Computing Euclid's Primes

Samuel S. Wagstaff, Jr.

Department of Computer Sciences Purdue University West Lafayette, Indiana 47907 U.S.A.

In Proposition 20 of Book IX of his *Elements*, Euclid gave a proof like the following that there are infinitely many primes. Suppose that p_1, \ldots, p_n are all the primes we know about. Let $P_n = \prod_{i=1}^n p_i$. Then $1 + P_n$ is not divisible by any of the primes p_1, \ldots, p_n , so the prime factors of $1 + P_n$ are new to us. Hence, the number of primes is unbounded. If we "discover" just the smallest prime factor p_{n+1} of $1 + P_n$ and if we begin with $p_1 = 2$, then we are lead in a natural way to the sequence $p_2 = 3$, $p_3 = 7$, $p_4 = 43$, $p_5 = 13$, etc. Shanks [8] has conjectured that this sequence contains all primes. He gave a heuristic argument which makes this conjecture plausible.

We have computed p_n as far as $p_{43} = 4357$. We have factored $1+P_n$ completely for all n up to 27 and for several larger n. Our results support Shanks' conjecture. Guy and Nowakowski [2] studied $\{p_n\}$ and several related sequences. We extend the computation of some of their sequences and answer a question of Mullin.

Euclid's proof does not specify which prime factor(s) of 1 plus the product of those found so far should be "discovered". If only the largest one is discovered, then we would obtain the sequence $q_1 = 2$, $Q_n = \prod_{i=1}^n q_i$, $q_{n+1} =$ the largest prime factor of $1 + Q_n$, with $q_2 = 3$, $q_3 = 7$, $q_4 = 43$, $q_5 = 139$, etc. Many difficult factorizations must be done to compute the sequences $\{p_n\}$ and $\{q_n\}$. The sequences $\{p_n\}$ and $\{q_n\}$ appear in Sloane's Handbook [9] as sequences number 329 and 330, respectively.

If one feels that all prime factors of 1 plus the product of those found so far are "discovered", then one is lead to the sequence $a_1 = 2$, $A_n = \prod_{i=1}^n a_i$, $a_{n+1} = 1 + A_n$. The terms of this sequence can be computed without any factoring since $a_{n+1} = a_n(a_n - 1) + 1$. We do not consider this sequence further because Guy and Nowakowski [2] have already investigated it thoroughly.

Provided that one begins with the prime 3, Euclid's proof will work if one *subtracts* 1 from the product of the primes found so far. This modification leads to these two sequences: $r_1 = 3$, $R_n = \prod_{i=1}^n r_i$, $r_{n+1} =$ the smallest prime factor of $R_n - 1$, so that $r_2 = 2$, $r_3 = 5$, $r_4 = 29$, $r_5 = 11$, etc., and $s_1 = 3$, $S_n = \prod_{i=1}^n s_i$, $s_{n+1} =$ the largest prime factor of $S_n - 1$, so that $s_2 = 2$, $s_3 = 5$, $s_4 = 29$, $s_5 = 79$, etc. Computing these sequences requires much factoring.

The values of these four sequences which are known to me are presented in Tables 1 to 6. Guy and Nowakowski [2] gave them up to p_{14} , q_9 , r_{19} and s_{10} . Naur [6] computed the first eleven q_i .

The sequences $\{p_n\}$ and $\{r_n\}$ clearly are not monotonic. Guy and Nowakowski [2] found that $s_6 > s_7$ so that $\{s_n\}$ is not monotonic. Mullin [5] asked whether $\{q_n\}$ is monotonic. We see from Table 3 that $q_9 > q_{10}$ so that $\{q_n\}$ is not monotonic either.

Cox and van der Poorten [1] showed that some primes (including 5, 11, 13, 17, 19, 23, 29, 31, 37, 41 and 47) do not appear in $\{q_n\}$. Selfridge (see [2]) showed that some primes (including 7, 11, 13, 17, 19 and 23) are absent from $\{s_n\}$.

On the other hand, there is good reason to believe that $\{p_n\}$ and $\{r_n\}$ contain all primes. Shanks [8] gave a heuristic argument that $\{p_n\}$ contains all primes. Here is the analog of his argument for $\{r_n\}$: Let q be the smallest prime that has not occurred up to r_N . Let a and b be the least non-negative residues modulo q of R_{N-1} and r_N , respectively. Then q does not divide ab since q has not occurred yet. But $q = r_{N+1}$ if and only if

$$ab \equiv 1 \pmod{q}.$$
 (1)

The product ab modulo q can a priori be any residue between 1 and q-1. If (1) fails, then we can replace N by N+1, N+2, etc. After k(q-1) values of N, each residue between 1 and q-1 will be represented by ab modulo q an average of k times. As $k \to \infty$ it is highly unlikely that (1) will never happen. When it does happen, q appears and (1) can never happen again since q divides a ever after.

Of course, we have not proved the approximate equidistribution of ab among the non-zero residue classes modulo q. The only hint I know that this hypothesis might fail

is a tiny one. Sometimes $R_n - 1$ is prime, so that $r_{n+1} = R_n - 1$. (This happens for n = 1, 2, 3, 8 and 10, for example.) In this situation we have

THEOREM. If n > 1 and $r_{n+1} = R_n - 1$, then $r_{n+2} \equiv 1$ or 9 (mod 10).

Proof: We have $R_{n+1} = R_n r_{n+1} = R_n^2 - R_n$, so that $4(R_{n+1} - 1) = (2R_n - 1)^2 - 5$. Thus 5 is a quadratic residue of any factor of $R_{n+1} - 1$ and, in particular, of its smallest prime factor r_{n+2} . When n = 1, $r_{n+2} = 5$. But when n > 1, 5 divides R_{n+1} and so not $R_{n+1} - 1$. Thus $r_{n+2} \equiv 1$ or 4 (mod 5). The conclusion follows because r_{n+2} is odd.

I expect that prime values of $R_n - 1$ are so rare that this theorem will not affect the heuristic argument above. As you can see from Tables 4 and 5, when $R_n - 1$ is composite r_{n+2} may have 3 or 7 for its unit's digit. The Theorem is analogous to one which Shanks [8] proved for $\{p_n\}$.

Shanks [8] noted that 31, 41, 47, 59, 67 and 73 are the first few primes which have not yet known appeared in $\{p_n\}$. We have computed $\{r_n\}$ a bit further than $\{p_n\}$. The first primes which have not yet appeared in $\{r_n\}$ are 53, 59, 61, 67, 71 and 73.

Most of the factoring was done by a program written by Peter Montgomery. Methods of factoring used included trial division (to 10000), Pollard's p-1 method [7] and Lenstra's elliptic curve method [3].

In the tables, when a number is asserted to be the greatest or least prime factor of another number, some proof is required. In each case when p is claimed to the greatest prime factor of P, I have factored P completely. These complete factorizations are given in the early parts of Tables 3 and 6. The bulky factorizations of large numbers at the ends of these tables are given in Table 7. In some lines of Table 7 a long factorization is broken at a center dot.

When a small prime p (less than 10^8 , say) is supposed to be the least prime factor of P, this fact may be checked easily by trial division. In most cases when we say that a larger prime p is the least prime factor of P, we give the complete factorization of P in Table 1, 4, 7 or 8. One difficult proof of this type was that the ten-digit prime factor

p=3143065813 of $1+P_{31}$ is indeed p_{32} . We showed this by a novel application of the elliptic curve method (ECM). Suppose that $1+P_{31}$ had a prime factor q < p. Our goal was to run ECM on $(1+P_{31})/p$ once and either discover q certainly or show that there was no such divisor q. Suppose we run ECM with limits L_1 for Step 1 and L_2 for Step 2 and assume that $10 < L_1 < L_2$. ECM begins by choosing a random elliptic curve whose order over GF(q) is e. This run of ECM will discover q provided that the greatest prime factor of e is e is e and all other prime factors of e are e in e and e limit primes to allow for any possible repeated prime factors of e.) Although e is unknown to us, we do know that e is e and e limit primes to e limit primes to e limit primes to e limit primes e limit primes to e limit primes e

Now it is possible when starting ECM to insure that the unknown order e is divisible by 12 (see [4]). Let m=e/12. Then m<262000000. This run of ECM will discover q provided that the largest prime factor of m is $< L_2$ and all other prime factors of m are $< L_1$. These conditions are satisfied provided we choose $L_2 > 262000000$ and $L_1 > \sqrt{262000000}$ or $L_1 > 16187$. The run was made with $L_1 = 20000$ and $L_2 = 270000000$. Since no factor was found, it was shown that p is the smallest prime factor of $1 + P_{31}$, so that $p_{32} = p$.

In a similar fashion, it was shown that the smallest prime factors of $R_{25} - 1$, $R_{28} - 1$ and $R_{49} - 1$ are r_{26} , r_{29} and r_{50} , respectively. However, we could not show without undue effort that the twelve-digit divisor of $R_{53} - 1$ was actually r_{54} . That is why we stopped computing $\{r_n\}$ with r_{53} .

Table 1.

 $p_1 = 2$, $P_n = \prod_{i=1}^n p_i$, $p_{n+1} = \text{least prime factor of } 1 + P_n$.

n	p_n	$1+P_n$
1	2	3
2	3	7
3	7	43
4	43	$1807 = 13 \cdot 139$
5	13	$23479 = 53 \cdot 443$
6	53	$1244335 = 5 \cdot 248867$
7	5	6221671 (prime)
8	6221671	38709183810571 (prime)
9	38709183810571	1498400911280533294827535471
		$= 139 \cdot 25621 \cdot 420743244646304724409$
10	139	208277726667994127981027430331
		$=2801 \cdot 2897 \cdot 489241 \cdot 119812279 \cdot 437881957$
11	2801	583385912397051552474857832354331
		$= 11 \cdot 1009 \cdot 241139351 \cdot 217973650939627698919$
12	11	6417245036367567077223436155897631
		$= 17 \cdot 1949 \cdot 193681376161759185018665262907$
13	17	109093165618248640312798414650259711
		$= 5471 \cdot 19940260577270817092450816057441$
14	5471	596848709097438311151320126551570873411
		$= 52662739 \cdot 11333415626130617914714237072849$
15	52662739	31431687789685319348762761330032346946392869991
		$= 23003 \cdot 9481141 \cdot 144119457035843546516309623213989617$
16	23003	723023114226131400979589798874734076807875188379971
		$= 30693651606209 \cdot 23556112628836625540740261445212918019$

Table 2.

$$p_1 = 2$$
, $P_n = \prod_{i=1}^n p_i$, $p_{n+1} = \text{least prime factor of } 1 + P_n$.

- 17 30693651606209
- $18 \ 37$
- 19 1741
- $20\quad 1313797957$
- 21 887
- 22 71
- 23 7127
- 24 109
- 25 23
- 26 97
- $27 \quad 159227$
- $28 \quad 643679794963466223081509857$
- 29 103
- 30 1079990819
- 31 9539
- 32 3143065813 33 29
- $34 \ \ 3847$
- 35 89
- 36 19
- 37 577
- 38 223
- $39 \quad 139703$
- 40 457
- 41 9649
- 42 61
- 43 4357

Table 3.

$$q_1 = 2$$
, $Q_n = \prod_{i=1}^n q_i$, $q_{n+1} = \text{greatest prime factor of } 1 + Q_n$.

```
1+Q_n
n
   q_n
1
                      3
2 3
                     7
3 7
                     43
4 43
                     1807 = 13 \cdot 139
                     251035 = 5 \cdot 50207
5 139
6 50207
                     12603664039 = 23 \cdot 1607 \cdot 340999
7 340999
                     4297836833293963 = 23 \cdot 79 \cdot 2365347734339
8 \quad 2365347734339 \quad 10165878616190575459068761119
                     = 17 \cdot 127770091783 \cdot 4680225641471129
```

- 9 4680225641471129
- $10 \quad 1368845206580129$
- $11\quad 889340324577880670089824574922371$
- $12 \quad 20766142440959799312827873190033784610984957267051218394040721$
- $13 \quad 34865461335237382945490214537050170087348731450926431492048548216 \\ \quad 14266466998637603378972254923344607825545244648001799$

 $\label{eq:Table 4.} \text{Table 4.}$ $r_1=3,\,R_n=\prod_{i=1}^n r_i,\,r_{n+1}=\text{least prime factor of }R_n-1.$

n	r_n	R_n-1
1	3	2
2	2	5
3	5	29
4	29	$869 = 11 \cdot 79$
5	11	$9569 = 7 \cdot 1367$
6	7	$66989 = 13 \cdot 5153$
7	13	$870869 = 37 \cdot 23537$
8	37	32222189 (prime)
9	32222189	$1038269496173909 = 131 \cdot 1610899 \cdot 4920061$
10	131	$136013303998782209 \; (prime)$
11	136013303998782209	18499618864665144581031859013701889
		$= 31 \cdot 41 \cdot 181 \cdot 499 \cdot 8870749 \cdot 18166774231909276189$
12	31	573488184804619482011987629424758589
		$= 197 \cdot 3221 \cdot 903789983570098326830409620597$
13	197	112977172406510037956361562996677442229
		$= 19 \cdot 2154611 \cdot 9547427 \cdot 49532972059 \cdot 5835626580317$
14	19	2146566275723690721170869696936871402369
		$= 157 \cdot 769 \cdot 2543 \cdot 271338827 \cdot 25766771512898971353713$
15	157	337010905288619443223826542419088810172089
		$= 17 \cdot 452704788101 \cdot 43790504143967027283161477717$
16	17	5729185389906530534805051221124509772925529
		$=8609\cdot 32183\cdot 8907623\cdot 2321409806422010530425341209$

Table 5.

 $r_1 = 3$, $R_n = \prod_{i=1}^n r_i$, $r_{n+1} = \text{least prime factor of } R_n - 1$.

- $n r_n$
- 17 8609
- $18 \quad 1831129$
- 19 35977
- $20\quad 508326079288931$
- $21\quad 487$
- $22 \quad 10253$
- 23 1390043
- $24\quad 18122659735201507243$
- 25 25319167
- 26 9512386441
- 27 85577
- 28 1031
- 29 3650460767
- 30 107
- 31 41
- 32 811
- 33 15787
- 34 89
- $35 \quad 68168743$
- 36 4583
- 37 239
- 38 1283
- 39 443
- $40\quad 902404933$
- $41 \quad 64775657$
- $42 \quad 2753$
- $43 \ 23$
- $44 \quad 149287$
- $45 \quad 149749$
- 46 7895159
- 47 79
- $48 \quad 43$
- 49 1409
- $50 \quad 184274081$
- 51 47
- 52 569
- 53 63843643

Table 6.

 $s_1 = 3$, $S_n = \prod_{i=1}^n s_i$, $s_{n+1} = \text{greatest prime factor of } S_n - 1$.

```
S_n - 1
n - s_n
1 3
2 2
                        29
3 5
4 29
                        869 = 11 \cdot 79
                        68729 (prime)
5 79
6 68729
                        4723744169 = 61 \cdot 139 \cdot 149 \cdot 3739
7 3739
                        17662079451629 = 2839019 \cdot 6221191
8 6221191
                        109879169725765491329 = 83 \cdot 8423 \cdot 157170297801581
9 \quad 157170297801581 \quad 41 \cdot 5955703423 \cdot 70724343608203457341903
```

- $10 \quad 70724343608203457341903$
- $11\quad 46316297682014731387158877659877$
- $12 \quad 78592684042614093322289223662773$
- $13 \quad 181891012640244955605725966274974474087$

Table 7. Auxiliary Factorizations.

Notation: Pxx is a prime of xx digits, Cxx is a composite of xx digits

Number	Factorization
$1 + P_{17}$	$37 \cdot 8109973 \cdot 1049918455514883211 \cdot P38$
$1 + P_{18}$	$1741 \cdot 2687771 \cdot P57$
$1 + P_{19}$	$1313797957 \cdot 1587086232579380268953381 \cdot P36$
$1 + P_{20}$	$887 \cdot 6599 \cdot 1630146233 \cdot 299362531946050981817197729 \cdot P36$
$1 + P_{21}$	$71 \cdot 3299661004790609 \cdot 117822432782814607470079533787 \cdot P35$
$1 + P_{22}$	$7127 \cdot 352201 \cdot 155354729501063 \cdot 11654246919591371 \cdot P44$
$1 + P_{23}$	$109 \cdot 85669 \cdot 232047887 \cdot 2824330157926317541 \cdot P54$
$1 + P_{24}$	$23 \cdot P88$
$1 + P_{25}$	$97 \cdot 191 \cdot 474716141 \cdot 65748525431 \cdot P67$
$1 + P_{26}$	$159227 \cdot 1067159 \cdot 43497281 \cdot 2527540905245931542309 \cdot P53$
$1 + P_{27}$	$643679794963466223081509857 \cdot 2496022367830647867616317307 \cdot P44$
$1 + P_{28}$	$103 \cdot 31336667 \cdot 36591209 \cdot C108$
$1 + P_{29}$	$1079990819 \cdot 2434978091641012135177 \cdot P96$
$1 + P_{30}$	$9539 \cdot 245433668891 \cdot 979752962034735781 \cdot 8473716991146998027 \cdot$
	$\cdot 26294987506338782316507217723423 \cdot P52$
$1 + P_{31}$	$3143065813 \cdot C130$
$1 + P_{32}$	$29 \cdot 10429 \cdot 165047 \cdot C139$
$1 + P_{33}$	$3847 \cdot 2607917067290207 \cdot P132$
$1 + P_{34}$	$89 \cdot 191 \cdot 677371128232689991 \cdot 33637322077530763247 \cdot C113$
$1 + P_{35}$	$19 \cdot 787 \cdot 7757 \cdot 28006756507 \cdot 1022974063703 \cdot C126$
$1 + P_{36}$	$577 \cdot P155$
$1 + P_{37}$	$223 \cdot 5393 \cdot 74673192479 \cdot P143$
$1 + P_{38}$	$139703 \cdot 43085355700150267667 \cdot P138$
$1 + P_{39}$	$457 \cdot 37179386588269 \cdot 159834478959851 \cdot P137$
$1 + P_{40}$	$9649 \cdot 319466050329395719 \cdot P149$
$1 + P_{41}$	$61 \cdot 6827978951 \cdot 66042713762390953740707 \cdot C140$
$1 + P_{42}$	$4357 \cdot 7027 \cdot C169$
$1 + P_{43}$	C180
$1 + Q_9$	$89 \cdot 839491 \cdot 556266121 \cdot 836312735653 \cdot 1368845206580129$
$1 + Q_{10}$	$1307 \cdot 56030239485370382805887 \cdot 889340324577880670089824574922371$
$1 + Q_{11}$	$11 \cdot 253562789978428582962631727729 \cdot P62$
$1 + Q_{12}$	$739 \cdot 2311 \cdot 201999392887934083464766999529 \cdot P118$
$1 + Q_{13}$	$11 \cdot 13 \cdot 107536547 \cdot C261$
$S_{10} - 1$	$7 \cdot 349 \cdot 449 \cdot 112939 \cdot 9937441 \cdot 21420649 \cdot P32$
$S_{11} - 1$	$7 \cdot 257 \cdot 521 \cdot 682511 \cdot 10829594203 \cdot 50852665316801$
	$\cdot 2043158415368893790939 \cdot P32$
$S_{12} - 1$	$7 \cdot 11 \cdot 17 \cdot 86599 \cdot 294757 \cdot 933418660159 \cdot 9669562218961751 \cdot$
- -	$\cdot 2289336175732053683 \cdot 35403807765085882291423 \cdot P39$
$S_{13} - 1$	$11 \cdot 204249779 \cdot C150$

Table 8. More Auxiliary Factorizations.

Notation: Pxx is a prime of xx digits, Cxx is a composite of xx digits

	r 3 / 2 · · · r
Number	Factorization
$R_{17} - 1$	$1831129 \cdot 96593227 \cdot 395499093031447 \cdot 705073635630813269$
$R_{18} - 1$	$35977 \cdot 30902882521913 \cdot 12326099580658421 \cdot 6590447658135399749$
$R_{19} - 1$	$508326079288931 \cdot 8888176173420238273 \cdot 719174739667579660597843$
$R_{20} - 1$	$487 \cdot 4783 \cdot 317419 \cdot P61$
$R_{21} - 1$	$10253 \cdot 112687 \cdot 24025694597 \cdot P56$
$R_{22}^{21} - 1$	$1390043 \cdot 8364987138788585498453381605327 \cdot P42$
$R_{23}^{22}-1$	$18122659735201507243 \cdot P66$
$R_{24}^{23} - 1$	$25319167 \cdot 5211496051 \cdot 58429754491680845821 \cdot P68$
$R_{25} - 1$	$9512386441 \cdot C102$
$R_{26} - 1$	$85577 \cdot C117$
$R_{27} - 1$	$1031 \cdot 1787 \cdot 274100051 \cdot 2353368011777399 \cdot C97$
$R_{28} - 1$	$3650460767 \cdot C121$
$R_{29} - 1$	$107 \cdot 1636358697177293 \cdot C122$
$R_{30}-1$	$41 \cdot C140$
$R_{31} - 1$	$811 \cdot 86085747863 \cdot C130$
$R_{32}-1$	$15787 \cdot 1763431 \cdot P136$
$R_{33}-1$	$89 \cdot 12211 \cdot 1577027 \cdot P138$
$R_{34} - 1$	$68168743 \cdot 2880625453 \cdot 2119710631572329177 \cdot P117$
$R_{35}-1$	$4583 \cdot 630175649 \cdot 13723021380961 \cdot C135$
$R_{36} - 1$	$239 \cdot C162$
$R_{37} - 1$	$1283 \cdot 23059 \cdot C159$
$R_{38} - 1$	$443 \cdot C167$
$R_{39} - 1$	$902404933 \cdot 8037715351 \cdot 29371574741 \cdot P143$
$R_{40}-1$	$64775657 \cdot 385983277 \cdot C165$
$R_{41}-1$	$2753 \cdot C185$
$R_{42}-1$	$23 \cdot 40904021 \cdot C183$
$R_{43}-1$	$149287 \cdot 172969 \cdot 1588051 \cdot C177$
$R_{44} - 1$	$149749 \cdot 33807989 \cdot C186$
$R_{45}-1$	$7895159 \cdot C197$
$R_{46}-1$	$79 \cdot 137 \cdot 367 \cdot C204$
$R_{47}-1$	$43 \cdot 61 \cdot 991 \cdot 14821 \cdot 60077 \cdot C197$
$R_{48}-1$	$1409 \cdot 218131 \cdot 293847231283 \cdot C194$
$R_{49} - 1$	$184274081 \cdot C209$
$R_{50} - 1$	$47 \cdot 547 \cdot 1571 \cdot 4621 \cdot C215$
$R_{51} - 1$	$569 \cdot C225$
$R_{52} - 1$	$63843643 \cdot 1037601959 \cdot C213$
$R_{53} - 1$	$111973205287 \cdot C227$

References

- C. D. Cox and A. J. van der Poorten, "On a sequence of prime numbers," J. Austral. Math. Soc. 8 (1968), 571-574. MR 37 # 3998.
- Richard Guy and Richard Nowakowski, "Discovering primes with Euclid," Delta 5 (1975), 49-63. MR 52 # 5548.
- 3. H. W. Lenstra, Jr., "Factoring integers with elliptic curves," $Ann.\ of\ Math.\ (2)\ 126\ (1987),\ 649-673.$ MR 89g:11125.
- 4. Peter L. Montgomery, An FFT Extension of the Elliptic Curve Method of Factorization, Ph. D. thesis at the University of California, Los Angeles, 1992.
- Albert A. Mullin, "Recursive function theory (a modern look at a Euclidean idea)," Bull. Amer. Math. Soc. 69 (1963), 737.
- 6. Thorkil Naur, Integer Factorization, DAIMI Report PB-144, University of Aarhus, 1982.
- 7. J. M. Pollard, "Theorems on factorization and primality testing," *Proc. Camb. Phil. Soc.* **76** (1974), 521–528. MR 50 # 6992.
- 8. Daniel Shanks, "Euclid's primes," Bull. Inst. Combinatorics and its Applications 1 (1991), 33-36.
- 9. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, New York-London, 1973. MR 50 # 9760.