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In Proposition 20 of Book IX of his Elements, Euclid gave a proof like the following
that there are infinitely many primes. Suppose that p1, ..., p, are all the primes we know
about. Let P, =[]}, pi. Then 1+ P, is not divisible by any of the primes py, ..., pn, s0
the prime factors of 1+ P, are new to us. Hence, the number of primes is unbounded. If
we “discover” just the smallest prime factor p,41 of 1+ P,, and if we begin with p; = 2,
then we are lead in a natural way to the sequence p;, = 3, p3 = 7, py = 43, ps = 13, etc.
Shanks [8] has conjectured that this sequence contains all primes. He gave a heuristic

argument which makes this conjecture plausible.

We have computed p,, as far as py3 = 4357. We have factored 1+ P,, completely for
all n up to 27 and for several larger n. Our results support Shanks’ conjecture. Guy and
Nowakowski [2] studied {p,} and several related sequences. We extend the computation

of some of their sequences and answer a question of Mullin.

Euclid’s proof does not specify which prime factor(s) of 1 plus the product of those
found so far should be “discovered”. If only the largest one is discovered, then we would
obtain the sequence ¢1 = 2, @, = [, ¢, qn+1 = the largest prime factor of 1 + Qp,
with ¢ = 3,q3 =7, 4 = 43, g5 = 139, etc. Many difficult factorizations must be done to
compute the sequences {p,} and {g,}. The sequences {p,} and {¢,} appear in Sloane’s

Handbook [9] as sequences number 329 and 330, respectively.

If one feels that all prime factors of 1 plus the product of those found so far are
“discovered”, then one is lead to the sequence a; = 2, A, = [[I; ai, ant1 = 1+ A,. The
terms of this sequence can be computed without any factoring since a,+1 = an(a,—1)+1.
We do not consider this sequence further because Guy and Nowakowski [2] have already

investigated it thoroughly.



Provided that one begins with the prime 3, Euclid’s proof will work if one subtracts
1 from the product of the primes found so far. This modification leads to these two
sequences: 1y = 3, R, = [[i-, 7i, Tn41 = the smallest prime factor of R, — 1, so that
rg = 2,173 =5, 74 =29, 75 = 11, etc., and 51 = 3, S, = H?:l Si, Sn+1 = the largest
prime factor of S,, — 1, so that so = 2, s3 = 5, s4 = 29, s5 = 79, etc. Computing these
sequences requires much factoring.

The values of these four sequences which are known to me are presented in Tables
1 to 6. Guy and Nowakowski [2] gave them up to p14, o, 719 and s19. Naur [6] computed

the first eleven g;.

The sequences {p,} and {r,} clearly are not monotonic. Guy and Nowakowski
[2] found that s¢ > s7 so that {s,} is not monotonic. Mullin [5] asked whether {g,} is

monotonic. We see from Table 3 that g9 > g19 so that {g,} is not monotonic either.

Cox and van der Poorten [1] showed that some primes (including 5, 11, 13, 17,
19, 23, 29, 31, 37, 41 and 47) do not appear in {g,}. Selfridge (see [2]) showed that some

primes (including 7, 11, 13, 17, 19 and 23) are absent from {s,}.

On the other hand, there is good reason to believe that {p,} and {r,} contain
all primes. Shanks [8] gave a heuristic argument that {p,} contains all primes. Here is
the analog of his argument for {r,}: Let ¢ be the smallest prime that has not occured
up to ry. Let a and b be the least non-negative residues modulo ¢ of Ry 1 and 7y,
respectively. Then ¢ does not divide ab since ¢ has not occured yet. But ¢ = ry41 if and
only if

ab=1 (mod q). (1)
The product ab modulo ¢ can a priori be any residue between 1 and ¢ — 1. If (1) fails,
then we can replace N by N + 1, N + 2, etc. After k(q — 1) values of N, each residue
between 1 and g — 1 will be represented by ab modulo ¢ an average of k times. As k — oo
it is highly unlikely that (1) will never happen. When it does happen, ¢ appears and (1)

can never happen again since ¢ divides a ever after.

Of course, we have not proved the approximate equidistribution of ab among the

non-zero residue classes modulo g. The only hint I know that this hypothesis might fail
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is a tiny one. Sometimes R,, — 1 is prime, so that r,y; = R, — 1. (This happens for n

=1, 2, 3, 8 and 10, for example.) In this situation we have
THEOREM. Ifn > 1 and rpy; = R, — 1, then 100 =1 or 9 (mod 10).

Proof: We have R,11 = R,rpi1 = R2 — R, so that 4(R,41 — 1) = (2R, — 1)2 — 5.
Thus 5 is a quadratic residue of any factor of R,,;1 — 1 and, in particular, of its smallest
prime factor r,42. When n =1, r42 = 5. But when n > 1, 5 divides R,,41 and so not

R,i1 — 1. Thus r,,y2 = 1 or 4 (mod 5). The conclusion follows because r, 2 is odd.

I expect that prime values of R, — 1 are so rare that this theorem will not affect
the heuristic argument above. As you can see from Tables 4 and 5, when R, — 1 is
composite rp4+o may have 3 or 7 for its unit’s digit. The Theorem is analogous to one

which Shanks [8] proved for {p,}.

Shanks [8] noted that 31, 41, 47, 59, 67 and 73 are the first few primes which have
not yet known appeared in {p,}. We have computed {r,,} a bit further than {p,}. The

first primes which have not yet appeared in {r,} are 53, 59, 61, 67, 71 and 73.

Most of the factoring was done by a program written by Peter Montgomery.
Methods of factoring used included trial division (to 10000), Pollard’s p — 1 method [7]

and Lenstra’s elliptic curve method [3].

In the tables, when a number is asserted to be the greatest or least prime factor of
another number, some proof is required. In each case when p is claimed to the greatest
prime factor of P, I have factored P completely. These complete factorizations are given
in the early parts of Tables 3 and 6. The bulky factorizations of large numbers at the
ends of these tables are given in Table 7. In some lines of Table 7 a long factorization is

broken at a center dot.

When a small prime p (less than 10%, say) is supposed to be the least prime factor
of P, this fact may be checked easily by trial division. In most cases when we say that
a larger prime p is the least prime factor of P, we give the complete factorization of P

in Table 1, 4, 7 or 8. One difficult proof of this type was that the ten-digit prime factor
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p = 3143065813 of 1 + P5; is indeed p32. We showed this by a novel application of the
elliptic curve method (ECM). Suppose that 1+ P3; had a prime factor ¢ < p. Our goal
was to run ECM on (1 + P3;)/p once and either discover ¢ certainly or show that there
was no such divisor q. Suppose we run ECM with limits L, for Step 1 and Ls for Step
2 and assume that 10 < L; < L;. ECM begins by choosing a random elliptic curve
whose order over GF(q) is e. This run of ECM will discover ¢ provided that the greatest
prime factor of e is < Lo and all other prime factors of e are < L;. (Montgomery’s
program [4] uses high powers of small primes to allow for any possible repeated prime
factors of e.) Although e is unknown to us, we do know that e < ¢ + 2,/qg — 1. Hence,

e < p+2,/p— 1< 3143200000.

Now it is possible when starting ECM to insure that the unknown order e is
divisible by 12 (see [4]). Let m = e/12. Then m < 262000000. This run of ECM
will discover ¢ provided that the largest prime factor of m is < Ly and all other prime
factors of m are < L,. These conditions are satisfied provided we choose Ly > 262000000
and L; > /262000000 or L; > 16187. The run was made with L; = 20000 and L, =
270000000. Since no factor was found, it was shown that p is the smallest prime factor

of 1+ P53y, so that p3s = p.

In a similar fashion, it was shown that the smallest prime factors of Ros — 1,
Ros — 1 and Ryg9 — 1 are rog, ro9 and rsg, respectively. However, we could not show
without undue effort that the twelve-digit divisor of Rs3 — 1 was actually r54. That is

why we stopped computing {r,} with rss.
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Table 1.

p1 =2, P, =1~ pi, Pnt1 = least prime factor of 1 + P,.

Pn

2

3

7

43

13

53

)

6221671
38709183810571

139

2801

11

17

5471

52662739

23003

1+ P,
3

7

43

1807 =13-139

23479 = 53 - 443

1244335 = 5 - 248867

6221671 (prime)

38709183810571 (prime)

1498400911280533294827535471

= 139 - 25621 - 420743244646304724409
208277726667994127981027430331

= 2801 - 2897 - 489241 - 119812279 - 437881957
583385912397051552474857832354331

= 11-1009 - 241139351 - 217973650939627698919
6417245036367567077223436155897631

=17-1949 - 193681376161759185018665262907
109093165618248640312798414650259711

= 5471 - 19940260577270817092450816057441
596848709097438311151320126551570873411

= 52662739 - 11333415626130617914714237072849
31431687789685319348762761330032346946392869991

= 23003 - 9481141 - 144119457035843546516309623213989617
723023114226131400979589798874734076807875188379971

= 30693651606209 - 23556112628836625540740261445212918019



Table 2.
p1 =2, P, =1~ pi, Pnt1 = least prime factor of 1 + P,.

n Pn

17 30693651606209
18 37

19 1741

20 1313797957
21 887

22 71

23 7127

24 109

25 23

26 97

27 159227

28 643679794963466223081509857
29 103

30 1079990819
31 9539

32 3143065813
33 29

34 3847

35 89

36 19

37 877

38 223

39 139703

40 457

41 9649

42 61

43 4357
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Table 3.
@1 =2, Qn = 1[I, g qn+1 = greatest prime factor of 1 + Q.

In 1+Qn

2 3

3 7

7 43

43 1807 = 13- 139

139 251035 = 5 - 50207

50207 12603664039 = 23 - 1607 - 340999

340999 4297836833293963 = 23 - 79 - 2365347734339

2365347734339 10165878616190575459068761119
= 17- 127770091783 - 4680225641471129

4680225641471129

1368845206580129

889340324577880670089824574922371
20766142440959799312827873190033784610984957267051218394040721
34865461335237382945490214537050170087348731450926431492048548216\
14266466998637603378972254923344607825545244648001799
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Table 4.

rn =3, R,= H;‘Zl r;, Tnt1 = least prime factor of R, — 1.

Tn

3

2

)

29

11

7

13

37
32222189
131
136013303998782209

31

197

19

157

17

R,—1

2

5

29

869=11-79

9569 = 7 - 1367

66989 = 13 - 5153

870869 = 37 - 23537

32222189 (prime)

1038269496173909 = 131 - 1610899 - 4920061
136013303998782209 (prime)
18499618864665144581031859013701889
=31-41-181-499-8870749 - 18166774231909276189
573488184804619482011987629424758589

=197 - 3221 - 903789983570098326830409620597
112977172406510037956361562996677442229
=19-2154611 - 9547427 - 49532972059 - 5835626580317
2146566275723690721170869696936871402369

= 157769 - 2543 - 271338827 - 25766771512898971353713
337010905288619443223826542419088810172089

=17 - 452704788101 - 43790504143967027283161477717
5729185389906530534805051221124509772925529

= 8609 - 32183 - 8907623 - 2321409806422010530425341209



Table 5.

rn =3, R,= H?:l r;, Tnt1 = least prime factor of R, — 1.

n rn

17 8609

18 1831129

19 35977

20 508326079288931
21 487

22 10253

23 1390043
24 18122659735201507243
25 25319167
26 9512386441
27 85577

28 1031

29 3650460767
30 107

31 41

32 811

33 15787

34 89

35 68168743
36 4583

37 239

38 1283

39 443

40 902404933
41 64775657
42 2753

43 23

44 149287

45 149749

46 7895159
47 79

48 43

49 1409

50 184274081
51 47

52 569

53 63843643
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Table 6.

51=3,5,= H?:l Si, Sny1 = greatest prime factor of S, — 1.

79
68729
3739
6221191

Sp—1

2

)

29

869 =11-79

68729 (prime)

4723744169 = 61 - 139 - 149 - 3739

17662079451629 = 2839019 - 6221191
109879169725765491329 = 83 - 8423 - 157170297801581

157170297801581 41 - 5955703423 - 70724343608203457341903

70724343608203457341903
46316297682014731387158877659877
78592684042614093322289223662773
181891012640244955605725966274974474087
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Table 7. Auxiliary Factorizations.

Notation: Pxzx is a prime of zz digits, Cxx is a composite of xx digits

Number Factorization

14+ Py 37- 8109973 - 1049918455514883211 - P38

1+ Pig 1741 - 2687771 - P57

1+ Py 1313797957 - 1587086232579380268953381 - P36

1+ Py 887 - 6599 - 1630146233 - 299362531946050981817197729 - P36

1+ Py 71 - 3299661004790609 - 117822432782814607470079533787 - P35

1+ Py 7127 - 352201 - 155354729501063 - 11654246919591371 - P44

1+ Py 109 - 85669 - 232047887 - 2824330157926317541 - P54

14 Poy 23- P88

1+ Py 97-191 - 474716141 - 65748525431 - P67

14 Pog 159227 - 1067159 - 43497281 - 2527540905245931542309 - P53

1+ Py 643679794963466223081509857 - 2496022367830647867616317307 - P44

14 Pog 103 - 31336667 - 36591209 - C'108

1+ Py 1079990819 - 2434978091641012135177 - P96

1+ Py 9539 - 245433668891 - 979752962034735781 - 8473716991146998027-
-26294987506338782316507217723423 - P52

14+ P53 3143065813 - C'130

14 Pss 29-10429 - 165047 - C139

1+ P33 3847 - 2607917067290207 - P132

1+ Py 89-191 - 677371128232689991 - 33637322077530763247 - C113

1+ Pss 19787 - 7757 - 28006756507 - 1022974063703 - C'126

14 Psg 577 - P155

1+ Psy 223 - 5393 - 74673192479 - P143

14 Psg 139703 - 43085355700150267667 - P138

1+ Py 457 - 37179386588269 - 159834478959851 - P137

1+ Py 9649 - 319466050329395719 - P149

14+ Py 61 - 6827978951 - 66042713762390953740707 - C140

14 Pyo 4357 - 7027 - C'169

14 Pys C180

1+ Qo 89 - 839491 - 556266121 - 836312735653 - 1368845206580129

1+ Q1o 1307 - 560302394853 70382805887 - 889340324577880670089824574922371
14+ Qn 11 - 253562789978428582962631727729 - P62

14+ Q12 739 - 2311 - 201999392887934083464766999529 - P118

14+ Q13 11-13-107536547 - C261

S1o—1 7 - 349 - 449 - 112939 - 9937441 - 21420649 - P32

Si—1 7-257-521- 682511 - 10829594203 - 50852665316801-
-2043158415368893790939 - P32

Si2 —1 7-11-17- 86599 - 294757 - 933418660159 - 9669562218961751-
-2289336175732053683 - 35403807765085882291423 - P39

Si13—1 11 - 204249779 - C150
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Table 8. More Auxiliary Factorizations.

Notation: Pxzx is a prime of zz digits, Cxx is a composite of xx digits

Number Factorization

Riz—1  1831129- 96593227 - 395499093031447 - 705073635630813269
Ris—1 35977 -30902882521913 - 12326099580658421 - 6590447658135309749
Rig—1  508326079288931 - 8888176173420238273 - 719174739667579660597843
Roo—1  487-4783-317419- P61

Roi—1 10253 - 112687 - 24025694597 - P56

Rax—1 1390043 - 8364987138788585498453381605327 - P42
Rys —1  18122659735201507243 - P66

Ros—1 25319167 - 5211496051 - 58429754491680845821 - P68
Ros —1  9512386441- C'102

Ras—1  85577-C117

Ror—1  1031-1787- 274100051 - 2353368011777399 - C97
Ros—1 3650460767 - C121

Rag—1  107-1636358697177293 - C122

Riyp—1  41-C140

Rs1—1  811-86085747863 - C'130

Rs»—1  15787-1763431- P136

Rss—1  89-12211-1577027- P138

Rss—1 68168743 - 2880625453 - 2119710631572329177 - P117
Rss—1 4583630175649 - 13723021380961 - C'135

Rss—1  239.C162

Rz —1  1283-23059-C159

Ras —1  443.C167

Rsp—1 902404933 - 8037715351 - 29371574741 - P143
Ri—1 64775657 - 385983277 - C'165

Ry —1  2753.C185

Rix—1  23-40904021- C'183

Riz—1  149287- 172969 - 1588051 - C177

Ris—1 149749 - 33807989 - C'186

Ris—1 7895159 C197

Rig—1  79-137-367-C204

Ry —1  43-61-991- 14821 - 60077 - C197

Rig—1 1409 - 218131 - 293847231283 - C'194

Rig—1 184274081 - C209

Rso—1  47-547-1571-4621-C215

Rsi—1  569-C225

Rs»—1 63843643 - 1037601959 - C213

Rss—1 111973205287 C227
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