x, ~x′) ∈ P(a → a′), the
shared array block a.A[a.Φ~x] has to be kept in memory between
time Θa.s~x and Θa′ .s~x′. Thus we can find for each time ~τ all the
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additional array blocks that have to be in memory at that time, and
add their sizes to M(~τ). Finally, taking the maximum of M(~τ) across
all ~τ ’s gives the memory requirement of the schedule.
I/O Cost We adopt a simple I/O cost model that predicts the total
I/O time as a linear function of the total read and write volumes
(in the number of bytes). More refined models (e.g., charging an
overhead for each I/O request) can be easily incorporated, though as
shown by the experiments in Section 6, our simple model already
provides very accurate estimates (thanks to our framework’s ability
to capture instance-level I/O sharing).

Without realizing any sharing opportunity, the baseline I/O cost
for a statement can be computed by summing up the sizes of all
array blocks it accesses over its iteration domain. Realized I/O
sharing opportunities involving the statement can save some of the
baseline I/O operations and cut down the cost. For example, for a
sharing opportunity a → a′ where a′ = 〈s′,R, A,Φ′〉, at any target
iteration ~x′ ∈ {~x′ | (~x, ~x′) ∈ P(a→ a′)} a read of array block A[Φ′~x′]
is saved; for one where a = 〈s,W, A,Φ〉 and a′ = 〈s′,W, A,Φ′〉, at
any source iteration ~x ∈ {~x | (~x, ~x′) ∈ P(a → a′)} a write of array
block A[Φ~x] is saved. With a union operation across all realized
sharing opportunities, we can find the I/O savings for every iteration
instance. Summing up all the savings over all iteration instances
gives the total I/O savings of the given schedule; subtracting it from
the baseline I/O cost gives the actual I/O cost of the schedule.
Remark All computation above happens in a symbolic, algebraic
fashion. A schedule’s memory requirement and I/O cost are rep-
resented as polynomials (piecewise quasipolynomials to be exact)
in the global parameters ~p. The advantage of this approach is that
schedule search and evaluation need to be done only once for a given
program “template”; should the parameters (array and block sizes)
change, we can simply plug the new values into the polynomials
instead of performing optimization all over again.

5.5 Code Generation
The schedule chosen by the optimizer is subsequently transformed

into C code with for and if control structures for compilation and
execution. This process is the reverse of the program analysis that
happens before optimization: program analysis extracts a polyhe-
dral representation from code, while code generation converts the
optimized polyhedral representation back to code. Recent advances
in polyhedral compiler construction have produced efficient code
generation tools such as CLooG [3, 22], which is incorporated in
production compilers such as GCC and also used by us.

As a concrete example, let us see what code is generated for
the program in Example 1. Suppose the following three shar-
ing opportunities are satisfied: s1WC → s2RC, s2WE → s2RE,
s2WE → s2WE. Note that whether this yields the optimal I/O cost
depends on the values of the parameters; here we use the parameter-
ized schedule to demonstrate code generation only. The optimizer
produces the following schedule for this set of sharing opportunities:
Θs1~xs1 = (0,−i, k, 0), Θs2~xs2 = ( j,−i, k, 1). The generated code for
this schedule is listed below. It is easy to verify that this is equivalent
to the hand-generated solution in Figure 1(b).8
for (i=-n1+1; i<=0; i++)

for (k=0; k<=n2 -1; k++) {
C[-i,k] = A[-i,k] + B[-i,k]; // s1
E[-i,0] += C[-i,k] * D[k, 0]; // s2

}
for (j=1; j<=n3 -1; j++)

for (i=-n1+1; i<=0; i++)
for (k=0; k<=n2 -1; k++)

E[-i,j] += C[-i,k] * D[k,j]; // s2

8C is not written in the case (n3 = 1) shown in Figure 1(b). Although not
reflected in the code shown here, our optimizer and execution engine check
the value of n3 and decide if C needs to be written to disk.

For brevity, the code above does not contain explicit I/O oper-
ations. In practice, RIOTShare injects additional code to ensure
that all array block accesses are fulfilled either by blocks already
buffered in memory or by I/O (and displacing appropriate buffered
blocks when necessary); the details are omitted. In general, RIOT-
Share relieves the burden of manually managing I/O from library
and application developers.

6. EXPERIMENTS
Setup All our experiments were run on a desktop computer with
an Intel Core i7-2600 four-core CPU, 8GB of memory, and a WD
Caviar Black 7200RPM hard drive, running Ubuntu Linux 11.10.
I/O and CPU time of plan execution was collected using the system-
tap instrumentation tool. We verified that instrumentation overhead
was negligible. To make it easier to understand results, we used the
ext2 file system, as it does not have journaling that would neces-
sarily complicate result interpretation. To make I/O measurements
meaningful, we turned off file system caching using the O DIRECT

flag when opening files. Under this setting, we benchmarked the
I/O rates of the hard drive and found that sustained reads and writes
were 96MB/s and 60MB/s, respectively. These numbers were used
by the optimizer to convert the predicted I/O volume of plans to
estimated I/O time. The in-core computation of tested programs was
done by calling GotoBLAS2 [15], an optimized implementation of
BLAS which is able to utilize all four cores on our machine.
Storage Scheme In the following experiments, matrices are stored
in large, logical blocks. The blocks are laid out on disk in column-
major order, and so are the elements within each block. Since every
element in a matrix has a predetermined storage position, its index
(row and column numbers) is not stored. This is a highly efficient
storage scheme for dense matrices. We use our previously devel-
oped storage library, RIOTStore [26], for managing the storage and
performing I/O. RIOTStore implements the LAB-tree (Linearized
Array B-tree) and the DAF (Directly Addressable File) storage for-
mats, both of which provide the storage scheme we want and work
virtually identically for dense matrices.
A Note on Optimization Time The optimization time for all
experiments below are reasonably short: 0.6 second for the matrix
addition and multiplication program in Section 6.1, 2.1 seconds for
the two matrix multiplications in Section 6.2, and 156.7 seconds
(more on this next) for the linear regression program in Section 6.3.
Even though it optimizes at the instance level, our optimizer avoids
enumerating all statement instances by working with polyhedra.
Hence, the complexity of optimization depends on the complexity of
the program (such as the number of statements and dimensionalities
of iteration domains) instead of the size of the data it operates on
or the number of iterations each loop takes. This property can be
seen directly from the algorithms in Section 5, and has been further
confirmed by experiments on datasets of different scales.

The optimization time for the linear regression experiment is
longer, because there are 7 operators (statements) and 16 sharing
opportunities, and also because our optimizer is implemented in
Python and single-threaded—we expect a multithreaded C implmen-
tation to be significantly more efficient. Nevertheless, our optimizer
is able to prune away 94% of the search space. As we shall see later,
the optimization overhead is dwarfed by the I/O savings. Moreover,
this overhead is not affected by the size of the dataset; it becomes
more negligible when the dataset is larger. If needed, we can further
improve optimization time for larger, more complex programs by
localizing optimization to the most expensive code fragments, and
by combining plan enumeration and costing so we can terminate
search early as soon as acceptable plans are found.
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Datasets of Different Scales We have run the following experi-
ments with datasets of different scales and found consistent results.
Also, as expected, optimization time for the same program does not
change with the scale of the dataset. Due to the space limit, below
we present only results on the largest dataset tested.

6.1 Matrix Addition and Multiplication
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Figure 3: Matrix addition and multiplication: all plans.

We first test our optimizer with the program shown in Example 1.
It consists of a matrix addition followed by a matrix multiplica-
tion. The actual matrix sizes used in this experiment are listed in
Table 2. The optimizer finds 8 legal execution plans (including the
unmodified original schedule). We plot these plans in Figure 3.

Table 2: Matrix addition and multiplication: matrix sizes.
Matrix Block size # Blocks Total size
A, B,C 6000 × 4000 12 × 12 25.6GB

D 4000 × 5000 12 × 1 1.8GB
E 6000 × 5000 12 × 1 2.7GB

Figure 3(a) shows each plan’s memory footprint and I/O time as
estimated by the optimizer. The circles (◦) represent the 8 plans
considered by the optimizer (the ♣ is explained below). We notice
that a plan’s memory footprint can only take one of three possible
values, because there are limited combinations of which matrices’
blocks to keep in memory. Among plans with identical memory
footprint, all have different I/O costs. The plan with the lowest I/O
cost, Plan 7 in the lower right corner, takes 836 seconds, while the
original plan, Plan 0 in the upper left corner, takes 2394 seconds.
The code generated from Plan 7 is equivalent to the one shown
in Figure 1(b) for the general case. Since n3 = 1 (the number of
blocks in the second dimension of D and E) in this experiment,
Plan 7 is also effectively equivalent to the special case solution in
Figure 1(a). Plan 7 satisfies three sharing opportunities: s1WC →
s2RC, s2WE → s2RE and s2WE → s2WE. Note that because
n3 = 1, sharing opportunity s2RC → s2RC does not exist.

One may argue the comparison between Plan 0 and 7 is not fair:
Plan 0 underutilizes the memory and could reduce I/O by buffering
more data. Extra memory can be used to support sophisticated I/O
sharing schedules as Plan 7, or to simply allow bigger array blocks.
Which approach is better? To answer this question, we took Plan 0
and increased the number of rows in A, B, C, and E’s blocks from
6000 to 9000, and plotted it (♣) also in Figure 3(a). This modified
plan consumes more memory than Plan 7, but still incurs far more
I/O cost than it. This shows that blindly enlarging array blocks is
not the best way of utilizing extra memory; cost-driven optimization
like ours can give much better results.

Figure 3(b) compares the optimizer-predicted I/O cost with the
actual I/O cost of executing the plan. This comparison shows our
optimizer is impressively accurate in estimating the the I/O cost of
plans; the average error is merely 1.7%. This high accuracy should
be no surprise, because our optimizer is precise down to instance-
level sharing and can calculate the exact number and amount of I/O.
The only source of error is the simple I/O cost model we employ for

predicting the I/O time from the amount of I/O; however, the error
is small and does not affect optimization decisions.

Figure 3(b) also breaks the actual execution time of each plan
down into CPU and I/O time. Because our optimizer only optimizes
I/O, the CPU time is the same across all plans. With or without
optimization, the program remains I/O-dominant. Therefore, maxi-
mizing I/O sharing brings the total execution time from the original
3180 seconds down to 1560 seconds, a 50.9% improvement.
Comparing to Matlab and SciDB Matlab and SciDB [8] repre-
sent state-of-the-art scientific computing and scientific data man-
agement systems, respectively. However, neither has RIOTShare’s
I/O sharing optimization capabilities. We have tested them using
the same input program (properly translated) and the same data
(properly converted and loaded). As with RIOTShare, both systems
are allowed to use all four CPU cores of the machine. Running
the test program without blocking in Matlab immediately gives a
not-enough-memory error, due to the large data size. With blocking,
Matlab’s running time is 2.65 times that of our best plan. This sug-
gests that not only is Matlab unable to optimize I/O, but it also has
considerable control and storage overhead. Manually implementing
our best plan in Matlab makes a big difference—the performance
becomes 6% better than ours. The minor advantage may come
from Matlab’s higher in-memory math performance. This demon-
strates that the ideas developed in this paper is readily transferable
to existing systems and have great, platform-independent potential.

Although given a larger memory usage, SciDB takes 33.08 times
more time than our best plan. This could be a result of not using a
BLAS library or using an unoptimized one, and also not sharing I/O.
While SciDB focuses on parallelization, its handling of execution
on a single node seems to leave a big room for improvement on
I/O efficiency.

6.2 Two Matrix Multiplications
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Figure 4: Two matrix multiplications: Config A, selected plans.

●

●●●●
●●

●●●●
●● ●●●

●

●●●
● ●●
● ●

● ●
●●●●

●●
●

●
●

●
●

●

●

(a) Plan space (predicted)

700 800 900 1000
memory footprint (MB)

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

I/
O

 t
im

e
 (

s
)

0 1 2 3

(b) Predicted vs. actual

predicted I/O

actual I/O

actual CPU

0
2

0
0

0
6

0
0

0
1

0
0

0
0

ti
m

e
 (

s
)

plans

Figure 5: Two matrix multiplications: Config B, selected plans.

We next present results on a program with slightly more control
structures and a larger search space. Matrix multiplication is a
fundamental building block of many data analysis algrithms and
routines and has long been the target of optimization efforts by
researchers and HPC vendors. It is common to have multiple matrix
multiplications in the same program. In the following, we consider
two matrix multiplications, C = AB, E = AD, to be executed
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together. There are 9 sharing opportunities. We have tested this
program with two different matrix size configurations; relevant
information is summarized in Table 3 below.

for (i=0; i<n1; ++i)
for (j=0; j<n2; ++j)

for (k=0; k<n3; ++k)
C[i,j] += A[i,k] * B[k,j]; // s1

for (i=0; i<n1; ++i)
for (j=0; j<n4; ++j)

for (k=0; k<n3; ++k)
E[i,j] += A[i,k] * D[k,j]; // s2

Table 3: Two matrix multiplications: matrix sizes.
Configuration Matrix Block size # Blocks Total size

A
(Figure 4)

A 8000 × 7000 6 × 6 15.2GB
B,D 7000 × 3000 6 × 10 9.2GB
C, E 8000 × 3000 6 × 10 10.8GB

B
(Figure 5)

A 2000 × 8000 18 × 6 12.8GB
B 8000 × 6000 6 × 4 8.4GB
C 2000 × 6000 18 × 4 6.4GB
D 8000 × 7000 6 × 4 10.0GB
E 2000 × 7000 18 × 4 7.6GB

Under both configurations, the optimizer produced 40 plans. For
the sake of presentation, we select four plans for demonstration
below. Plan 0 enables no sharing opportunities; Plan 1 enables
s1WC → s1RC, s1WC → s1WC, s2WE → s2RE, and s2WE →
s2WE; Plan 2 enables all that Plan 1 enables, plus s1RA → s2RA;
Plan 3 enables s1RA→ s2RA, s1RB→ s1RB, and s2RD→ s2RD.
Intuitively, Plan 1 uses two separate loop nests to accumulate C and
E blocks in memory. Plan 2 in addition merges the two loop nests
and shares the read of A. Plan 3 shares the I/O to B and D instead
of C and E. Each plan works the same way for both configurations,
except with different size parameters.

Figure 4 and 5 summarize the plan spaces and characteristics of
the selected plans. Figure 4(a) and Figure 5(a) clearly illustrate
that different matrix size configurations have dramatic impact on
plan cost and optimality. This observation highlights the need for
automatic and systematic optimization, because code manually op-
timized based on expert knowledge or past experience has fragile
performance. Even if one knows the best plan for the current prob-
lem, a slight change in memory cap or problem size can easily render
the current solution inappropriate. The plans shown in Figure 4(b)
and Figure 5(b) exemplify this observation. Plan 2 has the lowest
I/O cost under Configuration A, but is suboptimal under Configura-
tion B, where Plan 3 is the best. Comparing predicted and actual I/O
times, we find the average error to be merely 0.6%. Even though
matrix multiplication is traditionally considered CPU-dominant, the
I/O and CPU time breakdown here actually reveals that, for big data,
I/O is equally (if not more) expensive than CPU; optimizing I/O
therefore provides good overall performance improvement.

6.3 Linear Regression: A Complete Program
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Figure 6: Linear regression: selected plans.

We next test RIOTShare with a commonly used statistical method—
linear regression. Suppose we want to fit a linear model for a set

of response variables y = (y1, . . . , yk) from m predictor variables
x = (x1, . . . , xm), i.e., y j = x′β j + ε j, where ε j ∼ N(0, σ2

j ). Suppose
n i.i.d. observations are collected: {yi, xi}

n
i=1. Using the ordinary

least square method, we can estimate the coefficient vectors β j,
which are column-combined to form a matrix β, simultaneously by
β̂ = (X′X)−1 X′Y, where X is formed by row-stacking xi’s and Y by
row-stacking yi’s. After obtaining β̂, we further compute the Resid-
ual Sum of Squares: RS S (Y j − Xβ̂ j) =

∑n
i=1(y ji − x′i β̂ j)2. Written

in matrix form, this program has 7 steps (statements): U = X′X;
V = X′Y; W = U−1; β̂ = WV; Ŷ = Xβ̂; E = Y − Ŷ; R = RS S (E).
Normally the number of response and predictor variables k and m
are small but the number of observations n can be very large. Below
we consider a case where k = 400, m = 4000 and n = 1.5 × 106.
Table 4 summarizes the detailed size configuration of the matrices.

Table 4: Linear regression: matrix sizes.
Matrix Block size # Blocks Total size

X 60000 × 4000 25 × 1 44.7GB
Y, Ŷ, E 60000 × 400 25 × 1 4.5GB
U,W 4000 × 4000 1 × 1 122.1MB
V, β̂ 4000 × 400 1 × 1 12.2MB

We have implemented the above linear regression program for
optimization by RIOTShare. The input program has a sequence of 7
loop nests, one for each step. Following the design of BLAS, matrix
transpose is not modeled as a separate operator, but as a flag passed
to operations such as matrix multiplication.

Figure 6(a) plots all the plans generated by the optimizer. The
best plan (bottom-right, Plan 2) uses only 6.0% more memory than
the original unoptimized plan (top-left, Plan 0), but saves I/O time
by 43.8%. This improvement comes from sharing the reads of X
for the two out-of-core matrix multiplications and eliminating the
materialization of intermediate results. Figure 6 plots the predicted
and actual running time of the two plans together with another
Plan 1, which merely keeps U and V in memory during the multi-
plication. Again, the prediction is highly accurate, with maximum
error 2.3%. In terms of total running time, the best plan gives 27.0%
improvement over the original plan.

7. CONCLUSION AND FUTURE WORK
Big data analytics are often I/O-intensive. In this paper, we have

presented RIOTShare, for representing and optimizing I/O patterns
in such tasks. Building on the polyhedral model, RIOTShare strikes
the balance between feasibility and flexibility of representation and
optimization, by exploring the middle ground between the high-
level, database-style operator-based query optimization and low-
level, compiler-style loop-based code optimization. Experiments
show that RIOTShare produces accurate estimates for the I/O costs
of candidate plans, and finds nontrivial plans with significant I/O
improvement under memory constraints.

In ongoing work, we are extending RIOTShare with the ability of
selecting optimal array block sizes for storage. By jointly optimizing
array block sizes and I/O sharing, the optimizer can produce better
plans that use memory more effectively and result in more I/O
savings. Since the polyhedral model is quite general, it would
also be interesting to investigate the effectiveness of RIOTShare
on programs involving a mix of array and matrix operations and
database- or Pig-style operations.
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APPENDIX
A. ADDITIONAL REMARKS
Remark A.1 (Multiplicity Reduction; Section 5.1) Multiplicity
reduction is the process of tailoring non-one-one sharing opportu-

nities to make them fit the linear sharing model. First note that
a “many” side can only be a read access, because if a statement
instance ~x is related to multiple instances with a write, only the in-
stance closest to ~x in execution time forms a real sharing opportunity
with ~x due to the no write in between rule, in which case the “many”
side is not really a “many” side.

The algorithm we use works as follows. If a sharing opportunity
is one-many or many-one, we reduce the multiplicity of the “many”
side to “one”. Specifically, we keep for any instance on the “one”
side only the instance closest to it in execution time on the “many”
side. Such reduction does not reduce the amount of I/O savings for
this sharing opportunity, because each instance from the original
“one” side can share I/O with at most one instance from the “many”
side anyway, by the linear sharing model.

For many-many sharing opportunities, we first reduce them to
many-one and then apply the reduction described above. The re-
duction from many-many to many-one cannot use the same idea as
above, however; the potential problem is illustrated in Figure 7(a).
If we keep for each source instance the target instance closest to it
in execution time, many target instances may be ignored and thus re-
duce the amount of potential I/O savings. We solve this problem by
ensuring the rank, or degree of freedom in the iteration variables, of
both sides after the reduction do not decrease below the minimum of
the original ranks of both sides. Continuing with the above example,
suppose originally both sides are depth-1 loops: for (i=0; i<2;

++i), both with rank 1 because i is a free variable. After the first
reduction in Figure 7(a), the target side has constraint i=0, which
means the rank descreases to 0 and renders the reduction invalid.
Our algorithm carefully adds rank-preserving equality constraints
and would produce a result as shown in Figure 7(b).

tim
e ⇒ ⇒

many-many many-one one-one
(a) Undesirable

tim
e ⇒ ⇒

many-many many-one one-one
(b) Desirable

Figure 7: Intricacy of multiplicity reduction for many-many.

Note that the multiplicity reduction problem can be cast into a
maximum bipartite matching problem and solved in O(|V ||E|) time.
However, in our case, |V | corresponds to the size of the iteration
domain, which is symbolic and usually takes a big value, making
regular algorithms inapplicable. Our algorithm, in contrast, works
in O(did j) time, where di and d j, source and target loop nest depths,
are very small constants.

Although our multiplicity reduction algorithm does not reduce
the amount of I/O sharing for each sharing opportunity, it is still
possible that the reduced sharing opportunity cannot be satisfied
with others at the same time while the original one can. This is
expected in order to reduce the exponential search space and make
optimization tractable.
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